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This paper presents a new model for exception handling, called the replacement model. The 
replacement model, in contrast to other exception-handling proposals, supports all the handler 
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expressions, in a modular, simple, and uniform fashion. The model can be embedded in any 
expression-oriented language and can also be adapted to languages which are not expression 
oriented with almost all the above advantages. This paper presents the syntactic extensions for 
embedding the replacement model into Algol 68 and its operational semantics. An axiomatic 
semantic definition for the model can be found in [271. 
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1. INTRODUCTION 

1.1 Modularity 

The recommended approach to designing complex software systems is to 
develop independent program modules, each of which implements a single 
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procedural or data abstraction. Each procedural abstraction is either a subrou- 
tine or a function. Each data abstraction provides a collection of procedural 
abstractions that can be applied to the data items defined in and hidden by the 
module. A data abstraction is either an abstract data type or an abstract data 
object, depending on whether the module provides a type or a hidden data 
object to its users. The abstractions offered by a module are those whose names 
are exported from the module. The exported names of a module include its own 
name as well as those of the types and procedural abstractions contained inside 
a data abstraction module. These modules can be individually documented, pro- 
grammed, tested, verified, and then used in different applications. 

In order for this process to work, it is necessary that the modules possess a 
high degree of what is termed modularity. It is not the goal of this paper to 
define “modularity,” as it is adequately defined and described elsewhere (e.g., 
[6,18,19,211). Thus, only the specific properties of modularity used in this 
paper are alluded to here. This paper takes the position that a group of 
modules have modularity if they practice information hiding, if the modules 
have high intramodule strength, and if they have low intermodule coupling. The 
modules of a system are said to practice information hiding if they hide imple- 
mentation details to the extent that if a single change is made to the implemen- 
tation of a system, then only one module’s contents need to be changed. A 
module is said to have high intramodule strength if it is devoted to implement- 
ing one and only one abstraction, be it procedural or data. A set of modules has 
low intermodule coupling if the data passed between them are minimized and 
comprised only of single (abstract) objects. 

While modularity is itself impossible to measure, and thus impossible to 
enforce algorithmically, there are a number of syntactic mechanisms that can be 
used to help achieve modularity. 

Scope rules can be used to restrict visibility of information that should be 
hidden. This is taken advantage of in many languages, in which the construct 
for implementing data abstractions has means to state which of the declarations 
inside it are exported and which are not. Compilers for such languages are able 
to check that no abstraction is used unless it has been defined and is visible in 
the scope. 

Type rules can be used to ensure the consistency of interfaces. This enables a 
compiler to check, for example, that all invocations of a particular abstraction 
have the same number and same types of parameters as each other and as the 
definition of the abstraction. As a result, it becomes possible to check the con- 
sistency of interfaces at compile time, at link time, or at some other time prior 
to execution. It is even desirable to be able to check for interface consistency 
on the basis of only the exported parts of the modules so that the interface can 
be demonstrated consistent even before coding of the modules begins. 

1.2 Exception Handling 

One of the strengths of the module construct derives from its ability to provide 
useful, reusable abstractions. For this purpose, a module must be designed to 
meet the most general common needs of potential module users. This 
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generality is also a source of weakness, since some situations do not admit the 
definition of a generally useful result within the module. 

Each procedural abstraction or operation is programmed to perform some 
computation on inputs in its domain of definition. These inputs are character- 
ized by that operation’s normal case input assertion. When the program has 
been verified with respect to the normal case input-output assertions, applying 
the operation to inputs satisfying the normal case input assertion should yield a 
result satisfying the prescribed output assertion. 

However, what happens if the operation is applied to an input that does not 
satisfy the normal case input assertion ? Then some out-of-the-ordinary pro- 
cessing must be done. The normal case input assertion for read from a sequen- 
tial file is that there remain records to be read from the file. If none remain, 
that assertion does not hold, and something other than reading the next record 
should be done. Other examples are dividing by zero, popping an empty stack, 
selecting a substring using an index out of the string’s bounds, or applying a 
merge expecting sorted files to an unsorted file. 

Forcing the invoker of an operation to apply a check for the operation’s appli- 
cability prior to each invocation of an operation gives rise to several problems. 
It leads to cumbersome code in nested expressions; the operation may be per- 
forming the check anyway; the check could be easier to perform during the 
application of the operation; and some exceptions (e.g., those due to real-time 
conditions, such as resource depletion) cannot be usefully checked for in 
advance. In addition, program reliability requires that an operation be designed 
to handle all possible inputs of the correct data type without crashing, even 
when the normal case input assertion does not hold. 

Therefore the approach taken here is to have the input assertion for an opera- 
tion assert nothing beyond the information that can be obtained by a static 
examination of the program text, and have the operation itself check for its 
own applicability, identify exceptional cases, and notify its invoker about them. 
Those states not satisfying the normal case input assertion of the operation are 
called exceptions of that operation, and the operation is considered the signaler of 
these exceptions. The predicate describing the exceptional state is called the 
exception condition. Exceptions are characterized by a pair of assertions, the 
exception condition, and the corresponding resumption condition. The resump- 
tion condition describes the condition that any handler resuming the signaller 
must satisfy in order for the operation to eventually satisfy its normal case out- 
put assertion. (F ormal definitions of these concepts can be found in L26l.j 
Notifying the invoker of an operation of an exception is called signalling the 
exception. 

The full significance of an exception may not be apparent in the context of 
the detecting module (otherwise it would not be an exception). Rather, it is 
the invoker of the operation which knows the purpose of the application of the 
operation and therefore the significance of the detection of the exception. 
Therefore, the processing under exception conditions is left to the invoker of a 
signalling operation. The code for dealing with an exception condition, that is, 
for responding to the signalling of an exception, is called the exception handler. 
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Indeed, this is the very reason that exception handling is critical for support of 
modularity. Without it, too much information is not hidden and coupling is 
high. Either the signaller has to be told more about what the invoker is doing, 
so that the signaller can do what the invoker would want done, or else the 
invoker has to be given more implementation details so that it can do the 
exception checking [201. 

1.3 Modular Exception Handling 

The previous subsections have discussed modularity and have demonstrated the 
necessity to deal with exceptional conditions in the invocation of module opera- 
tions in order to preserve the desired modularity. In addition, the importance 
of early checking of interface properties of the modules has been stressed. 
Therefore, it is desirable to find a modular means to handle exceptional condi- 
tions which can be checked for interface consistency at compile time. By a 
modular means for handling exceptional conditions is meant one that permits 
practice of information hiding and maintenance of high intramodule strength 
and low intermodule coupling. This paper proposes one such exception- 
handling scheme with the desired properties. In addition., the scheme is simple 
enough that it can be axiomatized so that the software using it can be subjected 
to formal verification of correctness 1271. This proposal has its origins in earlier 
work by the present authors and others Ill. 

The second section lists the criteria for a modular verifiable exception- 
handling mechanism. The third section reviews previous attempts to build 
exception-handling schemes. The section after that introduces, by way of an 
example, the replacement model. The replacement model places some require- 
ments on the containing language, which are enumerated in Section 5. Such a 
language is assumed, and then in Section 6 the details of the scheme are 
presented, describing its syntax, its context conditions, and an operational 
semantics. Section 7 evaluates the proposed scheme relative to the require- 
ments established earlier and discusses other issues orthogonal to the scheme, 
which are nevertheless important. Section 8 concludes the paper. 

2. REQUIREMENTS 

An exception-handling mechanism must be able to support flexible responses of 
invokers to the detection of exceptions without compromising modularity. The 
challenge is that these goals are somewhat conflicting, since for maximum flexi- 
bility of response it is important to allow communication of as much informa- 
tion as possible about exceptions. The communicated information and the 
invoker’s response, however, must be restricted in order to maintain low cou- 
pling and information hiding. In subsequent subsections, the specific elements 
of these requirements are enumerated and discussed. 

