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Abstract

Background: Germinal center-derived B cell lymphomas are tumors of the lymphoid tissues representing one of

the most heterogeneous malignancies. Here we characterize the variety of transcriptomic phenotypes of this

disease based on 873 biopsy specimens collected in the German Cancer Aid MMML (Molecular Mechanisms in

Malignant Lymphoma) consortium. They include diffuse large B cell lymphoma (DLBCL), follicular lymphoma (FL),

Burkitt’s lymphoma, mixed FL/DLBCL lymphomas, primary mediastinal large B cell lymphoma, multiple myeloma,

IRF4-rearranged large cell lymphoma, MYC-negative Burkitt-like lymphoma with chr. 11q aberration and mantle

cell lymphoma.

Methods: We apply self-organizing map (SOM) machine learning to microarray-derived expression data to generate a

holistic view on the transcriptome landscape of lymphomas, to describe the multidimensional nature of gene regulation

and to pursue a modular view on co-expression. Expression data were complemented by pathological, genetic and

clinical characteristics.

Results: We present a transcriptome map of B cell lymphomas that allows visual comparison between the SOM portraits

of different lymphoma strata and individual cases. It decomposes into one dozen modules of co-expressed genes related

to different functional categories, to genetic defects and to the pathogenesis of lymphomas. On a molecular level, this

disease rather forms a continuum of expression states than clearly separated phenotypes. We introduced the concept of

combinatorial pattern types (PATs) that stratifies the lymphomas into nine PAT groups and, on a coarser level, into five

prominent cancer hallmark types with proliferation, inflammation and stroma signatures. Inflammation signatures in

combination with healthy B cell and tonsil characteristics associate with better overall survival rates, while proliferation in

combination with inflammation and plasma cell characteristics worsens it. A phenotypic similarity tree is presented that

reveals possible progression paths along the transcriptional dimensions. Our analysis provided a novel look on the

transition range between FL and DLBCL, on DLBCL with poor prognosis showing expression patterns resembling that

of Burkitt’s lymphoma and particularly on ‘double-hit’ MYC and BCL2 transformed lymphomas.
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Conclusions: The transcriptome map provides a tool that aggregates, refines and visualizes the data collected in the

MMML study and interprets them in the light of previous knowledge to provide orientation and support in current and

future studies on lymphomas and on other cancer entities.
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Background

Germinal center-derived B cell lymphomas are tumors of

the lymphoid tissues representing one of the most hete-

rogeneous malignancies in terms of their molecular and

cellular phenotypes [1]. Frequent B cell lymphomas in

adulthood are follicular lymphomas (FL) and diffuse large

B cell lymphomas (DLBCL), and, in children, Burkitt’s

lymphomas (BL). Especially DLBCL show a very hetero-

geneous spectrum of phenotypes as revealed by morpho-

logical [2], immunohistochemical [3] and metabolic [4]

characteristics. Particularly, molecular high-throughput

analytics created many ways to disentangle the diversity of

this disease into a series of stratification schemes [5–14].

The German Cancer Aid MMML (Molecular Mechanisms

in Malignant Lymphoma) consortium collected altogether

more than 800 biopsy specimens of mature B cell lym-

phomas and about 100 samples of tumor cell lines, nor-

mal B cell populations and non-neoplastic tonsil tissue

serving as different kinds of reference, and recorded

their genome-wide transcriptomes by means of micro-

arrays. The B cell lymphomas studied comprise virtually

the whole spectrum of this disease. Previous studies pub-

lished subgroups of samples selected from this cohort to

extract a molecular classifier that distinguishes BL from

‘other than BL’ cases [7], to disentangle DLBCL into

subclasses [10], to associate DLBCL cases with selected

signaling pathway activities [8] and to study other partial

aspects of this disease [7, 8, 10, 15–18]. An integrated and

comprehensive analysis of all samples including about 200

hitherto unpublished cases is presented here.

We hereby aim at establishing a map of the expression

landscape of B cell lymphomas covering the heterogen-

eity of their molecular expression states. Heterogeneity

of lymphomas can be understood as a series of mutually

similar molecular states forming a continuum without

clear-cut borderlines not only between different DLBCL

entities but also with respect to the distinction between

DLBCL, FL and, partly, also BL [7, 19]. These in many

respects indistinct characteristics of the tumors can

reflect overlapping genetic events such as the chromo-

somal translocation of the MYC gene which represents

the genetic hallmark of BL but which also appears in

about 5–10% of DLBCL leading to expression pheno-

types resembling BL [20] and considered as a separate

subtype according to the WHO classification [21]. The

continuum of molecular states can also reflect the

underlying stages of B cell development affected by can-

cer initiation and progression, e.g. in the course of histo-

logical transformations from FL to DLBCL after the

consecutive accumulation of a series of genetic hits [22].

Previously, we have developed an omics ‘portraying’

method using self-organizing map (SOM) machine

learning [23, 24] which was applied to a series of data

types and diseases [24–29]. SOM portraying takes into

account the multidimensional nature of gene regulation

and pursues a modular view on co-expression, reduces

dimensionality and supports visual perception in terms

of individual, case-specific ‘omics’ portraits. By applying

SOM portraying on B cell lymphoma transcriptomes, we

demonstrate that multidimensional profiling will permit

a description of the molecular heterogeneity of this disease

in terms of a continuous spectrum of transcriptional states

and to visualize them by means of different maps distin-

guishing lymphoma subtypes and their functional context

and to link them to prognosis. The transcriptome map

will provide a tool that aggregates, refines and visualizes

the data collected in the MMML study and interprets

them in the light of previous knowledge to provide orien-

tation and support in current and future studies.

Methods

Lymphoma samples, genetic analyses and expression data

The gene expression data set consists of 913 samples

studied by means of Affymetrix HG-U133A GeneChip

microarrays. They divide into reference samples (tumor

cell lines, sorted B cells, tonsils), mature B cell lym-

phomas and other tumors collected in the study (see

Additional file 1: Table S1 and Additional file 2 for de-

tails). One of the lymphoma specimens was measured

twice on two arrays. Tumors were diagnosed in panel

meetings of the MMML pathology group. Genetic

analyses by means of interphase fluorescence in situ

hybridization were performed on frozen or paraffin-em-

bedded tissues with the use of probes for IGH, IGK,

IGL, MYC, BCL6 and BCL2. Loci in which MYC was

fused to IGH, IGK or IGL were referred to as ‘IG-MYC’.

