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Abstract

Background: Estrogens regulate diverse physiological processes in various tissues through genomic and non-

genomic mechanisms that result in activation or repression of gene expression. Transcription regulation upon

estrogen stimulation is a critical biological process underlying the onset and progress of the majority of breast

cancer. Dynamic gene expression changes have been shown to characterize the breast cancer cell response to

estrogens, the every molecular mechanism of which is still not well understood.

Results: We developed a modulated empirical Bayes model, and constructed a novel topological and temporal

transcription factor (TF) regulatory network in MCF7 breast cancer cell line upon stimulation by 17b-estradiol

stimulation. In the network, significant TF genomic hubs were identified including ER-alpha and AP-1; significant

non-genomic hubs include ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, and PITX2. Although the early and late

networks were distinct (<5% overlap of ERa target genes between the 4 and 24 h time points), all nine hubs were

significantly represented in both networks. In MCF7 cells with acquired resistance to tamoxifen, the ERa regulatory

network was unresponsive to 17b-estradiol stimulation. The significant loss of hormone responsiveness was

associated with marked epigenomic changes, including hyper- or hypo-methylation of promoter CpG islands and

repressive histone methylations.

Conclusions: We identified a number of estrogen regulated target genes and established estrogen-regulated

network that distinguishes the genomic and non-genomic actions of estrogen receptor. Many gene targets of this

network were not active anymore in anti-estrogen resistant cell lines, possibly because their DNA methylation and

histone acetylation patterns have changed.

Background
Estrogens regulate diverse physiological processes in

reproductive tissues and in mammary, cardiovascular,

bone, liver, and brain tissues [1]. The most potent and

dominant estrogen in human is 17b-estradiol (E2). The

biological effects of estrogens are mediated primarily

through estrogen receptors a and b (ER-a and -b),

ligand-inducible transcription factors of the nuclear

receptor superfamily. Estrogens control multiple

functions in hormone-responsive breast cancer cells [2],

and ERa, in particular, plays a major role in the etiology

of the disease, serving as a major prognostic marker and

therapeutic target in breast cancer management [2].

Binding of hormone to receptor facilitates both geno-

mic and non-genomic ERa activities to either activate

or repress gene expression. Target gene regulation by

ERa is accomplished primarily by four distinct mechan-

isms (additional file 1) [3-5]: (i) ligand-dependent geno-

mic action (i.e., direct binding genomic action or

“DBGA”), in which ERa binds directly to estrogen

response elements (ERE) in DNA. Candidate DBGA

gene targets include PR and Bcl-2; (ii) ligand-dependent,

ERE-independent genomic action (i.e., indirect binding
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genomic action or “I-DBGA”). In I-DBGA, ERa regu-

lates genes via protein-protein interactions with other

transcription factors (such as c-Fos/c-Jun (AP-1), Sp1,

and nuclear factor-�B (NF�B)) [4]. Target I-DBGA

genes include MMP-1 and IGFNP4; (iii) Ligand-inde-

pendent ERa signaling, in which gene activation occurs

through second messengers downstream of peptide

growth factor signaling (e.g., EGFR, IGFR, GPCR path-

ways). Ligand-independent mechanism can be either

DBGA or I-DBGA. These pathways alter intracellular

kinase and phosphatase activity, induce alterations in

ERa phosphorylation, and modify receptor action on

genomic and non-genomic targets; (iv) rapid, non-geno-

mic effects through membrane-associated receptors acti-

vating signal transduction pathways such as MAPK and

Akt pathways (i.e. non-genomic action, NGA). Note that

the term, non-genomic effect, is based on the fact that

estrodial signaling pathway doesn’t involve ERa itself

(additional file 1) and as a consequence there is no

direct ERa mediated transcription. Furthermore, target

genes can receive input from multiple estrogen actions,

e.g., cyclin D1 is a target of multiple transcription fac-

tors (TF): SP1, AP1, STAT5, and NF�B [3]. These four

complex regulatory mechanisms, which describe the dis-

tribution of ERa and co-regulators in the nucleus and

membrane signal transduction proteins, are called topo-

logical mechanisms and instrumental in sustaining

breast cancer growth and progression.

Dynamic gene expression changes characterize the

breast cancer cell response to estrogens, and the kinetics

of ERa target genes are strongly influenced by the hor-

mone treatment times. Early work by Inoue et al. [6]

revealed distinct gene clusters that correspond to either

early or late E2-responsive genes. Frasor and co-workers

[7] defined “early” responsive targets in MCF7 cells as

genes up- or down-regulated by 8 h after E2 treatment;

genes induced by 24 h post E2 treatment were classified

as “late” responders and can be blocked by the protein

translation inhibitor cycloheximide. It was further

demonstrated that cyclin D1 expression was mediated

by the interaction of ERa-Sp1 (early response) and by

MAPK-activated EIk-2 and SRF [3] (later response). As

ERa binding sites are more significantly associated with

E2 up-regulated rather than down-regulated genes [8],

Carroll et al. hypothesized that physiologic squelching is

a primary cause of early down-regulation and late

down-regulation is an ERa-mediated event. Collectively,

these studies and many others [9] strongly support a

temporal mechanism of ERa regulation.