2.1 Orthogonality 

A programming language is said to be orthogonal if it is constructed from a 
small set of primitive features whose functions have no overlap and which can 
be composed arbitrarily, with no or few exceptions, to obtain its full coverage. 
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Exception-handling constructs should be orthogonal to the rest of the language 
so that, when they are not used, the rest of the language is unaffected, and so 
that the rest of the language may be used arbitrarily in conjunction with the 
exception-handling constructs to build its flexible responses and communica- 
tion. An example of lack of orthogonality is the inability to handle exceptions 
in expressions. 

Although many disagree with us, we believe that the restrictions born of the 
lack of orthogonality in a language are a drawback far outweighing the seem- 
ingly excess generality resulting from orthogonality in a language. Excess gen- 
erality can simply not be used, while restrictions must be known, adhered to, 
and sometimes programmed around, even if they are present for the purpose of 
keeping programs simple. A fuller discussion of the advantages of orthogonality 
in keeping a language simple, small, and clean may be found in 1231. 

2.2 Handler Responses 

The following varieties of handler responses to an exception can be identified in 
the literature [1,71: 

1. Resume the signaller. Do something, then resume the operation where it left 
Off. 

2. Terminate the signaller: Do something, then return a substitute result of the 
required type for the signalling operation; if the operation is not a value 
returning operation, this reduces to doing something and returning to the 
construct following the invocation of the operation. This includes using 
alternative resources, alternative algorithms, and so on. 

3. Retry the signaller: Do something, then invoke the signaller again. 
4. Propagate the exception: Do something, then allow the invoker of the 

invoker of the signalling operation to respond to the detection of the excep- 
tion. 

5. Transfer control: Do something, then transfer control to another location in 
the program. This includes doing something and then terminating a closed 
construct containing the invocation. 

For maximum flexibility, an exception-handling mechanism should be able to 
support all of the above handler responses. 

2.3 Parameterization 

When exceptions are signalled, it should be possible to pass parameters to 
whatever handler is prepared to field the exception. This in turn requires that 
handlers have formal parameters. Without this capability, 

1. either a handler must make use of global variables, if indeed such exist and 
are visible, in order to determine the circumstances under which it is 
invoked, thus increasing the coupling between the signaller, the invoker, 
and other unrelated sections of the program that can see the global vari- 
ables, or 

2. a separate handler for each possible raising point must be provided, which 
knows its unique circumstances for raising. This decreases strength because 
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many more handlers with similar, though not exactly the same, function 
must be provided. 

2.4 Explicit Propagation of Exceptions 

Automatic propagation of unhandled exceptions along the chain of invokers 
permits violation of information hiding when exceptions are propagated through 
levels of abstraction, and it can thereby increase coupling. As an exception is 
propagated, it reveals information about the implementation of the abstraction 
its original signaller is implementing. In addition, the propagated exception 
may very well be meaningless in contexts to which it is propagated. Finally, it is 
impossible to determine at compile time the handlers that might field the 
exception, even if all handlers are constants, thus making compile-time check- 
ing of interfaces impossible. As a typical example of this situation, consider the 
exception subscript out of bounds being propagated to the invoker of a function 
using stack operations. The parameter of this exception is the invalid subscript. 
By getting this exception, the invoker of the stack operation is told that an array 
is used to implement the stack. There is very little the invoker of the stack 
operation can do in terms of stacks to handle the subscript out of bounds excep- 
tion. Finally, even if the invoker of the stack operation were to anticipate the 
possibility of the subscript out of bounds exception, there is no guarantee that its 
handler would be used, as it is possible that another routine invoked later, and 
thus ahead of it on the invocation chain, provides a handler for the same 
exception. There is little reason to assume that this other handler’s effect will 
be the one desired by the stack user. 

It is true that not every invocation represents a change in level of abstraction, 
that is, a visible function f of a module may call hidden functions to any invo- 
cation depth unbeknownst to the invoker of J However, even here automatic 
propagation is inappropriate for two reasons. First, to the return mechanism, 
there is no distinction between the two kinds of functions. Second, it would be 
particularly bad if the invoker off were to get an exception raised by one of the 
hidden functions that was not translated to abstraction-relevant terms by J The 
cleanest, most uniform way to insure that the exception will get properly 
translated is to disallow all automatic propagation. 

In cases in which the exception can be meaningfully propagated to the 
invoker’s invoker, it is as a d@xmt exception relevant to the level of abstrac- 
tion visible to the invoker’s invoker. To achieve this, the handler of the first 
exception can signal an exception which is visible in the scope of the invoker’s 
invoker. This exception is likely to have a different identifier and a different set 
of parameters from the original exception. In the case of the stack operation 
which invokes array subscripting, a subscripts out of bounds exception might be 
propagated to the stack operation’s invoker as the parameterless exception stuck 
underflow which is relevant to the user of stacks. 

In summary, automatic propagation of unhandled exceptions may comprom- 
ise information hiding, while explicit propagation can be used to properly 
rename propagated exceptions. The exception-handling mechanism should 

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 2, April 1985. 



220 l S. Yemini and D. Berry 

therefore not provide automatic propagation and should force the users to 
explicitly rename any propagated exception. 

2.5 Scope Rules and Compile-Time Checking 

The language’s scope rules and type system should be taken advantage of, to 
allow enforcement of information hiding and checking the consistency of the 
interfaces by the language compiler. Above, it was argued that automatic pro- 
pagation should be disallowed in order to permit information hiding. By 
appropriate choice of visibility of exception names, it is easy to enforce this 
rule. Automatic propagation would mean taking the exception name out of the 
scope in which it is visible. When automatic propagation is disallowed, the set 
of handlers that can field a particular exception can be statically determined, 
thus allowing additional compiler checks. The requirements that can be 
checked by extending type and scope rules to the exception-handling constructs 
include: 

1. checking that each exception is signalled with the correct set of actual 
parameters, 

2. checking that each handler for an exception is defined with the correct set 
of formal parameters, 

3. checking that only those exceptions that are defined by a signaller are sig- 
nalled by that signaller, in effect enforcing the explicit propagation require- 
ment, and 

4. checking that all exceptions that can be raised in a given scope are handled 
in that scope. 

2.6 Verifiability 

Exception-handling features should be such that it is possible to give axioms 
and rules of inference for them. Supplying these axioms and rules of inference 
will enable programs using them to be subjected to formal verification. Being 
able to supply the axioms and rules of inference requires that the features be 
simple and orthogonal to all other language constructs. 

3. PREVIOUS WORK 

There has been much work on the topic of exception handling over the past 
dozen years. This work has provided the basis for our proposal, and in fact, the 
requirements given in the previous section were obtained from our examination 
and synthesis of this work. This section describes this previous work briefly and 
points out the bases of the various parts of the present proposal. First the philo- 
sophical, then the linguistic, and finally the axiomatic bases are described. A 
more detailed discussion can be found in 1261. Section 7, which evaluates the 
present proposal against the requirements, includes some discussion of these 
earlier proposals. 

Earnas [201 lays the foundation for the present proposal by pointing out that 
exceptions are as much a part of an abstraction as are the data types, the data 
objects, and the operations of the abstraction. Thus, the specification of an 
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abstraction includes a list of the exceptional conditions that may be signalled by 
the operations of the abstraction. In addition, an exception is as much a part of 
an operation that detects the condition as are its parameters and return values, 
if any. Also, it is Parnas who points out that it is the invoker of the operation 
that signals an exception that is in the position of determining the proper 
handler response because only it knows to what use the results of the operation 
are being put. 

There are several actual and proposed collections of exception-handling 
features in existing and proposed languages. 

PL/I’s exception-handling scheme [81 provides nonparametrized exceptions 
and generally supports resumption, although determination of flow control after 
handling is often exception-specific 1161. The ability to retry, available on some 
built-in exceptions, is not extended to programmer-defined exceptions. Excep- 
tions are automatically propagated along the invocation chain until a 
corresponding handler is found. Because the exceptions are not typed and their 
scope is global, there is very little that can be checked at compile time. 