Lymphomas with MYC breakpoints without fusion of

MYC to an IG locus were called ‘non-IG-MYC’ (see [7]

for details). Reference data included different lymphoma

cell lines [30, 31], several B cell types isolated either from
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peripheral blood (pre- and post-germinal center (GC) B

cells) or from suspended tonsillar tissue (GC B cells), and

tonsillar tissue specimen for comparison of their expres-

sion patterns with those of lymphoma as specified in

Additional file 1: Table S1.

SOM expression portraying

Gene expression data were preprocessed using hook

calibration, quantile normalization and centralization as

described in [23, 32]. The preprocessing detects and

corrects for possible outlier samples, batch effects and a

sample- and transcript-specific background in cancer data

[29, 33] (Additional file 1: Figure S1). Preprocessed

expression data were then clustered using self-organizing

map (SOM) machine learning which translates the expres-

sion data matrix consisting of N = 22,283 probe set values

covering 13,182 ensemble genes, and M = 913 samples,

into a data matrix of reduced dimensionality where the N

gene expression profiles are represented by K = 2500

metagene profiles. Hereby, ‘profile’ denotes the vector of

M expression values per gene/metagene. The SOM train-

ing algorithm distributes the N genes over the K meta-

genes using the Euclidian distance between the expression

profiles as a similarity measure. It ensures that genes with

similar profiles cluster together in the same or in closely

located metagenes. Each metagene profile can be inter-

preted as the mean profile averaged over all gene profiles

referring to the respective metagene cluster. The meta-

gene expression values of each sample are visualized by

arranging them into a two-dimensional 50 × 50 grid and by

using maroon to blue colors for maximum to minimum

expression values in each of the portraits. The number of

genes typically varies from metagene to metagene and

ranges from only a few associated single genes to meta-

genes containing more than a hundred genes (see the

population map in Additional file 1: Figure S2a). This way,

our approach portrays the transcriptome landscape of each

sample in terms of a colored image visualizing its metagene

expression values. Group- and subtype-specific mean

portraits were generated by averaging the portraits of all

cases belonging to one group/subtype. We used the imple-

mentation of the method in the Bioconductor R-package

‘oposSOM’ [34].

Sample diversity analyses, spot module detection, gene

maps and enrichment analysis

Metagenes of similar profiles cluster together forming

‘spot-like’ red and blue areas of over- and under-expression

in the portraits due to the self-organizing properties of the

SOM. The spot patterns are characteristic fingerprints of

each particular sample enabling us to compare their

transcriptomic landscapes by means of diversity analysis

using a graph representation called ‘correlation network’

and phylogenetic tree visualization as implemented in

‘oposSOM’ [34]. The spot patterns of the expression

portraits reveal clusters of correlated metagenes

(Additional file 1: Figure S2d) which collect the as-

sociated single genes into modules of co-expressed

genes. These modules were defined by segmentation

of the map according to an over-expression criterion,

collecting adjacent metagenes which exceed 90% of

maximum metagene expression in the respective sample

class (see also [23, 32] and Additional file 1). The number

of spot modules detected represents an intrinsic character-

istic of the co-expression network present in the samples.

The size of the SOM, K, was chosen to ensure the robust

identification of spots by exceeding their number by more

than two orders of magnitude as was demonstrated pre-

viously [28]. The spots are characterized by their number

distributions and by spot co-occurrence networks based

on association rules [35]. We additionally performed

zoom-in SOM analyses for selected subsets of samples

(lymphoma cell lines, B cells and Burkitt’s lymphomas) to

validate resolution of the transcriptomic landscape [23].

We applied gene set enrichment analysis to the lists of

genes located in each of the spot modules to discover

their functional context using right-tailed Fisher’s exact

test [36, 37]. The gene set enrichment Z-score (GSZ)

was used to evaluate the expression profiles of the gene

sets across the samples of the study [32, 38]. Gene maps

visualize the position of selected genes within the SOM

grid. According to their location in or near a specific

spot, one can deduce over- and under-expression

characteristics and the potential functional context of

the respective gene. Its position is invariant in all

expression portraits, which allows for direct comparison.

Pattern types

The sample portraits were stratified into pattern types

(PATs), where a PAT is defined by the combination of

spot modules over-expressed in the respective samples.

Rare PATs found in less than five cases per subtype were

rejected from further analysis to focus on recurrent pat-

tern types solely. A sample that shows no expression

module activated is still assigned to a PAT if their mo-

dule expression values correlate with those of a certain

PAT with Pearson correlation coefficient r > 0.8. Other-

wise, it is assigned to ‘no PAT’ and labeled as ‘∅’. In

total, 679 samples (74%) were classified into PATs

according to detected spots, 102 (11%) were additionally

classified by the correlation step, and 133 (15%) remain

unclassified. PAT-specific mean expression portraits are

generated as averages over the individual sample por-

traits of the respective PAT.

Metagene sets of hallmarks of cancer

The hallmarks of cancer constitute a series of biological

capabilities commonly acquired by tumors [39]. We
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assembled eight metagene sets referring to the hallmarks

angiogenesis, controlling genomic instability, glucose

energetics, inflammation, invasion and metastasis, proli-

feration and replicative immortality and resisting death

according to the hallmark definitions proposed in ref.

[40]. Each of these hallmark sets collects from 2 to 12

suited gene sets taken from our repository of gene sets.

The lists of gene sets included in each hallmark set are

provided in Additional file 1: Table S3.

Cell type and pathway signal flow analyses, and survival

analyses

Immune cell composition of the tumor biopsies was esti-

mated from the expression data using the program

CIBERSORT based on support vector regression and pre-

vious knowledge on purified leukocyte expression profiles

[41]. Pathway activity was analyzed using the pathway

signal flow method as implemented in oposSOM [42].

Hazard ratios and p values for pairwise comparisons of

survival curves were derived utilizing Cox models. The

models were additionally adjusted by inclusion of co-factors

‘chemotherapy’ (yes/no) and ‘Rituximab’ (yes/no). Cases

without information about therapy were removed from the

multivariate model. The prognostic map was generated as

follows: For each metagene, lymphoma cases with available

survival information were divided into cases showing

expression of this metagene above or below the 50%

percentile, respectively, and then compared using a Cox

model. This way, hazard ratios (HRs) were obtained for

all metagenes and visualized in terms of a map using

blue to red colors for low to high HRs.

