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DNA microarrays are widely used to study changes in gene
expression in tumors, but such studies are typically system-
specific and do not address the commonalities and variations
between different types of tumor. Here we present an
integrated analysis of 1,975 published microarrays spanning
22 tumor types. We describe expression profiles in different
tumors in terms of the behavior of modules, sets of genes
that act in concert to carry out a specific function. Using a
simple unified analysis, we extract modules and characterize
gene-expression profiles in tumors as a combination of
activated and deactivated modules. Activation of some
modules is specific to particular types of tumor; for example,
a growth-inhibitory module is specifically repressed in acute
lymphoblastic leukemias and may underlie the deregulated
proliferation in these cancers. Other modules are shared across
a diverse set of clinical conditions, suggestive of common
tumor progression mechanisms. For example, the bone
osteoblastic module spans a variety of tumor types and
includes both secreted growth factors and their receptors.
Our findings suggest that there is a single mechanism for both
primary tumor proliferation and metastasis to bone. Our
analysis presents multiple research directions for diagnostic,
prognostic and therapeutic studies.

Cancer is a multifaceted phenomenon, originating in different tissues
and involving disruptions of various cellular processes. Aberrations in
regulation of key proliferation and survival pathways are common
to all tumors, whereas alterations in other pathways may be specific to
certain tumors. Understanding which mechanisms are general and
which are specific has important therapeutic implications, but few
studies1–4 address this issue from a genome-wide perspective. Here, we
used DNA microarray data in a comprehensive analysis aimed at
identifying the shared and unique molecular ‘modules’ underlying
human malignancies. Two recent studies3,5 demonstrate the utility of
similar approaches in the context of a single module. The result of our
analysis is a global map showing the modules that are induced or
repressed in a wide variety of clinical conditions.

We analyzed a ‘cancer compendium’ of expression profiles compiled
from 26 studies (Supplementary Table 1 online), measuring the
expression of 14,145 genes in 1,975 arrays spanning 17 categories
(Fig. 1a). First, we organized genes into higher-level modules, and
then we identified clinical conditions in which different modules are
induced or repressed.

We started by collecting 2,849 biologically meaningful gene sets,
including clusters of coexpressed genes, genes expressed in specific
tissue types6 and genes belonging to the same functional category or
pathway7–9 (Fig. 1b). We identified the arrays in which each gene set
has a prominent expression signature by testing whether the expres-
sion of a statistically significant fraction of the genes in the set changed
coordinately in the array (Fig. 1c,d). In our compendium, the change
in expression of each gene in a given array is relative to the average
expression of the gene across all arrays in the relevant data set.

Gene sets reflect biological modules only approximately. Only
a subset of genes in a set may contribute to its expression signature,
and different gene sets may have similar signatures across the
arrays, owing to either an overlap between the gene sets or coregula-
tion of nonoverlapping gene sets. When several gene sets (a cluster)
have similar signatures, we extracted from this cluster a core
module, which both refines the gene composition of each gene set
and combines several related gene sets. This module more closely
reflects the genes that participate in a specific biological process, as it
consists of the genes whose expression profile corresponds to the
signature of the cluster. Overall, we identified 456 statistically sig-
nificant modules (Supplementary Note and Supplementary Fig. 1
online) that span various processes and functions, including metabo-
lism, transcription, translation, degradation, cellular and neural
signaling, growth, cell cycle, apoptosis and extracellular matrix and
cytoskeleton components.

In the second step of our analysis, we used these modules to
characterize clinical conditions according to the combination of
modules that are activated and deactivated in them. Using informa-
tion provided in the original studies, we annotated all the arrays with
263 biological and clinical conditions, including tissue and tumor
type, diagnostic and prognostic information, and molecular markers.
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For each module and each condition, we tested whether the module
was induced (or repressed) in a significant fraction of the arrays
labeled with the condition. We distinguished between ‘specific’ and
‘general’ annotations: specific annotations are evaluated within each
category, whereas general annotations are evaluated only relative to
their lack of association with arrays from the other categories. We
compiled the module-condition pairs into a global module map for
cancer (Fig. 2).

The results must be interpreted with caution, because the biological
interpretation of induction (or repression) of a module in a given
condition depends on our choice of normalization (Supplementary
Note online). In addition, interpretation may be confounded by
combining diverse data sets, each normalized separately. To address

this problem, we used annotations in a way that is strictly local to each
category (Supplementary Note online) in the final analysis step, in
which we paired modules with clinical annotations.

The module map shows that some modules (e.g., cell cycle; Fig. 3a)
are shared across multiple tumor types and may be related to general
tumorigenic processes, whereas others are more specific to the tissue
origin or progression of particular tumors. For example, modules
related to neural processes (e.g., #274 and #137) are repressed in a
subset of brain tumors (relative to other central nervous system
tumors), and an intermediate filament module (#357) is induced in
squamous cell lung carcinomas and reduced in lung adenocarcinomas
(both relative to other lung tumors), consistent with the idea that de-
differentiation processes accompany tumorigenesis. Related modules,

such as cell cycle modules (Fig. 3a), seem to
form building blocks that are used together in
different conditions. More specialized mod-
ules, such as signaling and growth regulatory
modules (Fig. 3b,c), are used in distinct
combinations by various tumors.