Goodenough’s proposal [71 catalogs a large variety of useful handler 
responses for nonparameterized, nontyped exceptions. The proposal also 
describes how the signaller may wish to require or disallow the various kinds of 
handler responses. Exceptions must be explicitly propagated along the invoca- 
tion chain. This proposal has become the standard against which other propo- 
sals are compared for flexibility. 

Liskov and Atkinson describe exception handling in CLU 112,141. CLU Ll31 
is one of the first languages providing explicit features for constructing data 
abstractions. Their purpose in providing exception handling is to support 
software which is able to respond reasonably to wide variety of circumstances 
(i.e., which is fault-tolerant). Their exception mechanism is based on a simple 
model of exception handling that is anticipated to lead to well-structured pro- 
grams. Accordingly, only statements and procedures can raise exceptions; 
expressions cannot, except to terminate the innermost containing statement. 
The location of a handler in a program text determines both the scope in which 
that handler is designated and the location to which control will transfer after 
handling. Consistent with the goal of simplicity, only termination handlers are 
supported. Parameterization of handlers is supported. Exceptions must be 
explicitly propagated along the invocation chain. The mechanism is strongly 
typed, exceptions appear in the external interface specification of their signaller, 
thus allowing a compiler to identify where they can be raised. 

Levin’s proposal I111 provides exceptions with parameters and resume-only 
handlers. There is no automatic propagation of exceptions along the invocation 
chain so exceptions must be explicitly propagated. Like CLU’s mechanism, it 
provides extensive support for compile-time checking. Levin supplies axioms 
and rules of inference for his proposal. Apart from exceptions associated with 
invocation of operations, Levin also considers exceptions which are associated 
with the state of shared data structures in a concurrent programming environ- 
ment. Such exceptions may be propagated to all potential users of the data 
structure and thus can be used to build daemons. This is a powerful notion 
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that is not included in the present proposal; although Section 7.4 discusses this 
notion further. 

Ada’s’ mechanism [91 provides nonparameterized exceptions with 
termination-only handlers. The lack of parameters in exceptions is particularly 
aggravating in the case of Ada; very often the nonlocal access necessary to 
determine the circumstances of signalling allows the program to determine how 
the implementation has passed parameters, rendering the program erroneous. 
Exceptions are automatically propagated along the invocation chain until a 
corresponding handler, if one exists, is found. Exceptions are not declared in 
the external interface of their signallers, and are not typed. Thus, there is very 
little that can be checked at compile time. Ada’s exception mechanism cannot 
be subjected to verification without major changes t151. Specifically, it is neces- 
sary to require explicit propagation of exceptions to invokers when they are not 
handled locally. 

Mesa’s exception-handling mechanism Ll71 provides parameterized excep- 
tions and supports all the listed handler responses. Mesa’s exceptions are 
automatically propagated arbitrarily along the invocation chain. Since excep- 
tions are not associated explicitly with their signallers, some of the language 
rules and restrictions are not compile-time checkable. Instead, there is an ela- 
borate run-time checking mechanism. 

Cocco and Dulli [21 propose a scheme providing parameterized exceptions 
with the full complement of Goodenough’s proposals of the control flow during 
handling. That is, the exception can require the handler to terminate, forbid the 
handler from terminating and require it to resume the signaller, give the 
handler the choice between the two, and arrange that the signaller be retried. 
The signaller can either raise an exception for local handling or exit-raise it for 
handling by the invoker. Curiously, exit-raised exception handlers cannot 
resume their signallers. Exceptions are not propagated implicitly, and the full 
declaration of exceptions allows compiler detection of the failure to handle 
exceptions. They provide examples of the scheme’s use and axioms to allow 
proving the behavior of programs making use of their proposal. 

Several authors have investigated formal specification of exception handling 
in order to allow programs using it to be verified to do what they are claimed to 
do. In fact some have even used verifiability as the basis of their design. 
Berry, et al. ill describe an earlier version of the present proposal and how it 
might be axiomatized. This axiomatization allows both proof of the behavior of 
the using programs and determination as to when certain kinds of handler 
responses are to be allowed. For example, the signaller of an exception specifies 
the exception condition itself as the precondition of a handler and what is 
required from the handler before resumption as the postcondition of the 
handler. Only handlers that satisfy that postcondition, given the precondition, 
are allowed, thus insuring that handlers do what is necessary before resump- 
tion. 

’ Ada is a trademark of the U. S. Department of Defense (AJPO). 
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Cristian [3,4,51 has proposed a fully axiomatized set of exception-handling 
features that allow construction of and reasoning about robust programs which 
achieve robustness through exception handling. In these proposals, the 
specification of a data type includes a list of exceptions as well as the operations 
of the type. Any operation, procedure, or function is viewed as a multiexit 
construct with one standard exit and possibly a number of exception exits. The 
specification of such a construct includes a full specification of the standard and 
all the exception entry conditions together with the exit effect of the construct 
in each case. Associated with each exceptional exit is a specification of the con- 
ditions a handler must satisfy under the assumption of the exceptional condi- 
tion. In this way, the signaller of the exception can force particular handler 
responses such as resumption, termination, and so on. Cristian uses a predicate 
transformer approach to specifying the features and their semantics. 

Luckham and Polak 1151 attempt to axiomatize the exception-handling facili- 
ties of Ada and find that only with major changes can it be axiomatized. 
Specifically, exceptions cannot be propagated arbitrarily along the invocation 
chain and further exceptions must be propagated explicitly to invokers. 

As mentioned above, Levin’s 1111 and Cocco and Dulli’s 121 proposals are 
accompanied by sets of axioms describing the semantics of their features and 
allowing proofs of correctness of programs using them. 

The bases for the present proposal are clear. The present proposal differs 
from the previous ones in that it constitutes an attempt to play the orthogonal- 
ity game to the hilt. That is, we try to obtain as much capability as possible at 
the cost of as few new primitives as possible. The power is obtained by picking 
the primitives in such a way that no restrictions on their composability with 
each other and the rest of the language is required or even desirable. When 
done properly, it is possible to avoid synergistic problems resulting from the 
combination of ill-fitting features and to get full coverage of the desired capabil- 
ities just by combination of the few primitives. In fact, we claim that by starting 
with a strongly-typed, expression-oriented language such as Algol 68, and 
adding an encapsulating construct such as the Ada package, one can gain all the 
coverage implied by the requirements of the previous section, with the addition 
of only one new closed construct, on . . . no, for handler bodies (strongly 
resembling procedure bodies), one new type constructor, handler, one new 
completer, replace, two new items of punctuation, signals and exe, and an 
extension to the return types of units to indicate that they may signal excep- 
tions. All the rest is done by use of mechanisms, such as procedure invocation 
and return, that already exist in the language. Furthermore, the new features 
are described by just two new axiom schemes. 

4. THE REPLACEMENT MODEL 

The replacement model of exception handling adopts an expression-oriented 
view. A program is a composite expression; an exception is explicitly associ- 
ated with an expression-its potential signaller; a signaller’s exception 
corresponds to a subexpression which could not be completed in the signaller; 
and the handler’s result replaces the result of the subexpression, or the result 
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of the signaller invocation-hence the name “replacement model.” In this con- 
text “results” mean both side effects and return values. 

The reason for taking an expression-oriented view is that it provides a unify- 
ing model for exception handling in both statements and expressions. Exception 
handling naturally causes side effects in expression evaluation. Anything done 
by a handler for an exception signalled within an expression is a side effect of 
evaluating that expression. Expressions must therefore be allowed to produce 
side effects if useful exception handling is to be supported. 

Since an expression-oriented model contains a statement-oriented model as a 
special case, a mechanism developed for an expression-oriented language is also 
applicable to a statement-oriented language, although it may lose some of its 
power in a strict statement-oriented setting such as CLU 1131. However, the 
replacement model, even when restricted to a statement-oriented language, is 
still more powerful than other existing or proposed mechanisms in statement- 
oriented languages because of the handler responses it supports. 