Results

SOM portraits of lymphoma subtypes

The gene expression data set studied here was generated

by the German MMML consortium. It consists of biopsy

specimens of mature B cell lymphomas, of other tumor

cases such as multiple myeloma (MM), of lymphoma cell

line specimen (32 samples of 28 different lymphoma cell

lines), of sorted B cell populations (30) and of non-neo-

plastic tonsil tissue samples (10) which were used as

reference for comparison of their expression landscapes

with that of the lymphomas (see Additional file 1: Table S1).

Expression data were complemented by pathological

evaluation of tissue samples, genetic and immuno-

histochemical analyses and clinical data. The tumor

samples were divided into ten major strata based on patho-

logical evaluation, genetic and/or previous gene expression

classification criteria (see Additional file 1: Table S1 for

details), namely, (i) diffuse large B cell lymphoma (DLBCL,

430 cases), (ii) follicular lymphoma (FL, 145), (iii) inter-

mediate lymphoma according to [7] (81), (iv) prototypic

Burkitt’s lymphoma (BL, 74), (v) mixed FL/DLBCL and

WHO grade 3b FL (48), (vi) mediastinal large B cell

lymphoma (PMBL, 23), (vii) multiple myeloma (MM, 20),

(viii) IRF4-rearranged large cell lymphoma (IRF4-LCL, 10),

(ix) MYC-negative Burkitt-like lymphomas with a chr. 11q

aberration pattern (mnBLL-11q, 6) and (x) mantle cell

lymphoma (MCL, 4). DLBCL were further stratified into

the germinal center (GCB, 142), activated B cell (ABC,

133), unclassified (97) DLBCL and double-hit (DH, 58)

lymphoma and, alternatively, into plasmablastic, centro-

blastic, anaplastic and immunoblastic DLBCL based on

pathological panel diagnosis [43, 44]. FLs were divided

according to BCL2-break (positive, negative and NA) and

according to tumor grading (1, 2 and 3a). Intermediate

lymphomas were split into BL-like (11) and others (70).

The expression data of all samples were used to train a

self-organizing map (SOM) which provides ‘portraits’ of

the transcriptomic landscape of each individual sample

(see Additional file 3 for the whole gallery of the expres-

sion portraits), and, after averaging, mean portraits of the

different strata considered (Additional file 1: Figure S3).

The mean transcriptomic portraits of the lymphoma strata

(i)–(x) are shown in Fig. 1a together with the mean por-

traits of reference samples. The mean portraits reveal

unique spot-like patterns of over- (colored in red) or

under-expressed (in blue) gene clusters but also partly

overlapping spots, e.g. between BL, mnBLL-11q and,

partly, intermediate lymphoma and between DLBCL,

PMBL and, partly, IRF4-LCL and FL. The correlation net-

work visualizes the heterogeneity of the samples (Fig. 1b):

BL cases (red-colored nodes) aggregate into a dense cloud

which reflects relatively close similarity between them

while the DLBCL cases (blue nodes) form an extended,

widely distributed data cloud due to the heterogeneous

character of this subtype. It overlaps with the cluster of FL

cases (green nodes), thus forming a continuum ranging

from BL-related to FL-related expression patterns. The

samples of the three reference systems accumulate in

localized regions of the similarity network, reflecting

relatively homogenous expression patterns contrary to

most of the lymphoma subtypes (Fig. 1b). They com-

prise different lymphoma cell lines and B cell types

(Additional file 1: Table S1) showing however relatively

similar SOM portraits (Additional file 1: Figure S3). We

provided a detailed analysis of these reference systems and

of BL in terms of zoom-in SOM analyses and

class-related difference portraits in the supplementary

text (Additional file 1: Figures S17 - S19). The zoom-in

SOM maps partly provide an enhanced resolution of the

expression landscapes of the particular subsystems. How-

ever, comparison with the results of all samples presented

here confirms sufficiently high resolution of this analysis

(Additional file 1: Figures S17 - S19). In summary, SOM

portraying provides subtype-specific images that visualize

their expression landscapes in terms of clusters of over-

and under-expressed genes.
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Spot modules partition the expression map

We generated an over-expression-spot map which sum-

marizes all red over-expression spots observed in the

single-sample portraits (Fig. 2a, see [23]). In total, 13

spot modules A–M were identified, where each of them

represents a module of co-expressed genes with a specific

mean expression profile (Additional file 1: Figure S5; for

lists of genes, see Additional file 4). Nine of the spots are

mainly activated in the lymphomas and four in the

controls. The spot-connectivity map in Fig. 2b visualizes

the probability of joint spot appearances in the single-

sample portraits. Accordingly, BL samples frequently

express spots A, B and D together (red circles) while

DLBCL tend to co-express E–G (blue circles). The fre-

quency distribution of activated spots and their number

distribution in each class show two-to-four recurrently

activated modules in BL, cell lines, B cells and tonsils

(Fig. 2c, d). For example, tonsils are characterized by

ubiquitous presence of the two spots I and J (see also the

tonsil portrait in Fig. 1a), which are specifically over-

expressed in tonsillar tissue specimen as well as in tumors

contaminated with tonsillar tissue this way giving rise to

the ‘blue-shift’ of the rest of the portrait (Additional file 1:

Figure S3 and S5) [33]. The broader distribution in inter-

mediate lymphoma, DLBCL and FL reflects their more

heterogeneous character. No spots were assigned in 133

samples, mainly in DLBCL (77 samples), intermediate

lymphoma (24), FL (7), FL/DLBCL (11) and BL (2) due to

their relatively flat expression landscapes.

A functional map of the spot modules

Each of the 13 spot clusters is populated typically with a

few hundred genes (Additional file 4). Their functional

context was analyzed by gene set analysis [32] (Fig. 3a

and Additional file 1: Figures S7–S9). Modules activated

in BL tumors are related to ‘replication’ and ‘cell cycle’

(spot D, p values < 10− 25 in Fisher’s test) and those in

DLBCL to ‘inflammation’ (spot F, < 10− 25) reflecting

tumor-infiltrating immune cells [13, 45, 46]. Modules G

and I show stromal signatures [9] while module J upreg-

ulated in tonsils significantly enriches gene sets related

to ‘keratinization’ (< 10− 23), a ‘tonsil signature’ (< 10− 10)

[23, 32], and to ‘B cell-mediated adaptive immune

Fig. 1 Expression and sample landscapes of lymphoma subtypes. a Mean expression portraits of the major B cell lymphoma subtypes and of the

controls are characterized by red-blue spot patterns which reflect clusters of co-expressed genes up- and downregulated in the subtype on the

average, respectively. The complete gallery of individual sample portraits is available in Additional file 3. b The correlation network visualizes the

similarity relations between the samples as an undirected graph. The nodes represent the samples and are colored according to their class

membership. The edges connect sample pairs whose expression landscapes are mutually correlated with Pearson’s correlation coefficients larger

than 0.5. The small networks in the part below highlight each individual class considered. Part of the lymphoma types and of the controls occupy

localized areas (e.g. BL and tonsils), while other types distribute over wider regions (e.g. intermediate lymphomas and FL/DLBCL) thus reflecting a

more heterogeneous composition of the respective groups
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response’ (< 10− 11). Genes associated with biological

functions of B cells are enriched in modules K (e.g. ‘B

cell activation’) and M (‘B cell differentiation’, < 10− 3).