A number of gene regulatory network models have

been developed to integrate ChIP-chip and gene expres-

sion data, including genetic regulatory module algorithm

(GRAM) [10], statistical analysis of network dynamics

(SANDY) [11], Bayesian error analysis model (BEAM)

[12], and two-stage constrained space factor analyses

[13-15]. Although a unified model framework was used

to establish regulatory networks, those computational

approaches were not capable of distinguishing genomic

and non-genomic mechanisms, presumably due to fail-

ure to account for key differences in the type of data

corresponding to genomic and non-genomic mechan-

isms. ERa genomic targets consist of protein binding

signals (ChIP-chip peaks), which is not the case for

non-genomic targets, and thus models and regulation

selection for genomic and non-genomic ERa regulatory

mechanisms are different. In addition, although the

above computational approaches join models for ChIP-

chip and gene expression data, TF motif scans are not

typically performed, making it difficult to infer ERa

DBGA or I-DBGA targets from these approaches.

In this study, we developed a new modulated empiri-

cal Bayes approach to assemble the ERa regulatory net-

work. Our approach, for the first time, differentiates

topological features of ERa regulation mechanisms:

DBGA, I-DBGA, and NGA. By examining the estrogen-

responsive gene network in breast cancer cell models,

we established that the ERa regulatory network changes

over time. This modulated empirical Bayes model con-

trols false positives arising from ChIP-chip binding data,

TF binding site (TFBS) motif scans, and differential

gene expression profiles. Two applications of this regu-

latory network were studied. In the first application, the

agonist/antagonist activities of two active metabolites of

tamoxifen, 4-OH-tamoxifen and endoxifen, were investi-

gated. The second application investigated the impact of

epigenetics (DNA methylation and histone modifica-

tions) on ERa regulatory network in our previously

established breast cancer cell model of acquired tamoxi-

fen resistance [16].

Results
Data analyses overview

The ERa regulatory network model was developed

based on differential gene expression data for MCF7

(untreated, 4 and 24 hour post E2 treatment) [16,17]

and ERa ChIP-chip data [8]. The antagonistic/agonistic

effects of OHT and endoxifen on this network were

assessed using MCF7 gene expression microarray data

at 24 hour post E2, OHT, endoxifen, E2+OHT, and E2

+endoxifen treatments [17]. In MCF7 cells with

acquired resistance to tamoxifen, the response of the

ERa regulatory network was evaluated using gene

expression microarray data [16], and the epigenetic

mechanisms for non-responsive ERa network in MCF7-

T cells were investigated by H3K4me2 and H3K27me3

ChIP-seq data and MCIp-seq.
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ERa regulation mechanisms and ERa targets

Based on ERa ChIP-chip data and microarray mRNA

expression profiles after E2 stimulation of MCF7 breast

cancer cells, we categorized ERa regulatory mechanisms

into three groups (additional file 2): genomic action

with ERa direct ERE binding (DBGA), genomic action

with ERa indirect/ERE-independent (e.g., AP-1) binding

(I-DBGA), and non-genomic/ligand-independent action

(NGA). In DBGA, the activation of ERa can be either

by E2 (ligand-dependent) or growth factor-mediated

phosphorylation (ligand independent) (additional file 1

and additional file 2). Our current data is not able to

distinguish between these two types of mechanisms.

Different ERa mechanisms and their targets in MCF7

cell are displayed in Figure 1. For the three ERa

mechanisms described above, more up-regulated targets

were observed than down-regulated targets after 4 hour

E2 stimulation (Figure 1A). Both DBGA and NGA

mechanisms have more targets than I-DBGA has. After

24 hour E2 stimulation, a greater (p < 0.00001 vs. 4

hour) number of down-regulated targets was observed

for all three mechanisms (Figure 1B &1C). These results

are not totally consistent with the results in [8], as we

use the 20% fold-change as an additional filtering criter-

ion. Many significantly down-regulated genes have small

fold change, especially after 4 hour E2 treatment.

It is interesting to note that the number of DBGA and

I-DBGA targets at 24 hour was approximately doubled

compared to 4 hour, while an approximate 5-fold

increase in the number of NGA targets was observed at

24 hours (Figure 1A &1B). Furthermore, there was strik-

ingly little overlap among the ERa targets between the

two time points (8.5%, 5.8%, 3.8% for DBGA, I-DBGA,

and NGA) respectively.

Gene ontology enrichment analysis was performed for

the genomic and non-genomic targets at 4 and 24 hour

after E2 stimulation, and the top 5 functional categories

are listed in Table 1 (p-value range for sub-functional

categories is reported for each category). Although both

genomic and non-genomic mechanisms share only a

small number of targets, their functions are highly con-

sistent. At both 4 and 24 hours, genomic targets are

Figure 1 Statistics of ERa targets after E2 stimulation. (A) ERa targets after 4 hour E2 stimulation in MCF7 cells; (B) ERa targets after 24 hour

E2 stimulation in MCF7 cells; (C) Comparisons of up/down-regulated targets within each of three ERa regulation mechanisms; and (D) ERa

targets overlap between 4 and 24 hour after E2 stimulation.
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mainly responsible for gene expression, cell morphology,

cellular growth/development/movement, and cell cycle/

death. On the other hand, at both time points, non-

genomic targets are attributed to RNA post-translational

modification, DNA replication/re-combination/repair,

amino acid metabolism, cellular assembly and organiza-

tions. Therefore, genomic and non-genomic mechanisms

have dramatically different impacts on the molecular

and cellular functions in breast cancer cells.

ERa regulatory networks and their hubs

After 4 hours of E2 stimulation, the ERa regulatory net-

work is composed of an ERa hub and multiple inter-

connected hubs (Figure 2A). Both ERa (DBGA) and

Sp1 (I-DBGA) hubs are consistent with genomic

mechanisms, while the other hubs follow non-genomic

mechanisms. The target sizes of genomic and non-geno-

mics hubs are approximately equal; however, after 24

hour of E2 stimulation, there is a pronounced increase

in the number of non-genomic hubs and targets com-

pared to genomic hubs and targets (Figure 2B). These

results demonstrate that while both genomic and non-

genomic hubs are equally important, a greater number

of late response E2 targets are activated through non-

genomic mechanisms compared to genomic hubs. In

addition, a striking feature of this dynamic ERa regula-

tory network is that a consistent set of transcription fac-

tors appear to control the hubs, despite the lack of

overlap for hub targets between the two time points

(discussed above; Figure 1D). These factors include

(ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, PITX2).