5. EMBEDDING LANGUAGE 

Support for modularity, the requirements for the exception-handling mechan- 
ism, and the choice of the replacement model place a number of requirements 
on the programming language in which the proposed exception-handling 
mechanism is embedded. The language must have features for building pro- 
cedural and data abstraction modules. It must be orthogonal and strongly 
(compile-time) typed, and it must have been axiomatized. Finally, it must be 
expression oriented in order to permit side effects in all expressions. Basically, 
no existing language meets the requirements. However, Algol 68 [251 meets all 
the requirements except that of having data abstraction modules.* However, 
since the language is orthogonal, it is possible to superimpose an orthogonal 
modules facility to correct this defect. Ada has such a facility in its packages. A 
package is basically a means to group an arbitrary collection of declarations of 
any kind into a single unit such that some of the declarations, under the 
programmer’s explicit control, are exported and the others are kept hidden. If 
the package exports a type, then it builds an abstract type. If the package has 
hidden data and exports only operations, then it builds an abstract object. Thus 
all a package does is to make some declarations that would normally be visible, 
were the package not there, invisible. All other aspects of the declarations are 
unchanged, and hence orthogonal to the notion of the package. 

Therefore, this paper uses Algol 68 extended with Ada packages as the vehi- 
cle to carry its exception-handling proposal. The vocabulary used here attempts 
to steer clear of the more esoteric vocabulary of the Algol 68 Report in favor of 
a more conventional explanation. 3 

As an introduction to the mechanism and to the language in which it is 
embedded, consider the Algol 68 procedure convert in Figure 1, which takes an 
array-of-integers variable as a parameter and returns the string of the integers’ 

’ For an axiomatic semantic definition of Algol68, see [24]. 
3 There is, however, the danger of being sloppy in the explanation. 
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proc convert= (ref[jlnt code)string: 
begin 

string s: =‘I”; 
for i from lwb code to upb code do 

int code i=code[il; 

s:=s +if code i< char hi and code i2 char lo then 
repr code i 

else 
??? 

fi 
# append to s the char represented by code[ij 

if code i is in the defined range # 
od; 
S 

end 

Figure I 

character representations. Convert invokes the operator repr, which returns the 
character represented by an integer if the integer is in the range [char lo,char 
hi]. The data type [ lint of Algol 68 is that of one-dimensional integer arrays. 
The symbol + is the string concatenation operator. ??? stands for the case in 
which an element of code does not lie in the expected interval, that is, does not 
represent a valid character code. The if then else fi either returns the required 
character or falls into ???. The value yielded by this conditional is con- 
catenated onto the current string. This example is used in the discussions of the 
next section, in which ??? is replaced by an explicit signalling of an exception. 

6. EXCEPTION HANDLING IN THE REPLACEMENT MODEL 

This section gives the full syntactic and and semantic details of the replacement 
model of exception handling as embedded in Algol 68 extended by Ada pack- 
ages. The discussion is motivated by expressing the example procedure of the 
previous section using the proposed exception-handling features. This new pro- 
cedure is given in Figure 2. 

In the new example, ??? has been replaced by a signalling of the exception 
badcode with the integer code i, for which no representation exists, passed as its 
parameter. Convert is declared as possibly signalling an exception budcode, and 
thus any invocation of convert must have a handler for this exception associated 
with it. The declaration says that any handler for badcode is prepared to accept a 
single int parameter, namely the code that cannot be represented, and will 
return either a char value to use as the representation anyway or a string value 
to use as the final value of the invocation of convert. Thus, if no integer that is 
not representable is ever found, then convert returns its normal result, that is, 
the accumulated string value of s. The subsequent subsections describe all the 
parts of this example. 

6.1 Exception and Handler Types 

In the declaration of the procedure convert, in its signals clause, the exception 
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proc convert= (ref[/int codejstring 
signals(excfint)(rhar,string)budcode): 

begin 
string s:=““; 
for i from lwb code to upb code do 

int code i=code[il; 

s: =s i-if code i< char hi and code i> char lo then 
repr code i 

else 
badcodeccode i) 

fi 

# append to s the char represented by codeli] 

if code i is in the defined range # 
od; 
S 

end 

Figure 2 

budcode is specified to require passing one parameter to any handler designated 
for an invocation of convert, namely, the int value of the invalid code. The 
handler may either 

1. return a char value to be used as the value of the expression that detected 
and signalled the exception, thus resuming the execution of invocation of 
convert, or, 

2. return a string value to be used as the final value of the invocation of con- 
vert 

The first possible return value is known as the resumption value and the second 
is known as the replacement value. Every exception is specified as returning one 
of each kind of value. 

Later, handlers will be provided for responding to these exceptions. Each 
handler provides both kinds of return values. Handlers in the replacement 
model are considered as objects of the data types formed by the type construc- 
tor handler. These types carry the types of the parameters and the two return 
value types. Handlers are typed very much like procedures, except that there 
are two return value types instead of only one. As with procedure identifiers 
and their bodies, type checking is used to make sure that all handlers associated 
with a particular exception are prepared for the correct parameters and provide 
the correct return values. 

6.2 Signalling Exceptions 

The semantics of signalling an exception is very similar to that of calling a pro- 
cedure. Consequently, signalling an exception has the same syntax as calling a 
procedure, namely first is given an exception identifier and then if there are 
actual parameters to be passed to the handler, they are given in a parenthesized 
list. Of course, it is necessary to check that the actual parameters are of the 
types required by the exception’s type and that the context of the signaller is 
proper for a value of the resumption type of the exception. 
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 2, April 1985. 



A Modular Verifiable Exception-Handling Mechanism 227 

In the example, the signalling of badcode has a single int actual parameter, as 
is required, and sits in a position in which a char is required, since it is the 
expression of the else arm of a conditional of type char. 

6.3 Associating Handlers with Exceptions 

It is important to devise rules for associating handlers with exceptions so that it 
is possible for a compiler to check whether or not handlers have been supplied 
for all exceptions that can be raised. The immediate invoker of an operation is 
considered responsible for determining how to handle that operation’s excep- 
tions. Therefore, handlers for all exceptions signalled by an operation are 
required to be visible within the static environment of each invocation of that 
operation. 

Handlers are designated for an invocation by attaching an on clause, contain- 
ing designations of handlers, to some closed construct (e.g., block, loop, condi- 
tional, etc.) statically containing that invocation. The specific handler desig- 
nated for a given exception of a given signaller invocation is that appearing in 
the on clause attached to the innermost enclosing closed construct designating a 
handler for that exception. The place where the on clause is attached is com- 
pletely independent of the flow control after handling and serves only to delimit 
the scope within which the handler is designated, in a manner consistent with 
normal static scoping of identifiers. Thus, attaching an on clause to a particular 
closed construct C and designating in it a handler H for an exception E of an 
operation 0 is tantamount to putting a block around each invocation of 0 in C 
and attaching to each a copy of the same on clause designating Hfor E. 

Figure 3 shows the skeleton of a block that contains several invocations of 
convert and which has an on clause containing a handler HI for badcode. Inside 
this block is another block with still more invocations of convert and with its 
own on clause containing a handler H2 for badcode. If the first, second, and 
fifth invocations of convert signal budcode, then H1 will be used, if the third and 
fourth invocations signal, then H2 will be used. If H1 and H2 are terminating 
handlers, then as each invocation of convert signals budcode, that invocation 
alone is terminated and control transfers to the construct just following that 
invocation. This is as if each invocation had its own private copy of the desig- 
nated handler attached to a block surrounding only the invocation. 

In Figure 3, if no other handler designations for budcode appear in the pro- 
gram containing the outer block, and the outer block’s on clause were not 
present, then the compiler would complain that the first, second, and fifth invo- 
cations of convert do not have handlers for budcode designated for them. The 
compiler can do this because convert is declared as possibly signalling budcode. 

This proposal is in contrast to CLU and Ada, in which the construct to which 
a handler designation is attached is also the construct that is terminated. In 
these languages, difficulties arise in the case where two invocations of the same 
signaller appear in the same statement, different handling actions are required, 
and control is then required to transfer to the same location. By considering the 
place of the designation of handlers orthogonal to the places involved in the 
flow of control of exception handlers, the problems observed in CLU and Ada 

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 2, April 1985. 