For a more detailed assignment of the spot patterns to B

cell biology, we estimated enrichment of a series of gene

sets taken from literature [47, 48] and from a separate

analysis of the B cell samples (Fig. 3a, boxes with blue

background). Modules activated in BL accumulate

signature genes of the dark zone of the GC whereas

modules activated in DLBCL accumulate light zone

signature genes. The modules H, K, L and M enrich

genes related to ‘plasma cells’ and to ‘pre/post-GC B

cells’, respectively. Hence, assigning the functional con-

text of the spot patterns provides a functional map that

enables interpretation of the lymphoma portraits in

terms of activated cellular programs.

Fig. 2 Decomposing the expression landscape of lymphomas into spot modules of co-expressed genes. a The overview map collects all

differentially expressed modules observed in the subtype-specific portraits into one map. The sample class(es) expressing the respective spot

module(s) is/are assigned in the figure, thus segmenting the landscape into regions typically upregulated in certain lymphoma subtypes. Spot

modules were labeled by capital letters A–M. Dark red/blue areas refer to over-/under-expression, respectively. b Probabilities of concerted

module activation show that diverse sets of spot modules, e.g. A, B and D, are frequently upregulated in concert. Notably, spot A often appears

also together with spot I, which is characteristic for double-hit lymphomas (see also Additional file 1: Figure S4). The color of the module labels

represents the corresponding lymphoma subtype. c Spot-class association histograms depict the fraction of samples showing a certain spot in

each class. It indicates, for example, that spots A, B and D are prevalent in the BL portraits in agreement with the assignments shown in panel

a. d The spot number histograms show the fraction of samples with one, two etc. over-expression spots in each class. It reveals, that in most

BL samples three spots can be observed, while DLBCL and FL/DLBCL show a broader variability of spots. Only the five most abundant

lymphoma strata (i)–(v) are shown
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Fig. 3 Functional analysis of the expression modules. a Enriched gene sets from GO, KEGG and Reactome databases (yellow background; p < 0.05,

Fisher’s exact test) and of B cell-related signatures taken from [47–49] and from a separate analysis of our B cell samples (blue background) are

assigned to each of the spot modules. For example, spots A and F associate with cell-cycle activity and inflammation, respectively. b Mapping of

key genes mutated in lymphomas and multiple myeloma taken from [50–60] into the expression landscape: Most of the genes accumulate in or

near the spot modules thus reflecting a subtype-specific modulation of their gene expression. Multiple appearances of gene names refer to

different Affymetrix probe sets
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Mapping key mutations

Mapping of selected genes with mutations in lymphoma

[50, 51, 53–60] into the SOM associates their expression

profiles with that of the adjacent expression modules

(Fig. 3b). Genes frequently mutated in BL are located in

the BL-specific spot A (e.g. ID3, CCND3) and D (e.g.

TCF3, SMARCA4, MYC) indicating their increased acti-

vity in BL and partly in intermediate lymphomas [50, 61].

Genes frequently mutated in DLBCL, FL and/or multiple

myelomas (MM) such as BCL6 and BCL2 are found in or

near spot K upregulated in healthy B cells and, to a lesser

degree, in FL, and downregulated in BL and DLBCL

(Additional file 1: Figure S5). The chromatin-modifying

genes CREBBP (mutated in 30% of GCB-DLBCL [11], in

early FL stages [62] and shared between primary and

transformed FL [63]) and KMT2D (alias MLL2) are

located in spots up- or downregulated in part of the FL

cases compared with DLBCL suggesting epigenetic

deregulation in FL. It presumably also involves HLA class

II antigens [64], as supported by genome-wide association

study (GWAS) analyses (Additional file 1: Figure S12),

and MYD88, CDKN2B and PIK3CD, all affected by

mutations preferentially in ABC-DLBCL leading to

‘chronic active’ B cell receptor signaling [11] (see also

Additional file 1: Figure S11 for pathway analyses).

Spot H, specifically upregulated in MM and immuno-

blastic and plasmablastic DLBCL, co-regulates with

PRDM1 (alias BLIMP1) promoting plasma cell differenti-

ation by repressing MYC activity [53]. PRDM1 is deacti-

vated in GCB-DLBCL and presumably also other subtypes

by mutations, deletions or epigenetic effects [65, 66].

Interestingly, also IRF4 co-regulates with PRDM1 as indi-

cated by its co-location in spot H [11]. The PIM1 onco-

gene (spot E) is over-expressed in most ABC-DLBCL [63]

and in transformed FL (about 50% of patients) with ABC

characteristics but it is rarely mutated in primary FL (less

than 10%) [65]. Interestingly, both genes, PIM1 (40% in

ABC vs 15% in GCB) and PRDM1 (25% vs less than 5%),

show high prevalence of activating mutations in

ABC-DLBCL [14] as indicated by over-expression of spot

modules E and H in the SOM portrait of ABC-DLBCL

but not in GCB-DLBCL (see Fig. 4).

We also mapped hereditable risk genes for DLBCL and/

or FL which were identified by GWAS (Additional file 1:

Figure S12). These genes accumulate near the spots

related to the somatic mutations in DLBCL and FL. In

summary, mapping of mutations into the expression land-

scapes directly associates genomic with transcriptional

events and allows linking mutations with their possible

effects on the different subtypes.

Expression portraits relate to the pathogenesis in the GC

The scheme in Fig. 4 illustrates the relation between the

expression portraits of B cells and of lymphoma subtypes

and GC biology [52] (see also Additional file 1: Figure S3).

B cells simultaneously express the spots J (tonsil sig-

nature), and K, L and M as characteristic B cell-specific

signatures (Fig. 3a). In contrast to pre- and post-GC B

cells, GC B cells over-express spot D that reflects activated

proliferation in the dark zone of the GC. Also the portraits

of the cancer cell line specimen over-express this proli-

feration signature (Fig. 1). On the other hand, all cell line

systems under-express spot F related to inflammation

because of the absence of immunogenic bystander cells. For

a more detailed view, we refer to the ‘zoom-in’ SOM ana-

lysis provided in the supplementary text (Additional file 1:

Figure S17 and S 18).