Further comparison of the significant hubs between the

4 and 24 hour networks shows that both statistical sig-

nificance (p-value) and hub size are consistent between

two time points for both genomic and non-genomic

hubs (Figure 3).

Antagonistic/Agonistic effects of tamoxifen metabolites:

4-OH tamoxifen and endoxifen

Different SERMs have been shown to have different

antagonistic/agonistic on E2 up- and down-regulated

genes [18]. The effect of the tamoxifen metabolites

OHT and endoxifen, both well-known SERMS [17], on

ERa target networks has not been compared, particu-

larly with regard to ERa genomic/non-genomic targets.

Among the ERa targets identified after 24 hour of E2

stimulation, 17% and 14% were responsive to OHT and

endoxifen respectively, with 74% of the targets overlap-

ping (additional file 3). The agonist, antagonist, and par-

tial agonist/antagonist activity of OHT and endoxifen on

the ERa targets at 24 hour post E2 stimulation were

nearly identical for the two SERMS (41%, 7%, 52% and

40%, 7%, 53% for OHT and endoxifen, respectively;

additional file 4).

We further classified the effects of OHT and endoxi-

fen on ERa genomic/non-genomic and up/down regula-

tion. There was a tendency for a greater agonistic effect

on ERa genomic targets than non-genomic targets after

E2 or OHT treatment (p = 0.01; Figure 4A). However,

this difference in agonistic activity on genomic/non-

genomic targets was not seen (p = 0.67, Figure 4B) after

E2 or endoxifen treatment.

Epigenetic modifications impact the ERa regulatory

network in tamoxifen resistant MCF7 cells

Breast cancer cell models for acquired resistance to

tamoxifen display progressive loss of estrogen-dependent

signaling for cell growth and proliferation and a

Table 1 Gene Ontology Analysis of Estrogen Targets

ERa Target
Mechanism

4 hour after E2 Stimulation 24 hour after E2 Stimulation

Functional Category P-value
Range

N Functional Category P-value
Range

N

Genomic Gene Expression 2E-6 - 9E-3 26 Cellular Growth 4E-7 - 1E-2 96

Cell Morphology 4E-6 - 1E-2 15 Cell Cycle 2E-6 - 1E-2 37

Cellular Growth 3E-5 - 1E-2 37 Cell Death 4E-5 - 1E-2 70

Cellular Development 5E-5 - 1E-2 22 Cellular Movement 5E-5 - 1E-2 46

Cell Cycle 1E-4 - 1E-2 21 Cellular Development 6E-5 - 1E-2 48

Non-genomic RNA Post-Transcription 5E-6 - 4E-2 5 DNA Replication, Recombination, and
Repair

1E-9 - 3E-2 62

Modification

Cellular Development 8E-4 - 5E-2 2 Cell Cycle 1E-9 - 3E-2 70

DNA Replication, Re-combination, and
Repair

1E-3 - 4E-2 6 RNA Post-Transcription Modification 6E-6 - 2E-2 16

Cellular Growth 1E-3 - 4E-2 8 Post-Transcription 5E-4 - 3E-2 15

Amino Acid Metabolism 5E-3 - 5E-2 2 Modification Cellular Assembly and
Organization

6E-4 - 3E-2 37
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disrupted ERa regulatory network [16]. Among the ERa

targets observed after 4 hour E2 stimulation of MCF7,

only one target remained hormone responsive in the

tamoxifen-resistant MCF7-T subline (NRF1; Figure 5).

In order to understand the role of epigenetics in this non-

responsive ERa network, we investigated five possible

mechanisms (additional file 5): (A) high basal gene expres-

sion in the MCF7-T cell; (B) hypermethylation (MCF7-T

Figure 2 ERa regulatory network after E2 stimulation. (A) ERa regulatory network after 4 hours E2 stimulation in MCF7 cells; and (B) ERa

regulatory network after 24 hours E2 stimulation in MCF7 cells.
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vs MCF7) (C) hypomethylation (MCF7-T vs MCF7); (D)

high methylation level in MCF7-T; and (C) high H3K27/

H3K4 ratio. As shown in Figure 6, these mechanisms

account for approximately 27%, 19%, 15%, 34%, and 22%

of the non-responsive targets (Figure 6A); however, these

five mechanisms are not able to account for approx. 28%

of targets. Substantial (36%) overlap was seen between

hypermethylation (mechanism 2) and high basal methyla-

tion in MCF7-T cell (mechanism 4) (Figure 6B).

Validation studies

Pol II-Binding. We compared PolII binding signals in

MCF7 before and after 4 hour E2 stimulation. Nearly all

ERa genomic targets displayed the same direction in

fold-change between PolII binding and gene expression

signals (98%; additional file 6A). Among the non-geno-

mic targets, this concordance rate dropped slightly

(86%). On the other hand, the concordance rate among

non-targets was 55%.

H3K4 Dimethylation is a well established histone mar-

ker for transcription activation acetylation marker. We

selected the median of H3K4 dimethylation ChIP-seq

signal as the threshold. Almost all ERa genomic targets

displayed H3K4 dimethylation higher than the median

(94%, additional file 6B). Among the non-genomic tar-

gets, this concordance rate dropped slightly (84%). On

the other hand, the concordance rate among non-targets

was 49%.