228 l S. Yemini and D. Berry 

begin . . . 

# I# convert(. ..) 

#2# convert(...) 

begin . . . 

#3# c0nvertCI.J 

#4## convert(...) 

end 
on badcode = HZ 

no 

#S# c0nvertC.J 

end 
on badcode = HI 

no 

Figure 3 

have been avoided. 
The static binding mechanism described above is general enough to provide 

for system- and globally-defined exceptions that are available for signalling 
throughout the program and for providing system- and globally-defined 
handlers that are used when no other handler has been provided by the user’s 
program. All user programs are assumed to be nested inside a standard prelude 
block which, among other things, declares the so-called predefined types, con- 
stants, variables, procedures, and functions (Ada has the package STANDARD 
serving the same function). It is a simple matter to declare all of the language- 
defined exceptions such as overflow, constraint error, and failure, and to provide 
handlers for these exceptions in the prelude block. These exceptions and 
handlers are visible in any program scope not declaring the same identifiers, 
and such handlers are used in any scope that does not supply another handler 
for these exceptions. Thus, these handlers serve as default handlers for these 
exceptions. The default handler for the language-defined exceptions could be 
defined to print a message and terminate the program; such default handlers 
would suffice in many cases. In fact, the programmer who does not declare any 
exceptions need never supply a handler for any exception. 

One additional boon of this proposed mechanism is that when handlers are 
provided for these exceptions they can be made to terminate constructs other 
than the global one or any other one to which they happen to be attached. This 
is because the flow of control after finishing a handler is determined by means 
other than the physical placement of the handler. That is, it is determined 
solely by what is written inside the handler itself and what is written at the sig- 
nalling site. This is no different from for procedures in which the flow of 
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control after finishing a procedure body is independent of where the body is 
written and is a function of the texts of the body and the calling site. 

Still another boon of the proposed mechanism is that the ability to have a 
default handler for an exception is not restricted to the system-defined pro- 
cedures. For any exception of any procedure, a handler can be attached to the 
same block declaring the procedure. This handler is thus visible at all places in 
which the procedure and its exceptions are visible, except for all places lying 
within the scope of an internal unit to which another handler is attached. Thus, 
the system default handlers are using a generally available mechanism. 

6.4 Signaller Types 

It is necessary to ensure that invokers of convert are aware of the fact that COP 
vert may signal an exception, called b&code, of the given type, so that they sup- 
ply a suitable handler. In order to explicitly identify an operation as being a sig- 
n&r of a given set of exceptions, its exceptions must be mentioned in a sig- 
nals clause in its heading introduced for this purpose. Thus, in Figure 2, COO 
vert is declared as a signaller of budcode. 

In order to support replacing subexpressions uniformly at any level, without 
also coupling the effects made by a handler to the flow control required after 
the handling is completed, any closed construct in the embedding programming 
language is allowed to become a signaller of exceptions. This is done by declar- 
ing the construct’s exceptions in a signals clause following the opening bracket 
of the construct. Thus, for example, a block, loop, procedure, or conditional 
can become a signaller of exceptions. The rules for handling exceptions apply 
uniformly to procedure signallers and any closed construct signallers. 

A signals clause on a construct declares the exception identifiers in the con- 
struct. A signalling of an exception identifies the declaration of that exception 
in the signals clause of the innermost-containing closed construct declaring that 
exception. In this manner, the rules of static scoping are used to ensure that 
only exceptions defined in the given scope are signalled and that all signalled 
exceptions are handled. The first of these helps enforce information hiding. 
An exception cannot be signalled in a context in which the exception identifier 
is not visible, and this restriction is enforceable at compile time. Since handlers 
can be defined in the context of the invoker, they can propagate exceptions of 
an invoked operation as exceptions of the invoker. 

The identifiers, the parameter types, and the two return value types of the 
exceptions signalled by a signaller are made part of the signaller’s type. This 
enables a compiler to identify where each exception may be signalled, even 
when a signaller is passed as a parameter out of its defining environment, so 
that the compiler can check whether or not there exists a handler designation 
for that exception in the enclosing static environment. In addition, the compiler 
can check that any such handler has the proper set of parameters and the 
proper pair of return values. (Note that including identifiers as part of the type 
is similar to the inclusion of the identifiers of the components of a structured 
(record) type as parts of the type.) 

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 2, April 1985. 



230 l S. Yemini and D. Berry 

6.5 Handier Responses in the Replacement Model 

A handler in the replacement model may either 

1. replace the signalling expression, thus resuming the signaller, or 
2. replace the signaller invocation, thus terminating the signaller. 

Resumption of the signaller happens if the handler returns normally to its sig- 
naller. 

Termination of the signaller is indicated by using a replace completer4 within 
the handler body. The value returned by the completer is used to replace the 
value the signaller would have returned. The addition of the replace completer 
suffices to allow supporting all of the handler responses enumerated above. This 
is demonstrated by the following examples. 

1. Resumption: Supply a “?I’ as a replacement for the char corresponding to 
budcode. Convert then resumes. The result is therefore a string in which the 
characters corresponding to unconvertible codes are “2”: 

do 
. . . 
print(converth.ms)~ 

od **. 
on badcode=dnt ti(char,string): 

9, 2” 

no 

2. Termination of the signaller: Supply the the empty string as a replacement 
for the string returned by convert. Note that the replace type of an exception is 
always the type returned by that exception’s signaller: 

do 
. . . 
print(convert(nums1) 
. . . 

od 
on badcode = dnt i) (char,string): 

“” replace 
no 

3. Retry: Retry after changing the budcode to a zero. The string returned by 
the new invocation of convert is returned as (a replacement for) the value of 
the original invocation: 

do 
. . . 
print(converthms)) 

a A completer is a value returning exit which causes some specific enclosing construct to be exited 
while returning as the construct’s value the value of the expression just preceding the completer. 
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on badcode = dnt i) (char,string): 
begin 

numslil: = 0; 
convert(nums) replace 
# call convert again, 
to replace the result of the previous call # 

end 
no 

4. Termination of a closed construct and exception propagation: Terminate a 
block and propagate badcode as another exception: 

begin 
do signals (exc(char,void)jnish) 

begin 
. . . 
print(convert(nums)) 

end 
on badcode= fint i)(char,string): 

finish 
no 

od 
end 
on Jinish = (char,void): 

skip replace 

Twhen jnish is signalled, replace its signaller’s 
invocation by the value yielded by skip # 

(Skip in Algol 68 yields an undefined value of whatever type is required by the 
context.) This example demonstrates two of the handler responses supported by 
the replacement model: termination of a closed construct containing the invoca- 
tion signalling an exception (as in [9,12,141) and modular exception propaga- 
tion. 

In order to obtain termination of the loop after badcode has been detected, 
the loop is made a signaller of a parameterless exception called finish. This is 
done by attaching a signals clause after the do, which declares Jinish. Finish is 
signalled in the handler for badcode, that is, it is the propagation of badcode. 
When the handler for finish replaces the invocation of finish’s signaller (i.e., the 
loop invocation), the loop is terminated, as required. Thus, the signalling of 
jinish in this example is an example of propagating the exception badcode in a 
modular manner. The exception jnish is an exception of an invoker of convert 
(i.e., the loop that is finish’s signaller). 

5. Transfer of control: The handler’s body contains some transfer of control 
such as a goto or an exit: 

do 
. . . 
print(convert(nums)) 
. . . 

od 
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on badcode = dnt i) (char,string): 
goto print error message 

no 

Note that the handler in this case has the same parameter type and the same 
return value types as in all previous cases. (A goto’s type is determined in the 
same way as a skip’s.) In this situation, however, no value is ever returned. 
Rather, the goto causes abrupt termination of all invocations entered after entry 
to the block in which the label is declared. It is recognized that this feature will 
not be used very often, but, due to the orthogonality requirement of the 
language, it is available. 