DLBCL of the GCB and ABC types show common

expression of spot F (inflammation), but they differ in the

expression of spots containing the key genes MYC (spot

D), PIM1 (E) and PRDM1 (H) (see Fig. 4 and previous

subsection). The portrait of PMBL closely resembles

GCB-DLBCL, which differs from that of ABC-DLBCL. It

specifically expresses the plasma cell-related spot H

and the proliferation-related spot D. Interestingly, the

ABC-type portrait resembles that of plasmablastic and

partly also immunoblastic DLBCL while the portraits

of anaplastic and centroblastic DLBCL partly agree

with that of GCB lymphoma (Additional file 1: Figure S3),

where plasmablastic, immunoblastic, anaplastic and cen-

troblastic lymphoma annotate three morphological va-

riants of DLBCL. Spot H shows prominent expression

also in multiple myelomas (MM) accompanied by deacti-

vation of BCL6-related transcriptional programs (spot K)

as a hallmark of plasma cell maturation which is further

paralleled by high expression of spot L reflecting B

cell-like characteristics. On the other hand, MM under-

express spots D, E and F due to decreased proliferative

and inflammatory properties compared with ABC-DLBCL.

Interestingly, IRF4-LCL over-express spots D, E and G

thus indicating a combination of BL-like (spot D), stromal

(spot G) and ABC-DLBCL (spot E) characteristics (Fig. 4).

BL-like intermediate lymphomas show over-expression of

spot B that accumulates marker genes of BL [7] but also

of spot L which is related to post- and pre-GC B cell char-

acteristics. This spot is not observed in prototypic BL and

possibly refers to early stages of BL development which is

supported by the relatively weak expression of spot D

harboring proliferation-related genes such as MYC, TP53

and EZH2 (Fig. 3b). The portrait of mnBLL-11q closely

resembles that of intermediate lymphomas and only partly

that of prototypic BL [67] which, in turn, resembles that

of double-hit lymphoma (DHL, Fig. 4). In the supplemen-

tal text, we present a comprehensive analysis of the

expression patterns before and after acquiring a second

hit combining MYC- with BCL2 or BCL6 translocations

(Additional file 1: Figure S4). It illustrates the capability

of SOM portraying to identify specific transcriptional
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patterns. The DZ- (spots D and A) GC signatures were

evident in BL, while the LZ-GC signature (spots E–G) was

found in GCB-DLBCL, partly FL and also in ABC-DLBCL

and intermediate lymphomas in mixed amounts.

FLs of all histological grades express spot I as a tran-

scriptional hallmark of this subtype independent of the

presence or absence of the genetic hallmark of FL,

namely the t(14;18) translocation (BCL2-break). Spot I

partly transforms into spot G with increasing grade of

FL paralleled by decreasing gene activities in the regions

of other spots which indicates the progressive domi-

nance of FL characteristics over other processes such as

DNA processing and B cell characteristics. Grade 3b FL

(FL/DLBCL) show a combined pattern of the FL and

DLBCL-specific spots I and F, respectively, indicating

the continuous transformation from FL into DLBCL.

The portrait of double-hit lymphoma resembles that of

BL thus reflecting increased transcriptional activity com-

pared with FL (see also Additional file 1: Figure S4 for

details). The portrait of MCL shows a unique pattern

different from all the other lymphoma groups but

sharing similarities with the portraits of B cells especially

with strong expression of spot K and, partly, of spot M.

MCL split into two subtypes deriving from pre- (type

C1) or post-GC memory (C2) B cells, respectively [68].

Both types carry the t(14:18) translation giving rise to

Fig. 4 Expression portraits of B cells and lymphomas, and their relation with respect to the GC biology. See also Additional file 1: Figure S3 for

the full gallery of group-related expression portraits. Activated spot combinations are given as letters in the portraits. The particular spot patterns

observed for the different lymphoma subtypes can be related to their functional context and associated key genes (compare with Fig. 2). For

example, DZ-related types such as BL are proliferative as indicated by upregulation of spot D, which is on a lower expression level in LZ-related

DLBCL. ABC-DLBCL and MM activate spot H, which is, in turn, virtually inactive in BL, GCB-DLBCL and FL
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over-expression of spot I also found in FL. C1 MCL, in

contrast to C2 MCL, express the gene SOX11 near spot

A which prevents them from entering the GC. The por-

trait of tonsils expresses spot J as the unique prominent

characteristics.

In summary, stratification of the molecular subtype

portraits with respect to histological and genetic diagnosis

reveals detailed relations to GC biology such as DZ- and

LZ-GC, plasma cell and B cell characteristics. Overall, the

criteria used, however, do not provide a consensus with

respect to the classification of the tumors.

Pattern types

All subclasses express a combination of spots which

makes them suited candidates as landmarks in the ex-

pression landscape of lymphoma. To address this multi-

dimensionality, we define ‘pattern types’ (PATs) as the

combination of spot modules concertedly over-expressed

in a sample. We use notations such as ‘A B D’ to anno-

tate cases jointly over-expressing the three modules A, B

and D. In total, we identified 35 different PATs where 30

of them refer to lymphomas (Fig. 5a). We further strati-

fied the PATs into 11 PAT groups, where the groups

were labeled according to the most characteristic over-

lapping module(s) of the respective PATs (Fig. 5a). For

example, BLs accumulate within five PATs collected into

one BL-like group, while DLBCL distribute over four

groups with 14 PATs, where one of these groups over-

laps with FL. DLBCL were assigned to proliferative PATs

with ABC-DLBCL characteristics (E type) or inflamma-

tory and stromal types with GCB-DLBCL characteristics

(F and G types, respectively). FL and FL/DLBCL are

found in two groups mainly over-expressing spot I and

partly also G and F thus forming a continuum between

DLBCL and FL expression patterns. Interestingly, a

small subgroup of intermediate lymphomas and of FL

forms the L type that shares similarities with multiple

myeloma (H type), partly expressing plasma cell pro-

grams associated with spot H. High expression of spot J

indicates contaminations of the lymphoma samples with

non-neoplastic tonsillar tissue. They were clustered

together with the tonsils showing spot J as a hallmark. B

cells divide into two PATs, which accumulate either GC

B cells (‘AJ’) or pre/post-GC B cells (‘JKLM’, see also

Additional file 1: Figure S3). The samples of each PAT

mostly aggregate into compact data clouds in the simi-

larity net which confirms the homogeneous character of

their expression landscapes (Fig. 5b).