Figure 3 Regularory hubs in ERa regulatory network. (A) The correlation of the significance of hubs between 4 hour and 24 networks; and

(B) The correlation of the significance of non-genomic hubs between 4 hour and 24 networks. Both axis are the -log(p-value), and the width

and length of the squares represent the relative scales of hubs.

Figure 4 Effect of selective ERa modulators. (A) The agonistic effect of 4-OH tamoxifen is greater on genomic mechanism than on

antagonistic or partial effects (p = 0.01). (B) No evidence for agonistic, antagonistic, or partial effects of endoxifen on genomic or non-genomics

mechanisms.
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Overlap of 4 hour and 24 hour Estrogen Targets in the

MCF7 Cell We used a different data set by Cicatiello et

al. [19], in which MCF7 cells were treated with E2, and

sampled at baseline, 4 hr and 24 hr. This experiment

was performed on a different gene expression platform,

Illunima. We applied a similar empirical Bayes model

and the same fold change threshold. We obtained a

similar percentage of up/down regulated genes after 4h/

24h estrogen treatment. In addition, the overlap of 4

and 24 hour gene targets was, 7%, similar to what we

found out with our data.

RT-qPCR, ChIP-PCR, and COBRA. We further investi-

gated four types of epigenetics mechanisms.

• Mechanism 1: GAB2 and LAMB2 were non-

responsive in our network due to significantly

increased basal expression in MCF7-T vs. MCF7

(based on microarray data). Although RT-qPCR ana-

lysis confirmed that GAB2 and LAMB2 expression

was significantly higher in MCF7-T vs. MCF7 (Fig-

ure 7A,B), both genes were slightly responsive to E2

in MCF7-T. Our interpretation is that Affymetrix

technology can be saturated for highly expressed

genes, becoming insensitive to subtle expression

changes. Nonetheless, the non-responsive mechan-

ism needs further experimental investigation.

• Mechanism 5: PGR, PLS3, SPATA13, GREB1, and

MAOA were non-responsive because of a high ratio

of H3K27me3:H3K4me2 in MCF7-T vs. MCF7.

Using ChIP-PCR, this mechanism was validated in

four of five target genes (Figure 7C,D,F,G; exception

was SPATA13, Figure 7E).

• Mechanisms 2 and 4: the DNA methylation status

four ERa targets (PGR, PLS3, CREB1, SPATA13)

was examined. Using COBRA assays, increased

DNA methylation was observed in PGR and PLS3

in MCF7-T compared to MCF7 (Figure 7H;

mechanism 4), and increased methylation in the

MCF7-T and the MCF7 (mechanism 2). Further-

more, in the non-responsive ERa network, both

PGR and PLS3 displayed both repressive epigenetic

modifcations, the altered histone methylation ratio

(mechanism 5) and altered DNA methylation

(mechanism 2 and 4).

Figure 5 ERa regulatory network in drug-resistant cells. ERa regulatory network in MCF7 cell after 4 hour E2 stimulation becomes non-

responsive to E2 in the MCF7-T cell (only one target gene remains responsive).
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Discussion
Advantage of the modulated empirical bayes method in

assembling a TF regulatory network model

Our proposed ERa regulatory network model frame-

work differs from existing methods in its ability to dis-

tinguish between genomic and non-genomic actions,

and the assumption for functional TFs. The pioneer TF

regulatory network for Saccharomyces cerevisiae, devel-

oped by Luscombe et al. [11] and Lee et al. [20],

emphasized that TFs themselves should be highly

expressed and display differences in expression level.

However, these assumptions tend to be overly stringent

and not suitable for our data. Our gene expression

microarray data suggested that the majority of the TFs

(more than 70%) are expressed at low levels in MCF7

cells, and E2 stimulation results primarily in changes in

TF phosphorylation state and not robust changes in TF

expression in breast cancer cell lines, including MCF7

[7,16,21]. All of the TFs in our genomic and non-geno-

mic hubs didn’t change their expression significantly

(additional file 7 and additional file 8). Stringent statisti-

cal models have recently been developed to establish TF

regulatory networks [12,13,15]. Such regression-based

approaches were not significant when used to analyze

our data (not even for ERa itself), mainly due to the

fact that TFs, including ERa, have both up- and down-

regulated targets. If targets that change in opposite

directions are not treated differently, the regression

model will cancel-out any effect of a TF on gene expres-

sion. Therefore, regression model-based approaches to

identify TF regulatory networks can be sensitive to a

mis-specified model.

Our proposed empirical Bayes method modulates FDR

calculations from differential gene expression data,

ChIP-chip binding peaks, and TF motif scans. The

inferred ERa regulatory network model has the follow-

ing features and advantages:

• Distinct genomic and non-genomic mechanisms.

• Less stringent requirements on TF gene expression

levels.

• Modulated data analysis leading to robust conclu-

sions with respect to model misspecifications.

• Modulated model assembly results in an extend-

able TF network, which is particularly useful when

additional data becomes available for new molecular

mechanisms.