6.6 SYNTACTIC EXTENSIONS FOR THE REPLACEMENT MODEL 

The previous subsection introduced most of the syntactic extensions to Algol 
68 required for supporting the replacement model. A formal definition of these 
extensions can be found in [261. This subsection points out features that were 
not exposed by the examples. 

The on clause may contain an arbitrary expression yielding a handler of the 
type corresponding to the exception. New types can be constructed using the 
mode constructor handler in the same manner as other mode constructors such 
as proc. In particular, it is possible to have handler variables, handler pointers 
(of types ref handler . . . and ref ref handler . ..I. procedures yielding handlers, 
and so on. 

An on clause is considered nested at the same nesting level as the construct it 
postfixes (i.e., next to it>, not inside it as in Ada or CLU. This avoids the 
problem that a handler may be invoked before some of the objects it references 
have been allocated. 

There may be more than one occurrence of replace in a handler, and replace 
can appear within any expression. Replace is considered as a completer for the 
smallest enclosing handler text, and can be nested arbitrarily deep within a 
handler text. 

Still another issue is what to do with two operations that have the same name 
exception. This can be dealt with by appeal to a language feature that is orthog- 
onal to those discussed in this paper. Namely, this can be considered as a case 
of overloading of identifiers, which is to be resolved by context. Thus if it 
desired to have overflow exceptions for several operations of the same type, 
then overflow becomes overloaded and the context in which overflow is men- 
tioned becomes significant in determining which overflow it is. This context 
would probably include the invoked operation, the parameters passed, and the 
two return types expected. Further discussion is outside the scope of this paper. 
In the same category is the issue of using the language’s coercion system to 
help the user abbreviate some of the writing that must be done in using the 
exception-handling mechanism. 

6.7 SEMANTICS 

An axiomatic semantic definition of the replacement model exception-handling 
mechanism can be found in [26, 271. An operational definition appears here, 
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using the standard stack model implementation of block structured languages 
DO, 221. 

6.7.1 Extending the Stack Model for Exception Handling. The declaration 
array of an activation record (AR) normally contains cells for the block marker 
(static and dynamic links), the return label, one cell for each parameter, and 
one cell for each locally declared identifier. The declaration array of a signaller 
is extended to include one cell for each exception declared by that signaller. 
The cell for an exception contains the (instruction pointer, environment 
pointer), that is, the (ip, ep) pair of the handler bound to that exception. 

The declaration array of a handler contains cells for the block marker, the 
return label, one cell for each parameter, one cell for each locally declared 
identifier, and one cell for the replace label, designating the place to which con- 
trol transfers upon encountering a replace. 

6.7.2 Semantics of Signaller Invocation. Recall that any closed construct and 
any procedure, handler, and so on, can be a signaller. Thus signaller invocation 
is just the normal invocation of the closed construct, procedure, handler, and so 
forth, with some additional activities performed. The semantics of invoking an 
enclosed clause signaller is a particular case of the semantics of invoking a rou- 
tine signaller. We point out the steps that are unnecessary for an enclosed 
clause signaller in the following. 

1. Obtain the procedure value, that is, the (ip,ep) pair, to be called (unneces- 
sary for an enclosed clause signaller). 

2. Evaluate the actual parameter expressions, if any (none for an enclosed 
clause signaller), to get the actual parameter values, and evaluate the 
handler expressions to get the actual handler values. Handler values are 
tip, ep) pairs. Observe that their eps are generally equal to that of the 
signaller’s return label or to the signaller’s dynamic link. 

3. Allocate the new AR for the signaller. 
4. Pass parameters, if any, to the AR, and pass handlers to the AR by filling 

the corresponding parameter and handler cells in the declaration array with 
the actual values passed. 

5. Set the signaller’s return label, (ip, ep) pair, to designate the first instruc- 
tion following this invocation. 

6. Reset the processor to the signaller’s (ip, ep) pair and proceed to evaluate 
the signaller. 

The evaluation of the parameters and handlers is done collaterally, that is, no 
order of evaluation is implied. Likewise, the binding of the parameters and 
handlers is done collaterally. 

6.7.3 Semantics of signalling an exception. Raising an exception consists in 
doing the following steps: 

1. Obtain the handler value, that is, the (ip,ep) pair of the handler designated 
for the exception being signalled. 

2. Evaluate the actual parameter expressions passed to the handler. 
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3. Allocate an AR for the handler. 
4. Pass parameters to the AR. 
5. Set the handler’s return label to designate the first instruction following the 

signalling. 
6. Set the handler’s replace label from the return label found in the same AR 

in which the handler’s tip, ep) pair was found. This is the AR for the sig- 
naller of the signalled exception, and, therefore, its return label should be 
used for replace. 

7. Reset the processor’s tip, ep) pair to those of the handler and proceed to 
evaluate the handler. 

6.7.4 Semantics of Replace. Encountering a replace completer results in 
the following steps being taken: 

1. Get the value v of the expression preceding the replace. 
2. Use the replace label of the innermost (the first, following the static chain) 

handler AR to reset the processor (ip,ep) and pop the AR. 
3. Push v into the expression stack. 

The replace label is the same as the return label of the invocation signalling 
the exception. Thus this semantics allows the handler to compute a replace- 
ment value and effect for the signaller of the exception. 

6.7.5 Notes. 

1. End or exit within the handler have the same meaning they have anywhere 
else; use the return label to reset the processor and then exit the topmost 
AR. 

2. The binding mechanism for handlers is identical to that for actual parame- 
ters, as handlers are analogous to parameters of proc types. 

3. Raising an exception is a call to the handler bound to the exception. 
4. The access path to the replace label can be determined at compile time and 

is the same as that to the return label of the call signalling the exception 
that the handler is bound to. 

5. The interpretation of replace is independent of the place to which the 
handler is attached. Thus the range of replacement is always under control 
of the signaller. 

7. ASSESSING THE REPLACEMENT MODEL 

The previous sections have already touched on a number of the issues. 
Specifically, it has already been demonstrated that the replacement model of 
exception handling as proposed is orthogonal, flexible enough to support the 
full range of handler responses, allows exceptions to have parameters, requires 
that exceptions be propagated explicitly, and supports compile-time checking of 
the various interfacing requirements, including that handlers have been sup- 
plied for all possible signallings. The only issue remaining is verifiability. Space 
does not permit development of the axioms for dealing with the mechanism 
here. However, they are given in 1261 and [271. It was necessary to add only 
two rules to the formal system developed by Schwartz for Algol 68 1241 in 
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order to be able to deal with the exception-handling scheme presented herein. 
The remainder of the section deals with a more detailed evaluation of the 
present proposal. 

7.1 Resumption 

Some seem to believe that supporting resumption requires a high coupling of a 
signaller with its invoker, which needs to be controlled with an abundance of 
key words and restrictions. This is reflected in the designs of ]7] and [17] and 
in the discussions in 1121 and [14]. The following quotation is borrowed from 
1121. 

“The complexity of the linguistic mechanism [required for the resumption 
model] is illustrated by Goodenough’s proposal 171 which is a carefully con- 
sidered design of a complete mechanism supporting the resumption model. 
Three types of signals (exceptions) are recognized corresponding to cases where 
the signaller may not be resumed, must be resumed, or where resumption is 
optional. In case the caller is unable to resume a signaller that must or could be 
resumed, a special ability is provided to permit the signaller to cleanup (restore 
non-local variables to a consistent state) before its activation is terminated. In 
addition a default mechanism is provided to permit the signaller to handle its 
own exception in case the caller does not.” 

Goodenough distinguishes three cases. U 

Case 1. The signaller has to resume. The usual argument given for this case is 
“When an operation is not resumed [when resumption is optional] . . . it may 
be necessary first to release certain areas of storage, close files, restore data 
structures to a consistent state, etc.” [7]. These actions are generally called 
cleanup actions. Examination of this argument reveals that there are two 
separate issues in cleanup actions. One is the need to restore data structures to 
a possible state. A careful examination of this argument in the context of 
modularity and verification eliminates this problem. Modularity requires that 
this category of cleanup actions always be performed in the signaller before sig- 
nalling an exception. There are two related reasons for this. First, the excep- 
tion cannot be externally specified correctly without compromising information 
hiding if the state is not a consistent state, since the representation at that point 
does not represent a valid value of the type. Also, the operations of the 
module, which are the only operations that a handler may apply to the data type 
provided by the module, depend on the state being consistent for their cprrect 
application and therefore should not be allowed to be applied in inconsistent 
states. 