In summary, PATs and PAT groups provide an

expression-driven stratification of lymphoma and re-

ference samples with enhanced resolution and homoge-

neity compared with the histological subtypes and with

reference to activated cellular programs.

Characteristics of the PATs

The plot in Fig. 6a associates selected patient and func-

tional characteristics with the PATs. The BL-related

PATs show typical characteristics of this subtype such as

the increased incidence in young patients, the presence

of an IG-MYC translocation, low expression of BCL2

and a high percentage of KI67-positive highly proliferat-

ing cells [7]. DLBCL PATs enrich in older patients with

high expression levels of the BCL2 markers and slower

proliferation as seen by KI67. Expression modules acti-

vated in PATs of BL and FL reflect different transcrip-

tional programs associated with IG-MYC and IG-BCL2

single hits, respectively. The joint appearance of both

aberrations in double-hit lymphomas (DHL) specifically

activates spot module A (PAT ‘A’) in agreement with

recently published DHL expression signatures [69, 70]

(Additional file 1: Figure S4c). Hence, the combination

of different translocations in double-hit lymphomas does

not necessarily combine the spot patterns of the respect-

ive single-hit lymphomas, but instead, they can induce

new, non-additive expression patterns.

We related the PATs to expression signatures of pre-

vious lymphoma classifications schemes [6–8, 10]. As

expected, samples of the mBL and non-mBL subtypes

[7] show strong correspondence with BL and DLBCL,

respectively. The intermediate class (by Hummel et al.)

accumulates in the PATs expressing spots A and D but

also in the I-type typical for FL which reflects its hetero-

geneity. This class tends to collect DLBCL with BL re-

semblance induced, e.g. by IG-BCL2 and IG-MYC

translocations, respectively (Additional file 1: Figure S4a).

It also collects virtually all double-hit lymphomas, which

enrich in PAT ‘A’ as described above. DLBCL tumors with

the ABC signature [6] significantly enrich in the PATs ‘E’,

‘F’ and ‘E F’, collecting 75 of all 183 ABC cases (41%,

p value < 10− 15; see also the expression portrait of

ABC lymphoma in Fig. 4) which associates them with

a distinct molecular PAT signature. GCB-DLBCL

express predominantly PATs of the G and FIJ types.

The classification of Rosolowski et al. [10] shows corres-

pondence with E-, F- and L-type PATs. It reveals enrich-

ment of the HiGA-Pro (high gene activation with

proliferative phenotype) class in PATs ‘E’ (p value < 10− 14)

and ‘E J’ (p value < 0.005) that also enriches ABC-DLBC

(see above), suggesting relevant involvement of spot mod-

ule E genes in this classifier. LoGA (low gene activity)

cases accumulate in PAT ‘L’ which associates with B cell

characteristics and thus possibly with early stages of

lymphoma development (p values < 0.005, see Fig. 3a).

Inflammatory [45] and stromal [9] signatures associate

with PATs containing spots F, G or I, respectively

(Additional file 1: Figure S8). We also compared our tran-

scriptomic strata with recently established genetic classes of

DLBCL [12, 14] by mapping characteristic mutations and
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chromosomal aberrations into the expression landscape. It

turned out that these genetic classes associate with different

PAT types covering the expression spectrum ranging from

phenotypes of BL resemblance, over ABC and GCB-DLBCL,

to FL-like tumors (Additional file 1: Figure S10).

Next, we estimated the percentage of selected immune

cells based on their mRNA content in the tumor tran-

scriptomes using CIBERSORT [41] (Fig. 6c). The tran-

scriptomes of BL and partly of intermediate lymphomas

(A- and D-type PATs) reflect characteristics of naïve B

Fig. 5 Expression (a) and sample (b) landscapes of the lymphoma pattern types (PATs). PATs were arranged into 11 groups. For each group,

number-frequencies of samples diagnosed in the major histological lymphoma subtypes are given as barplot in panel a (see also the enrichment

heatmap in Additional file 1: Figure S5). Each group collects similar and largely overlapping spot patterns. They arrange into dense sample clouds

in the similarity networks, what is in contrast to the partly heterogeneous subtypes (compare with Fig. 1b)
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cells while DLBCL transcriptomes are more related to

memory B cells which reflects a higher maturation grade

of the B cells upon neoplastic transformation into

DLBCL compared with BL. H-type PATs enriching MM

show a high abundance of a plasma cell mRNA signa-

ture. Tumor-infiltrating macrophages are detected in

considerable amounts in DLBCL and FL (F- and G-type

PATs) which overall reflects a changing tumor micro-

environment with PAT resolution. Previous studies re-

port similar results, however, with lower resolution on a

subtype level for BL, DLBCL, FL and MM [71]. Altered

B cell receptor signaling in B cell lymphomas [11] will

possibly lead to changed immune cell signatures with pos-

sible consequences for digital immune cell decomposition.

In summary, the PATs can be associated with different

functional categories and they show correspondence with

previous lymphoma classifications and leukocyte charac-

teristics. The PAT approach thus provides a classification

scheme based on a multidimensional understanding of the

expression landscape of this disease.

Cancer hallmark types

For a more generalized assignment of the PATs, we

make use of a cancer hallmark scheme [40]. We de-

fined eight hallmark signatures using GO and

literature-gene sets, applied them to each PAT and

represented its hallmark signature in terms of a polar

diagram (Additional file 1: Figures S13 and S14). The

Fig. 6 Characterization of lymphoma pattern types (PATs). a For each lymphoma patient, the PAT, clinical characteristics, previous molecular

classifications, genomic characteristics and immunohistochemical (IHC) phenotypes are indicated in the barplots. Thresholds for classification of

IHC markers are described in [17]. b Mapping of cases showing selected characteristics into the correlation network. It shows, e.g. that different

previous classifications of lymphomas, such as ABC and GCB-DLBCL, accumulate in different areas of the network, which, in turn, associate with

certain PATs. c Percentage of selected leukocyte cells according to their mRNA signatures across the PATs. ‘No PAT’ samples were assigned as ‘∅’

and distributed into PAT groups using a minimum Euclidian distance between sample and mean group portraits
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PATs were then grouped into five hallmark types (HTs,

see Fig. 7): (i) The proliferative HT with activated hall-

mark proliferation, controlling genetic instability, invasion

and metastasis and, partly, regenerative immortality,

collects mainly BL and intermediate lymphoma with

over-expressed spots A, B and D. (ii) The balanced pro-

liferative HT with a moderate activation of the hallmark

proliferation and a reduced level of invasion and metasta-

sis collects intermediate lymphoma and DLBCL over-ex-

pressing spots D, E and H including ABC-DLBCL. (iii)