ERa regulatory network and corresponding hubs

When constructing genomic targets of the ERa regula-

tory network, TFs are scanned within a narrow region,

45bp, of ERa ChIP-chip binding sites. This calculation

scheme enables the identification of either DBGA or

indirect I-DBGA. In many previous studies [8,22-24],

relatively large neighborhoods surrounding the ERa

binding site (around 500~1000bp) were scanned for

consensus sequences of TFBSs. While this is an effective

strategy for identifying co-regulatory TFs, it is not an

effective approach for inferences regarding DBGA or I-

DBGA. For example, Lin et al. [23] demonstrated that

EREs and ERE half-sites were enriched for other tran-

scription factors motifs, supporting the notion that TFs,

in addition to ERa, can bind to ERE. In our analysis, we

identified only Sp-1 as an I-DBGA. Although AP1 has

been reported to be an I-DBGA, in our data it did not

pass the false positive threshold (FDR = 0.23), due to its

relatively short TFBS (6 bp). Binding motifs for forkhead

TFs have also been reported to be enriched within ERa

Figure 6 Epigenetic mechanisms in drug-resistant cells .

Epigenetic mechanisms in ERa regulatory network in MCF7-T cell: 1

high basal gene expression in MCF7-T cells; 2 hypermethylation

from MCF7 cells to MCF7-T cells; 3 hypomethylation from MCF7

cells to MCF7-H cells; 4 high basal methylation level in the MCF-T

cells; 5 high H3K27/H3K4 ratio; and 6 unknown mechanisms. (A) The

distribution of non-responsive mechanisms in ERa regulatory

network in MCF7-T cell. (B) The overlap among 5 non-responsive

mechanisms.
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binding regions in MCF7 cells by ChIP-chip [8]. How-

ever, in our study, there was not sufficient evidence to

support FoxA1 as an I-DBGA (FDR = 0.34), a result

supported by recent studies using ChIP-seq and ChIP-

DSL [25-27]. Recently, RAR and ERa binding were

shown to be highly coincident throughout the genome,

competing for binding to the same or similar response

elements [28]. Our ERa regulatory network model, how-

ever, is not able to identify RAR targets, as the ChIP-

chip experiments were only performed for ERa binding

sites and not RAR.

In our analysis, non-genomic targets of the ERa regu-

latory network were constructed using genes whose pro-

moters, introns, or downstream sequences were devoid

of ERa ChIP-chip binding sites. Significant TF scan

scores of these gene promoters infer ERa non-genomic

action (NGA). It is worth noting that these NGA differ

from previously described ERa co-regulator factors.

NGA does not require ERa binding, in contrast to ERa

co-regulatory factors which must display ERa binding

peaks in the ChIP-chip analysis. Significant NGA tran-

scription factors include ZFP161, TFDP1, NRF1,

TFAP2A, EGR1, E2F1, and PITX2 (p <0.01). Other sig-

nificant NGA includes MYC, which has been previously

reported [28], and although MYC was present in both 4

and 24 hour ERa regulatory networks, the level of sig-

nificance was not high enough to be considered a hub

(p = 0.14).

Among the nine hubs that are significantly enriched in

both 4 hour and 24 hour ERa networks, two facilitate

genomic activities (ERa and Sp1), while the other seven

hubs (ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1,

PITX2) mediate non-genomic actions. With the excep-

tion of (ZFP161, TFDP1, PITX2), the functions of (Sp1,

NRF1, E2F1, TFAP2A, EGR-1) and their functional rele-

vance to estrogen action in breast cancer cells have

been extensively documented in [29-32].

While the ERa regulatory network concept has

recently been reviewed [33,34], our study is the first to

characterize genomic and non-genomic mechanisms and

their different functions. The genomic mechanism is sig-

nificantly involved in cell proliferation and control of

cell phases, confirming a significant effect of estrogen

on cell cycle regulation. Biological processes significantly

Figure 7 RT-PCR, ChIP-PCR and COBRA Validations
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affected by the non-genomic mechanism include RNA

post-translation modification, cellular development,

DNA replication, re-combination, and repair. Additional

models describing network properties of estrogen signal-

ing targets include the protein-protein interaction and

the functional module networks [28]. The focus of the

two networks is on the functional interpretation of the

targets and not mechanism of regulation. Furthermore,

the edges are interpreted as either protein interaction or

functional similarity and are not directional, compared

to the edges in our regulatory network, which have up

or down-regulation direction.

Antagonist/agonist effects of SERMs on ERa regulatory

networks

We observed full and partial antagonist/agonist effect of

OHT on MCF7 after 24 hour E2 stimulation, similar to a

previous study [18]. We further show that genomic and

non-genomic actions of the ERa regulatory network are

differentially influenced by full or partial antagonist/ago-

nist activities of OHT and endoxifen. The current study

clearly demonstrates that the E2 responsive ERa regula-

tory network is disrupted by two SERMs (additional file

4), but whether new networks are stimulated by these or

other SERMs require additional investigation.

Epigenetic Modifications of ERa Regulatory Network in

the MCF7-T Cell

A second application of the regulatory network was to

examine the impact of epigenetics (DNA methylation

and histone modifications) on the ERa regulatory net-

work in a breast cancer cell model for acquired tamoxi-

fen resistance of [16]. Transcriptionally active genes are

typically marked by higher levels of di-/tri-methylated

H3K4 (H3K4me2/3) and low trimethylated H3 lysine 27

(H3K27me3) levels [35], and in hormone responsive

MCF7 cells, E2-stimulated target genes have been

shown to posses enriched regions of H3K4me1/2 [36].

In contrast, MCF7 with acquired tamoxifen resistance

(MCF7-T), groups of previously E2-responsive genes are

now associated with low H3K4me2 and high H3K27me3

and are either downregulated or no longer strongly hor-

mone inducible (Figure 8). The H3K27me3 mark is

stable and invariably associated with transcriptional

repression [37,38] and we show that this repressive his-

tone modification plays a key role in the unresponsive

ERa regulatory network in MCF7 cells with acquired

resistance to tamoxifen (Figure 8). Although tumori-

genic gene silencing mediated by H3K27me3 has been

shown to occur in the absence of DNA methylation

[38,39], repressive histone marks frequently coordinate

with the more permanent mark of DNA methylation in

heterochromatin [39-41]. We previously demonstrated

that alterations in DNA methylation play an important

role in acquired tamoxifen resistance [16]. By integrating

both repressive epigenetic marks into our model, we

demonstrate that H3K27me3 and DNA methylation sig-

nificantly contribute to the non-responsive ERa regula-

tory network model in tamoxifen resistant breast cancer.