The second category of cleanup actions are those related to finalization. Both 
storage deallocation and closing files are special cases of finalization of abstract 
data types. Finalization includes all those operations that are required to be per- 
formed when an instance of a type ceases to exist. In 1241 it is argued that 
obtaining finalization by having the user program explicitly invoke finalization 
operations, at the point at which the variable is about to cease to exist, does not 
support program reliability. 
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“Such an explicit finalization would be vulnerable to users who neglect to 
finalize their variables, and to blocks that are exited prematurely through an 
exception, thus tying up scarce resources. Devastating consequences could also 
result from premature use of the finalization procedure, leaving the variable in 
existence, with all traces removed from the type generator’s data structures.” 

Their conclusion [241 is that “The finalization operation must be invoked by 
the underlying mechanism responsible for the deletion of the variable, so that 
finalization and deletion cannot be separated.” 

Since separation of orthogonal language features is an important goal in any 
language design, we believe that supporting finalization is an important but 
separate issue from exception handling. Finalization has to be done primarily at 
normal exits from a closed construct or procedure (i.e., in situations which are 
unrelated to exception handling). The points at which the local objects of a sig- 
naller cease to exist remain well defined when replacement model exception 
handling is introduced. They are at normal exit and at a replace in a handler. 
The actions that should be taken upon reaching a replace in a handler are those 
same actions that are to be performed when the normal end is reached. There- 
fore, finalization of a signaller should be invoked by an underlying mechanism 
supporting a general finalization facility, both upon reaching a normal exit and 
upon reaching a replace. This is just another example of the additional protec- 
tion provided by using closed programming constructs instead of separating the 
opening and closing actions. 

Thus, if the signaller is programmed properly and the language provides the 
proper finalization facilities, it is never necessary to force resumption, and 
resumption can therefore be optional on the part of the invoker. 

Case 2. The signaller must not be resumed. If the signaller should not be 
resumed after signalling the exception, the exception should be signalled just 
before a logical end of the signaller (i.e., the end, a Zahn-type exit [291, or in a 
separate branch of a conditional). Thus even if the handler were to resume the 
signaller, nothing would remain to be done in the signaller’s body. The signaller 
would just return to its invoker normally. Effectively, the signaller has not been 
resumed. Thus, here too, resumption can be left optional. 

Case 3. Resumption is optional. In the replacement model resumption is always 
optional, and the decision of whether or not to resume is left to the invoker. 

The mechanism introduces no additional resource requirements except when 
exception detection and handling are required. There are no new semantic 
mechanisms required for supporting exception handling at run time. The 
mechanisms already in place for dealing with procedures are the only ones 
used. The only additional resource requirement is the space in the activation 
records for handlers and for replace labels. 

7.2 Replacement vs. Termination 

Another issue is which of replacement or termination should be supported. 
This subsection casts the sumstreum example of [12,141 in the replacement 
model in order to demonstrate the differences in capabilities between the 
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termination and the replacement models. Sumstream is a procedure that reads 
in signed decimal integers from a character stream and returns their sum. 
Liskov and Snyder’s example is reproduced in Figure 4. 

The input stream is viewed as containing a sequence of number fields 
separated by spaces. Each number field must consist of a nonempty sequence 
of digits, optionally preceded by a single minus sign, 

Sumstream signals three exceptions under the following conditions: 
overflow-when the intermediate sum being accumulated is outside the imple- 
mented range of integers; unrepresentable-integer(s)-when the string s contains 
an individual number that is outside the implemented range of integers; and 
budformat(when the string s contains a field that is not an integer. 

Sumstream uses the procedure getnumber to get individual numbers from 
the stream. Getnumber signals enhoffile when it is invoked and there are no 
more numbers in the stream. This getnumber makes use of the procedures 
getJield and s2i, neither shown here. If getJeld is invoked when there are no 
more fields to get, it signals enhoffile. S2i converts its string argument to an 
integer if it is possible to do so. S2i’s exception conditions are the following: 
invalidcharacter-when the string contains other than a digit or a minus; 
b&format-when the string contains a minus after a digit, more than one 
minus or no digits; and unrepresentable-integer-when the string contains an 
individual number that is outside the implemented range of integers. 

Figure 5 contains a rendition of this example using the replacement model. 
The program structure in this example was chosen to be similar to that in [141 
in order to facilitate comparison. It is assumed that getjeld is of type 

proc (stream)string 
signals (exe (char,char)end of Jile). 

S2i is assumed to have the type 

proc Cstringjint 
signals (exe (char) (char,int)invalid character, 

exe (string) fint,int)bad format, 
exc(string)fint,int)unrepresentable integer). 

The resume modes of s2i’s exceptions were chosen arbitrarily, since the con- 
text in which they are signalled is not provided. 

As in the CLU example, the three exceptions of get number and the exception 
overflow of + are propagated to the invoker of sumstream. It is often the case 
that when an exception is signalled by one operation used within the implemen- 
tation of another operation, and this exception is specifiable in terms of the 
implemented operation, propagating the exception yields the most useful imple- 
mented operation, since the decision of how to handle can be made at whatever 
level is most suitable for the application. In sumstream’s case, completing the 
handling of get number’s exceptions within sumstream does not lead to a flexible 
sumstream operation. The information of whether an exception should be con- 
sidered as a fatal error, requiring termination of sumstream, or as a recoverable 
problem, is not available in sumstream itself. Therefore, the CLU sumstream 
also propagates getnumber’s exceptions. 
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sumstream =proc (s:stream)returns tint) 

signals (overJlow, 

unrepresentableinteger(string), 

bahformat(string)) 
sum:int: = 0 

while true do 
sum: =sum +getnumber(s) 

end 
except 

when enhofJle: 

return&m) 
when unrepresentable-integer@:string): 

signal unrepresentable-integer@ 

when bahformat@string): 

signal bahformatCf) 

when overflow: 

signal overflow 

end 
end sumstream 

getnumber =proc (s:stream)returns (int) 

signals (enhof-Jile, 

unrepresentable-integertstring), 

bahformat(string)) 

jeld:string: =getJield(s) 

except 
when enhof-Jle: 

signal enhofJe 

end 
return (s2icfield)) 
except 

when unrepresentable-integer: 

signal unrepresentable-integer field) 
when bahformat,invalihcharacter(‘~: 

signal baaL.JormatCfield) 

end 
end getnumber 

Figure 4 

There is however a major difference between propagation in the termination 
model and propagation in the replacement model. In the termination model, 
transferring control to a handler causes immediate termination of the signaller. 
Thus, propagation causes immediate termination of sumstream. There is no 
choice left to sumstream’s invoker but to record the first bad string, and possi- 
bly reinvoke sumstream. For sumstream, reinvocation is feasible. In other 
cases, it may be infeasible or prohibitively expensive to restart an operation, 
since all the local state the operation has accumulated up to the time of detect- 
ing the exception is lost upon termination. In the replacement model, the 
invoker can choose between termination and resumption. A resuming handler 
could, for example, substitute zeros for strings that get number cannot translate 
to integers, so that sumstream would deliver the sum of all good strings only. 
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proc sumstream = (stream s)int 
signals(excCint,int)overjIow, 

exc(string)thrt,int)unrepresentable integer, 

exc(string)&rt,int)bad format): 

hegin 
int sum: =O; 
do 

sum: =sum +get number(s) 

od 
on 

end.file= (char,char): 
hegin sum replace end, 

unrepresentable integer = (string num)(void,int): 
hegin unrepresentable integer&m) replace end, 

bad format = (string num)(void,int): 
hegin bad forma&urn) replace end 

overflow = dnt x,int y)fint,int): 
hegin overjlow replace end 

no 
end 

proc get number=(stream s)int 
signals (exc(char,char)end of3le. 

exe (string) (voidjnthnrepresentable integer, 

exc(string)(void.int)bad format): 

begin 
s2iCget jieldd(s)) 

end 
on 

end of jle = (char,char): 
hegin end of jile 

replace end, 
unrepresentable integer = (string sAint,int): 

hegin unrepresentable integer(s) replace end, 
badformat=(string s)fint,int): 

hegin bad format(s) replace end, 
invalid character= (char c)(char,int): 

hegin string s: =c; bad format(s)repl end 
no 

Figure 5 

Proponents of the termination model sometimes argue that resumption can 
be obtained using the termination model. This is only partially true. Resump- 
tion can be obtained only by local handling of exceptions inside an operation. 
However, this effect can also be obtained without an exception-handling 
mechanism. There is no way that resumption can be obtained in the termina- 
tion model once an exception has been signalled by an operation to an external 
invoker, since the signalling is always followed by termination of the signaller. 
This is the only case for which an exception-handling mechanism is essential. 