The inflammatory HT with the activated hallmark ‘in-

flammation’ contains DLBCL especially of the GCB type,

FL and, to a lesser degree, DLBCL/FL expressing spots E,

F and partly G. (iv) The balanced inflammatory HT with

reduced activity of ‘inflammation’ and dominating

hallmark ‘angiogenesis’ due to the over-expression of spots

G and I collects mainly DLBCL/FL; (v) The weakly

carcinogenic HT with generally low overall hallmark activ-

ities which collects lymphoma showing partly healthy B

cell characteristics. Note that the hallmark ‘angiogenesis’

associates mainly with spot G that enriches stromal [9]

and also inflammatory [45] characteristics (Additional file 1:

Figure S13c). The samples assigned to each HT occupy al-

most distinct regions of the similarity net thus reflecting

Fig. 7 Cancer hallmark types (HT) were characterized using an expression signature for each of the eight hallmarks and clustering of the

lymphoma samples into five HT. a The expression levels of the hallmark signatures were presented in terms of a polar plot (hallmark diagrams)

for each of the HTs. Each hallmark is assigned to one polar axis as indicated in the legend. HTs differ markedly regarding the hallmarks

‘inflammation’ on the one hand and ‘proliferation’ and ‘invasion and metastasis’ on the other hand. b Samples assigned to each of the five HTs

were colored in the correlation network, where each dot represents one sample. It reveals that the proliferative, inflammatory and weak HTs

occupy three different, mutually separated regions while the two balanced HTs fill the transition zones in between them. c Mean expression

portraits of the HTs reveal different regions of over- and under-expression, which can be directly compared with the portraits of the subtypes

(Fig. 1a) and PATs (Fig. 5)
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homogeneous expression landscapes (Fig. 7b). Their over-

expression spot patterns shift along the edges of the map

due to mutual similarities between the HTs (Fig. 7c).

Hence, the concept of cancer hallmarks coarsens the

expression characteristics and provides a simplified strati-

fication scheme of lymphomas.

Prognostic HR map

Next, we generated a prognostic map by associating high

expression levels in each of the metagenes of the SOM

with the hazard ratio (HR) between the lymphoma

patients expressing and not expressing this metagene

(Fig. 8a). Red regions of bad prognosis include spots B–D

upregulated typically in the proliferative HT and especially

the balanced proliferative HT, while blue areas of better

prognosis refer mainly to genes upregulated in the

balanced inflammatory HT expressing spots G–J pre-

dominantly in DLBCL, FL and FL/DLBCL (compare with

Fig. 7c). The overall survival (OS) curves of the HTs con-

firm this observation (Fig. 8c). Inflammation (and stromal)

signatures in combination with healthy B cell and tonsil

characteristics obviously associate with better survival,

while proliferation in combination with inflammation

Fig. 8 Prognostic map and overall survival (OS) curves for selected groups of tumors. The prognostic map obtained reveals regions of worse

prognosis in red and of better prognosis in blue (panel a). The dark blue region near spots K (HR < 0.5) and the maroon region near

spot H (HR > 2) associate with best and worst prognosis, respectively. The respective OS curves (b) resemble that of the balanced

proliferative HT and of ABC-DLBCL on the one side and that of the balanced inflammatory HT and of GCB-DLBCL on the other side

(panels c and d). e–h OS curves of the major subtypes (e) which are further stratified for children and adults for BL (f). OS curves of

selected PATs (g) and of DLBCL-related PATs (h) associate spot combinations with prognosis. Hazard ratios (HR) are given for significantly

differential curves with p value < 0.01 in Cox model. HRs which are still significant after adjustment for therapy are marked with an

asterisk. See also Table S4 and Table S5 for HRs and p values of all pairwise comparisons and of the co-factors
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worsens it. Regions of best and worst prognosis near spots

K (HR< 0.5) and H (HR > 2), respectively, indeed collect

genes that upregulate in the two balanced HTs (compare

with Fig. 7c). Interestingly, the respective OS curves

(Fig. 8b) resemble that of GCB- and ABC-DLBCL (Fig. 8d),

whose portraits show over-expression in the regions of

low and high HR around spots K and H, respectively (see

Fig. 4). These regions were assigned to B cell development

and B cell receptor pathway activity (spot K) and matur-

ation into plasma cells (spot H) harboring the genes BCL6

and PRDM1, respectively, with key roles in lymphomagen-

esis [72, 73]. The composition of cases from both regions

indeed reveals a higher prevalence of ABC-DLBCL and

MM with plasma cell characteristics for worse prognosis

and of GCB-DLBCL, FL, FL/DLBCL and PMBCL for bet-

ter prognosis (Fig. 8b). Stratification of the HR map re-

garding the lymphoma subtypes reveals common

prognostic patterns as evident in the overall HR map

(Additional file 1: Figure S15).

Figure 8e shows OS curves of the major lymphoma

subtypes. That of FL tumors reflects the indolent but in

most instances incurable character of this disease [74].

In contrast, about 25% of the BL cases die within 2 years

after diagnosis, but afterward, the survival curve indi-

cates good prognosis for the survivors. Stratification with

respect to age provides a significantly better long-term

prognosis for children (p = 0.02, HR = 0.4) in terms of

the plateau level (Fig. 8f ). Stratification of the OS curves

for the PATs further diversifies prognosis (Fig. 8g). The

DLBCL cases split into PATs with better (‘G’, ‘E F’ and ‘F

G’; HR = 0.5–0.7; HRs refer to all other DLBCL) and

worse (‘F’, ‘E’, ‘A’ and ‘none’; HR = 1.3–2.2) prognosis

(Fig. 8h, Additional file 1: Table S4). Hence, spot F col-

lecting genes involved in inflammatory response seems

to play an ambivalent role, depending if activation is in

concert with, e.g., module ‘E’ or sole of spot ‘F’. Sole

expression of spot A in double-hit DLBCL drastically

worsens prognosis (Fig. 8h). Poor prognosis of DLBCL

associates with expression of spot D (see, e.g. the por-

traits of PATs ‘A’ and ‘E’ in Fig. 5a, and Fig. 8a). These

PATs are in correspondence with a recently identified

molecular high-grade (MHG) group of DLBC which is

characterized by a proliferative and BL-like phenotype

which enriches double-hit lymphomas [75].