Furthermore, having recently demonstrated that many

TFBSs are enriched in regions of altered DNA methyla-

tion [42], we suggest that the functions of activators or

repressors could be altered by changes to the DNA

methylation landscape and further impact ERa networks

in breast cancer, an active area of investigation in our

laboratory.

When we compare the percentages of different epige-

netic mechanisms (Figure 7, 27%, 19%, 15%, 34%, 22%),

to 20% each for a random gene set based on the

selected thresholds, it seems that the non-responsive

targets have similar distribution of various types of epi-

genetic mechanisms as that of a random gene set.

Therefore, it is possible that there may not exist specific

patterns of epigenetic mechanisms in MCF7 cells’

acquired tamoxifen resistance.

Conclusions
In breast cancer cells, we identified a number of estro-

gen regulated target genes and the estrogen-regulated

network that characterizes the causal relationships

between transcription factors and their targets. This net-

work has two major mechanisms, the genomic action

and the non-genomic action. In genomic action, after

estrogen receptor is activated by estrogen, estrogen

receptor regulated genes through directing binding to

DNA. In non-genomic action, estrogen regulated its

gene targets through non-direct binding through other

factors. In the estrogen regulated network, we found

that though many non-genomic targets change over

time, they do share many common factors and the con-

sistency is highly significant. Moreover, we found that

many gene targets of this network were not active any-

more in anti-estrogen resistant cell lines, possibly

because their DNA methylation and histone acetylation

patterns have changed. Taken together, our model has

revealed novel and unexpected features of estrogen-

regulated transcriptional networks in hormone respon-

sive and anti-estrogen resistant human breast cancer.

Methods
Chromatin immunoprecipitation and ChIP-Seq library

generation

Chromatin immunoprecipitation (ChIP) for PoI II (sc-

899X, Santa Cruz, CA), H3K4me2 (Millipore, 07-030,

Billerica, MA) and H3K27me3 (Diagenode, CS-069-100,

Sparta, NJ) was performed as previously described [43].

ChIP libraries for sequencing were prepared following

standard protocols from Illumina (San Diego, CA) as
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described in [44]. ChIP-seq libraries were sequenced

using the Illumina Genome Analyzer II (GA II) as per

manufacturer’s instructions. Sequencing was performed

up to 36 cycles for mapping to the human genome

reference sequence. Image analysis and base calling were

performed with the standard Illumina pipeline, and with

automated matrix and phasing calculations on the PhiX

control that was run in the eighth lane of each flow-cell.

Samples were run on duplicates.

Methyl-CpG immunoprecipitation (MCIp-seq)

MCIp-seq was performed and followed the manufac-

ture’s protocol (MethylMiner, Invitrogen, Carlsbad, CA).

Briefly, genomic DNA was sheared by sonication into

Figure 8 Flow-Chat of ERa Regulatory Network Construction
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200-600-bp fragments, and methylated DNA was

immuno-precipitated by incubating 1 μg of sonicated

genomic DNA for 1h at room temperature with 3.5 μg

of recombinant MBD-biotin protein and Streptavidin

beads. Methylated DNA was eluted with high-salt buf-

fers (500 or 1,000 mmol/L NaCl), and then recovered by

standard phenol chloroform procedure. The DNA frac-

tions were subjected to library generation and followed

by Illumina sequencing. Samples were run in duplicate.

Quantitative ChIP-PCR

To determine binding levels of H3K4me2 and

H3K27me3 on target genes, quantitative ChIP-PCR was

used to measure the amount of this sequence in anti-

H3K4me2 or H3K27me3-immunoprecipitated samples

by PCR with SYBR Green-based detection (Applied Bio-

systems). Experimental quantitative ChIP-PCR values

were normalized against values obtained by a standard

curve (10-fold dilution, R2>0.99) constructed by input

DNA with the same primer set. Specific primers for

amplification are available upon request.

Reverse transcription and quantitative PCR (RT-qPCR)

Total RNA (1 μg) was reverse transcribed with the

Superscript III reverse transcriptase (Invitrogen, Carls-

bad, CA). PCR was performed as described previously

[45]. Specific primers for amplification are available

upon request. The relative cellular expression of a cod-

ing gene was determined by comparing the threshold

cycle (Ct) of the gene against the Ct of GAPDH.

Identification of differentially expressed genes and FDR

calculation

An empirical Bayes approach in the mixture-model fra-

mework was developed to assess differential gene

expression data from Affymetrix platform. Because the

differential expression inference is made at the gene

level rather than at the probe level, our model is an

extension of Kendziorski’s work [46,47]. In this model,

between-gene variation, between-probe variation and

between replicate are included. Specifically, let i index

genes (i = 1.2.,...,I), l index conditions/groups/time (l =

1,2; 1 is the reference), j index probe set (j = 1,2,..., ni)

and k index replicate (k = 1,2,..., mi). Let Gijk be the

expression level of the kth replicate on probe j for gene

i under group l. We consider the following random-

effects model:

Gijkl = μil + bij + εijkl

bij ∼i.i.d. N(0, σ 2
i ), εijkl ∼i.i.d. N(0, δ2

ijl)
(1)

where μil is the gene expression level for gene i under

condition l,bij represents the probe effect for the jth

probe of gene i and εijkl is the error term (for genes

with only one probe, the probe effect b is eliminated

from model (1)). We consider that the genes come from

three latent populations, each of which is characterized

by the location of μij (X variable) and μi2 (Y variable) on

a two-dimensional plane. The first population, a bivari-

ate normal distribution with the center located above

the y = x line, represents up-regulated genes. The sec-

ond population, a normal distribution along y = x line,

represents unchanged genes. The third population, a

bivariate normal distribution with the center below the

y = x line, characterizes down-regulated genes. Denote

by Yi a latent indicator such that Yi = 1,0,-1 implies that

gene i belongs to the first, second and third populations,

respectively. Thus, we consider the following model for

μil:

[

μi = (μi1, μi2)|Yi

]

= f
I(Yi=1)
1 f

I(Yi=0)
0 f

I(Yi=−1)
−1 ,

f1 = BN(μi; η1, �1),

f0 = I(μi1 = μi2)N(μi1; λ, φ2),

f−1 = BN(μi; η−1, �−1),

Pr[Yi = 1] = ρ1; Pr[Yi = −1] = ρ−1; Pr[Yi = 0] = ρ0,

η12 > η11, ξ12 < ξ11, ρ1 + ρ−1 + ρ0 = 1,

(2)

where I(.) is a function that takes value 1 if the argu-

ment is logical/true and 0 if otherwise; BN and N

denote the bivariate and univariate normal distributions,

respectively. By integrating equations (1) and (2), one

can use the Expectation-Maximization (EM) algorithm

(S1.doc) to estimate the parameter vector θ = (r, h1, Σ1,

h-1, Σ-1,l,�,s,δ). The posterior probability Pr[Yi = 0|G, θ̂ ]

can be interpreted as the probability that gene i is not

differentiated. Rigorously speaking, Pr[Yi = ±1|G, θ̂] can-

not be directly interpreted as the probability that gene i

is up/downregulated. However, a probability close to 1

indicates a good approximation. In our analysis, we

claim that a gene is up-regulated if Pr[Yi = 1|G, θ̂ ] > c

and μ̂i2 − μ̂i1 > 0 or downregulated if

Pr[Yi = −1|G, θ̂] > c and μ̂i2 − μ̂i1 < 0. The local FDR

can be easily estimated by 1 − Pr[Yi = 1|G, θ̂] or

1 − Pr[Yi = −1|G, θ̂][48]. In our analysis, we set c = 0.80.

Models (1) and (2) are fitted to baseline and E2 stimu-

lated (4 and 24 hours) expression data for MCF7 cells.

In addition to FDR, we also set 20% fold-change in

either up- or down-regulation in expression as the bio-

logically significant effect size. Binding Scores for Peak

Areas Identified by ChIP-chip and FDR Calculation is

based on model-based analysis of tiling-arrays [49].

Motif binding site scan and FDR calculation

Genomic Binding Sites: Each significant ChIP-chip peak

binding site sequence of length 45 bp (25 bp of tiling

array probes plus 10 bp up/downstream of each probe)
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is scanned by all of the TF motifs in TRANSFAC data-

bases. The range of binding scores for a transcription

factor with motif M are divided into a number of small

bins (k = 200). The number of scores fall into each bin

is then calculated. If the number of any bin is lower

than a pre-specified limit (t = mb 20), the bin is col-

lapsed with neighboring bins until the number is beyond

the limit. The number of scores that fall in each bin is

denoted b by mb. Then, we randomly generate R =

10,000 sequences based on human genome background

using a 6th order Markov model. This model assumes

that a sequence element probability depends on 6 pre-

vious bases, immediately preceding the current base

[50]. The binding scores for these random sequences

are calculated, and the number of scores that falls into

each bin is denoted by nb. Finally, the local FDR, in

terms of binding event for scores in bin b, is calculated

as

FDRb,M =
nb/R

mb/I
, (3)

where I is the total number of genes. In doing so, we

force the bins below the midpoint of the score range to

have FDRb,m = 1 because it is highly unlikely that these

low score bins represent true binding events. Finally, we

fit a cubic smoothing-spline to FDRb,m to get FDRs,m,

the local FDR at score s (degree = 4, # of knots = # of

unique FDRb,m values). Then for each gene, we have the

FDR estimate respect to the event that TF g binds to

gene i’s promoter. This non-parametric approach to

estimate FDR was first described by Efron et al. [51] in

differential gene expression data analysis.

Non-genomic Binding Sites: We applied the same

method as above to the motif binding scores collected

from each gene promoter upstream 1Kb.

Modulated empirical bayes model: DBGA, I-DBGA, and

NGA mechanism determination based on ChIP-chip peak,

TF motif scan and differential gene expression data

Based on FDRs calculated from empirical Bayes models

in differential gene expression, ChIP-chip binding peaks,

and TF motif scan scores, DBGA, I-DBGA, and NGA

targets were calculated using the flow-chart displayed in

Figure 8. Graphical interpretations of different mechan-

isms and their associated data types are displayed in Fig-

ures S1 and S2. In brief, both genomic and non-genomic

targets must have significantly differentially expressed

genes, while only genomic targets have significant ChIP-

chip binding peaks. Finally, a DBGA has a significant

ERa motif in the ChIP-chip binding sites, an I-DBGA

has one or more significant TF motifs (other than ERa)

in the ChIP-chip binding sites, and a NGA has one or

more significant TF motifs in its target gene promoter.