Resumption would be possible in the CLU sumstream if 

1. the body of the loop were a block, and 
ACM Transactions on Programming Languages and Systems, Vol. 7, No. 2, April 1985. 



240 l S. Yemini and D. Berry 

2. a handler for an exception of getnumber were attached to this block inside 
the body of sumstream. 

An exception would then transfer control out of this block, and drop down to 
the end of the loop body to perform the next iteration. However, this version 
of sum-stream would always be resuming sum-stream, and termination could not 
be obtained at the option of the invoker’s handler. The difference is a 
difference of modularity. In the termination model, all decisions about resump- 
tion or termination have to be made inside the signaller, and none are left to 
the invoker. The replacement model allows uncoupling the signaller and 
invoker in this decision, and exception handling can then be done at whatever 
level is most appropriate for the application. 

Get number, which is invoked within sumstream and sumstream itself, signals 
exceptions with identical identifiers but different types. The static scope rules 
allow determining the intended exception and performing the necessary type 
checking, since a signalling identifies the declaration of the exception in the sig- 
nals clause of the innermost enclosing signaller declaring an exception with the 
same identifier. If sumstream had not declared the exceptions overflow, 
unrepresentable integer, bad format, it could not propagate the exceptions of get 
number and +. 

7.3 Resumption vs. No Resumption 

There is still the issue of whether or not to support resumption at all. Support- 
ing resumption is not particularly useful for language-defined operations such as 
arithmetic operations or array subscripting, which are best considered atomic. 
However, for the operations of user-defined abstract data types, which may be 
lengthy and complex, supporting resumption may be essential. The reason for 
this is that resumption allows handling an exception without losing important 
state information which may have been accumulated after much arduous com- 
putation up to the point at which the exception was detected. Termination, on 
the other hand, will require reinitialization of the terminated operation and 
some recomputation when the terminated operation is restarted. In addition, 
resumption may be necessary in order to avoid undoing side effects that had 
happened up to the point at which the exception was detected. In many cases, 
it is necessary to have started a computation before an exception can be feasibly 
detected, even when the exeption is due to the failure of an input condition to 
hold. For example, in a merge of two sorted files, the input condition is that 
the two files are sorted. It is not feasible to check for this before beginning to 
sort. The ability to resume means that the sortedness can be checked on the fly 
and when an out of order record is found, the handler can dump it to another 
file and resume the merging with the remaining records.’ 

7.4 Propagation Along Invocation and Use Hierarchies 

’ Having merge do the dumping is not the same. In that case, the signaller is deciding what to do for all 
invokers, rather than each invoker deciding for itself via its own designated handler. 
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Section 3 mentions Levin’s alternative proposal for propagation of exceptions. 
Specifically, Levin’s mechanism permits associating exceptions with objects as 
well as to invocations. This allows all users of an object to handle an exception 
rather than just the invoker of the call giving rise to the exception condition. 
Consider a memory management abstraction providing a memory object out of 
which to carve allocations. Among the abstraction’s operations is an allocate 
routine. Of course, during any invocation of allocate the exception condition out 
of memory can occur. One possibility is to associate the exception with the rou- 
tine allocate so that only the invoker i of the invocation of allocate that discov- 
ers the condition is notified. Another possibility is to associate the exception 
with the memory object so that all users of memory can be informed of the con- 
dition. The former is propagation of the exception along the calis chain while 
the latter is propagation of the exception along the uses chain. 

When the exception is propagated along the use chain, all users of memory 
are required to be prepared to handle the out of memory exception by having an 
handler for it. This appears to create high coupling in the system, for totally 
unrelated processes end up being involved in each other’s computations. How- 
ever, this coupling is still protected, since each process acts through its own 
view of the shared abstraction. It can be argued that since these unrelated com- 
putations are sharing the memory object, they do have to be involved with each 
other; in fact, like it or not, they are involved with each other, because if one 
uses up the last available byte of memory, then none of the others can do any 
more allocation. 

This method of exception propagation has its advantages and disadvantages. 
On the one hand, with this kind of propagation, any process that can do some- 
thing about the lack of memory, e.g., release allocated memory or reorganize 
the free list, can respond. The result is that the process i would find its request 
satisfied. This solution offers more potential than only informing i of the excep- 
tion; after all, if there is no more memory and i cannot continue without the 
piece it has requested, what can it do to create more memory? On the other 
hand, since the informed processes may be at arbitrary points in their respective 
programs when they are called upon to release memory, programming the 
required set of handlers may prove to be complex. In this particular example, it 
can be very difficult to write handlers that determine for each point of the pro- * 
gram which of the visible allocated memory objects are dispensible. 

This paper does not consider this alternative view of exception handling 
because we did not fully understand the power of this form of exception propa- 
gation and still feel that on balance, the coupling is unacceptably high. How- 
ever, this alternative is orthogonal to that proposed in this paper. If properly 
done in the context of an expression-oriented, strongly-typed language with a 
modularizing construct, this alternative may add power to the language. 

Still another alternative is to try to simulate the use of chain propagation of 
exceptions with the facilities that we already have, as was done by Liskov and 
Snyder 1141. For example, when declaring the out of memory exception inside 
the memory abstraction module, a default handler can be provided which sends 
a message to the same processes that would respond to the exception in the 
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other method. If a user of the memory abstraction does not provide its own 
handler for our of memory, the default handler will be used. Of course, this 
method is far less convenient than with Levin’s scheme, because more prear- 
rangement of the globally visible channels of communication is needed. 

8. CONCLUSIONS 

Adopting an expression-oriented approach and generalizing the concept of a sig- 
naller enables us to support all the structured handler responses that were con- 
sidered useful in various proposals for exception handling, with minimal addi- 
tional mechanism. The uniformity of the mechanism contributes to the simpli- 
city of its semantics. In contrast, the only other exception-handling proposals 
supporting both resumption and termination of the signaller, those of [71 and 
[171, require a much more complex syntactic and semantic extension, although 
neither one supports all the handler responses supported in the replacement 
model. The mechanism can be adapted to any of the block-structured program- 
ming languages modulo their specific restrictions, with little loss of expressive 
power. We are currently adapting the mechanism for parallel programming 
languages. The preliminary results are encouraging (281. 

It is interesting to note that addressing exception handling in the context of 
modularity and program verification provides insights that contribute to simpli- 
fying the mechanism. Modularity requires that both the exception state and the 
resumption state be consistent or possible states in the sense of 1201, otherwise 
they cannot be specified externally without compromising modular information 
hiding. This eliminates the problem of signallers that must be resumed in 
order to restore the state to a consistent state. Signallers which cannot or must 
not be resumed simply signal their exceptions just before their logical ends, 
after which there is nothing left to be done in the signaller even if resumption 
should be attempted. This eliminates the need for constructs such as the SIG- 
NAL and NOTIFY in [71, SIGNAL and ERROR in Mesa [171, and the main 
argument of 1111 for supporting only resumption. 
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