Overall, it should be taken into account that due to the

retrospective nature of the study, patients had been

treated with various chemotherapy regimens including

rituximab in only a part of cases. Nevertheless, the

prognostic map links gene signatures of poor and good

prognosis with underlying molecular functions. ABC-

and GCB-like transcriptional characteristics associate

with worst and best prognosis of DLBCL, respectively.

Stratification with respect to PATs associates spot-re-

lated molecular programs with the aggressiveness of

the disease. GIF animations visualize the mutual re-

latedness of the PAT- and HT-related SOM portraits

(Additional files 5 and 6).

Phenotype similarity and tumor development

SOM portraying further enabled us to establish pheno-

typic trees of mutual relatedness on three levels of reso-

lution, namely for individual sample portraits, mean

subtypes and mean PAT portraits, respectively (Add-

itional file 1: Figure S16). The intermediate PAT level

provides the most informative tree structure showing

one backbone with two major side branches and

well-resolved PAT leaves (Fig. 9). The horizontal back-

bone describes a series of PATs referring predominantly

to lymphomas of the BL, intermediate and DLBCL sub-

types (from the left to the right). It is characterized by

antagonistic alterations of a dark zone (DZ)-like prolif-

erative signature and more light zone (LZ)-like and in-

flammatory signatures.

The left vertical side branch collects mainly DLBCL

cases with weak carcinogenic hallmark characteristics

and also multiple myeloma showing both similarities of

their transcriptomes with healthy B cells. The second

side branch on the right contains mainly FL with in-

creasing resemblance with tonsil’s expression signature.

On average, the grading of FL increases towards the end

of this branch due to gained transcriptional specifics of

FL in terms of PATs expressing spot I with increasing

grade. On the other hand, FL/DLBCL (FL3b) accumulate

along the main backbone as mixed G-type PATs expres-

sing also spot F as the main hallmark of DLBCL which

manifests transformation of FL into DLBCL. Hence, FL

development splits into two different paths, either

reflecting an increasing level of the FL characteristics

(spot I) or an increasing contribution of the DLBCL-spe-

cific spot-signature F in FL/DLBCL in correspondence

with [76]. The expression landscape illustrates also an-

other path of FL progression which is associated with

the appearance of a second chromosomal translocation

gained in addition to the primary t(14;18) hit [69]. Here,

we exemplarily considered a secondary t(8;14) IG-MYC

translocation, which induces a jump-like change of the ex-

pression phenotype by activating module A. It leads to

PATs closely resembling that of IG-MYC-positive single--

hit lymphoma with an activated proliferative cellular

program (Fig. 9b). Overall, the phenotypic tree

establishes similarity relations between the transcriptomes

of the major lymphoma subtypes in terms of common

and different transcriptional programs; it identifies a dis-

tinct branch of lymphomas expressing similarities with

healthy B cells, and it reveals possible progression paths,

e.g. of FL with increasing grade and composite lym-

phomas such as DLBCL/FL.
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Discussion

We presented a transcriptome map of B cell lymphoma

which provides a holistic view on their expression land-

scape, the heterogeneity of activated gene-regulatory

programs and their association with different lymphoma

subtypes. The novelty hereby is that the map considers

the whole range of variation of mature B cell lymphoma

including a series of subtypes and healthy cell references

and that it enables modularization of the landscape into

expression states, their functional interpretation and

visualization in terms of portraits of the different

lymphoma strata and individual cases. These states can

be grouped into five hallmark types on the coarsest level

of stratification with proliferation, inflammation and

stroma/angiogenesis as the most relevant hallmark

dimensions. Combinatorial pattern types of activated

modules stratify the lymphomas with higher resolution.

The lymphoma map allows the evaluation of the tran-

scriptome landscape which combines different aspects:

(i) subtype-specific over- and under-expression; (ii) bio-

logical functions of the related expression modules; (iii)

mutations of key genes according to their location in

the map and (iv) survival hazard ratios and regions of

better and of worse prognosis. Mapping of previous

subtyping schemes enables the mutual comparison

and characterization of GC-derived B cell lymphomas,

of multiple myeloma and mantle cell lymphoma and

also of the reference B cells within a unique data

landscape. It reflects major aspects of B cell maturation

and GC biology.

Exemplarily, our analysis provided a close look on the

transition range between FL and DLBCL, on DLBCL

with poor prognosis showing expression patterns resem-

bling that of BL, and particularly on ‘double-hit’ MYC

and BCL2 transformed lymphomas. In these respects,

the definition of clear-cut separating criteria between the

different sub-entities of lymphomas is difficult to estab-

lish due to the smooth character of their expression

landscape that forms rather a continuum of molecular

states than distinct clusters. These transition regions

have impact regarding tumor development and transfor-

mations between different subtypes.

Conclusions
The transcriptome map of lymphomas provides a tool

that aggregates, refines, interprets and visualizes pre-

vious lymphoma data to provide a reference system in

current and future studies. Particularly, it provides a

reference landscape which can be utilized to map sets of

signature genes and classifiers obtained in new and

independent studies for comparison with the MMML

cases and strata presented here, and for judging their

Fig. 9 The lymphoma phenotype similarity tree. a The PAT-level tree visualizes the similarity relations between the core regions of the subtypes,

the mutual transition ranges and their relation to the controls. b Different regions of the landscape associate with different B cell-related

expression signatures and changing hallmark characteristics
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impact in terms of function and prognosis. It considers

the whole spectrum of cases in the MMML cohort thus

representing an overview map. Zoom-in maps with

enhanced resolution can be generated for more detailed

molecular pictures of subsets of cases as demonstrated

here for B cells, lymphoma cell lines and BL, and pre-

viously for DLBCL and BL [33] and in the context of

human tissues [23]. Our analyses demonstrated that

consideration of a wide collection of different subtypes

into a joint landscape extends the state space of expres-

sion phenotypes covered in the map with sufficient

resolution and allows for their interpretation in a com-

mon context. The map offers the option of extension by

adding new cases from other lymphoma studies to

further widen the transcriptional landscape and/or to

classify and to interpret them according to the classifi-

cation schemes presented. Tools such as an interactive

‘oposSOM-browser’ are presently under development for

potential use in lymphoma diagnostics and molecular

interpretation of gene expression patterns. Finally, our

multivariate PAT concept provides a nosology scheme

for describing heterogeneity also of other cancer types

with high granularity.
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