TF Hub significance calculation

To quantify the significance of well-connected TF hubs,

we consider the following null hypothesis: TFs that are

involved in the regulation of differential genes are ran-

domly picked from a pool of known TFs. Specifically, we

suppose there are M differential genes. For each gene i,

there are bi binding sites by ChIP-chip and motif search

that pass the threshold, which involve ni (ni ≤ bi) unique

TFs. Therefore, there are a total of N =

M
∑

i=1

ni involved

TFs. If there are n known TFs, then under the null

hypothesis the number of connected nodes for each TF is

the same as the number of times each TF appear from M

random draws with each draw of size ni. Note that each

draw of ni is without replacement because they represent

distinct transcription factors. The distribution of the

number of connected nodes (T) for any TF is

Pr(T = t) =

∑

ω∈�(t)

(

∏

i∈ω

(

n − 1

ni − 1

)) (

∏

i /∈ω

(

n − 1

ni

))

M
∏

i=1

(

n

ni

) , (4)

where Ω(t) is the set of all subsets of {1,2,...,M} with t

elements. Hence, p-values associated with hub TFs can

be obtained by calculating Pr(T ≥ tobs), where tobs is the

observed number of genes regulated by the TF of inter-

est. This calculation is programmed in R.

Signal identification for ChIP-seq (PolII, H3K4me2,

H3K27me3) and MCIp-seq

In order to evaluate transcriptional activity, activating

and repressive histone methylation marks, and DNA

methylation of ERa target genes, ChIP-seq data for

RNA Pol II, H3K4me2, and H3K27me3 and MIRA-seq

data DNA methylation were analyzed. Total sequences

were normalized among replicates. For the ChIP-seq

data, the signal intensity was measured as the number

of ChIP-seq tags within the promoter region, defined as

1,000-bp upstream of TSS (transcription start site). In

the MCIp-seq data, seq tags within upstream 1000bp

and downstream 1000bp of the TSS were selected for

promoter DNA-methylation.

Identifications of agonist, antagonist, and partial agonist/

antagonist selective estrogen receptor modulator (SERM)

targets

Let (FCE2, FCSERM, FCE2+SERM) be the fold-change of

gene expression after treatment of MCF7 cells with E2,

SERM (OHT or endoxifen), or E2+SERM). We defined

fold-change as gene expression in the treatment group

over the control group for up-regulation; otherwise, it is
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defined as the minus inverse ratio. In particular, if a

gene is absent in both groups, the fold-change is defined

as 1. A SERM has an agonistic effect on a gene if |

FCSERM| > [1 + 70% × (|FCE2| - 1)], an antagonistic

effect if |FCSERM| < [1 + 35% × (|FCE2| - 1)] and |FCE2

+SERM| < [1 + 50% × (|FCE2| - 1)]; otherwise, it has a

partial agonistic/antagonistic effect. These agonist and

antagonist activities have been defined previously [18].

Epigenetic mechanisms of non-responsive ERa network in

4-hydroxy tamoxifen (OHT) resistant MCF7 cells

For ERa targets in the ERa regulatory network 4 hours

after E2 stimulation, five different epigenetic mechan-

isms were investigated (additional file 5).

• The first mechanism (additional file 5A) is the

high-basal gene expression in the 4-OHT-resistant

MCF7 cells, in which the threshold of high-basal

gene expression is defined as its 80th percentile.

• The second mechanism (additional file 5B) is

defined as the hyper-methylation: i.e., higher methy-

lation level of OHT-resistant MCF7 than the paren-

tal (hormone-responsive) MCF7. The threshold of

this fold-change is defined as its 80th percentile.

• The third mechanism (additional file 5C) is defined

as the hypo-methylation: i.e., lower methylation level

of OHT-resistant MCF7 vs. MCF7. The threshold of

this fold-change is defined as its 80th percentile.

• The fourth mechanism (additional file 5D) is

defined as the high methylation in the OHT-resis-

tant MCF7. The threshold of methylation level is

defined as its 80th percentile.

• The fifth mechanism (additional file 5E) is defined

as the high H3K27/K3K4 ratio, a gene repressive

mark, in the OHT-resistant MCF7. The threshold of

this ratio level is defined as its 80th percentile.

All other non-responsive ERa targets were categorized

as “unknown”.

Additional material

Additional file 1: is a jpeg file, indicating the situations of ligand-

dependent genomic target, ligand-independent genomic target and

non-genomic target

Additional file 2: is a jpeg file, indicating the relationships between

data and ERa mechanisms

Additional file 3: is a jpeg file, indicating the effect of 4OH-

tamoxifen and endoxifen on the network

Additional file 4: is a jpeg file, indicating agonistic, antagonist, and

partial agonistic/antagonistic effects of 4-OH-tamoxifen and

endoxifen

Additional file 5: is a jpeg file, indicating non-responsive

mechanisms in ERa regulatory network in MCF7-T cell. (A) high basal

gene expression in MCF7-T cells; (B) hypermethylation from MCF7 cells

to MCF7-T cells; (C) hypomethylation from MCF7 cells to MCF7-H cells;

(D) high basal methylation level in the MCF-T cells; (E) high H3K27/H3K4

ratio.

Additional file 6: is a jpeg file, indicating the concordance between

differential PolII bindings and differential gene expression among

genomic-targets, non-genomic targets, and none targets; and the

concordance between H3K4 dimethylation among genomic-targets,

non-genomic targets, and none targets. (A) The concordance of

differential gene expression and PolII binding are before and after E2

stimulation of MCF7 cells. (B) The concordance of differential gene

expression and H3K4 dimethylation.

Additional file 7: Supplementary Table 1

Additional file 8: Supplementary Table 2
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