Conversely, the module map characterizes
each condition by a particular combination of
modules. For example, invasive hepatocellular
carcinoma (HCC) is characterized by induc-
tion of cell cycle modules and repression of
modules related to metabolism, detoxifica-
tion, the extracellular matrix and signaling
(relative to hepatitis-infected liver tissue and
noninvasive HCC). Estrogen receptor–posi-
tive breast cancer is characterized by repres-
sion of modules containing keratins and
other intermediate filaments (relative to
other breast adenocarcinomas and human
mammary epithelial cells). The map indicates
that related conditions involve related mod-
ules, albeit in distinct ways (Fig. 3d,e). For
example, various tumors of hematologic ori-
gin (Fig. 3d) involve similar immune, inflam-
mation, growth regulation and signaling
modules. The pattern of involvement sepa-
rates different tumor types and subtypes.

Characterizing conditions in terms of
modules provides important insights into
the mechanisms underlying specific malig-
nancies. For example, the growth inhibitory
module (Fig. 4) consists primarily of growth
suppressors (11 of 16) whose expression is
coordinately repressed in a subset of acute
leukemia arrays (relative to the leukemia
category; 40 arrays; P o 4 � 10�29). Some
of these genes are direct (DUSP2 (ref. 10),
DUSP4 (ref. 11), DUSP6 (ref. 12)) or indirect
(RGS3 (ref. 13), RGS4 (ref. 14)) repressors of
ERK1, an activator of cell proliferation
(Fig. 4b) known to be constitutively active
in acute leukemia10. Others (MAP3K7IP1
(also called TAB1; ref. 15) and GADD45G
(ref. 16)) are activators of the apoptosis
repressor p38 (Fig. 4b). Thus, the concerted
downregulation of these growth suppres-
sors may allow ERK1 and p38 to escape
regulation, leading to uncontrolled prolifera-
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Figure 1 Overview of the analysis procedure. (a) Composition of the 1,975 arrays in our compiled

cancer compendium according to the conditions they represent. PBMCs, peripheral blood mononuclear

cells. (b) Composition of the 2,849 gene sets in our analysis according to the source from which they

were compiled. (c) Flow chart of the different steps in our analysis. (d) Example of the analysis on an

input expression data of seven arrays, eight genes and three gene sets. Circled numbers correspond to

steps in the flow chart. In this example, gene sets 1 and 2 are significantly induced in arrays 2–5 and

thus constitute a gene set cluster, whereas gene set 3 is significantly repressed in arrays 3 and 6 and

thus constitutes its own gene set cluster. The module resulting from the first gene set cluster includes

genes 2, 3, 5, 6 and 7, as these genes contribute to the significant expression of this gene set cluster.

Although gene 4 is a member of both gene sets 1 and 2, it is not part of the module, as it did not

contribute to their significance (gene 4 is repressed in the arrays where these gene sets are significantly
induced). In the final step of the analysis, arrays are annotated with clinical conditions 1–3; for

example, array 1 is annotated with conditions 1 and 2. The set of arrays where module 1 is

significantly induced (arrays 2–5) is enriched for condition 1, and the set where module 2 is

significantly repressed is enriched for condition 3.
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Figure 2 The cancer module map: a matrix of modules (rows) versus array clinical conditions (columns), where a red (or green) entry indicates that the

arrays in which the corresponding module was significantly induced (or repressed) contained more arrays with the given annotation than would be expected

by chance. The intensity of the entries corresponds to the fraction of arrays in the module with the given annotation that were significantly induced (or

repressed). White entries indicate that both the induced and repressed arrays were significant for the given annotation. Only significant modules are shown.

A subset of significant conditions is shown; redundant conditions were removed for clarity. Only columns (rows) with two or more significant entries are

shown. The number of genes in each module and the number of arrays annotated with each condition are shown using gray bars (in log-scale). Each

condition annotation is followed by an abbreviated code of the data set in which it was analyzed and by the number of arrays with that annotation. The box

(top right) contains details for these abbreviations. Asterisks indicate general annotations. The rows and columns of the matrix were each clustered into

distinct clusters30, and the resulting clusters are indicated by vertical and horizontal lines. We manually assigned, whenever possible, a concise label to

module clusters (right; colored bars) or condition clusters (bottom; colored bars). Related conditions (or modules) are often clustered together in the module

map, but many modules are shared across conditions, indicating that tumors are characterized by combinations of a small number of shared and unique

modules. CNS, central nervous system; ECM, extracellular matrix; MMPs, matrix metalloproteinases.
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Figure 3 Combinatorial signatures in the cancer module map. Five submatrices of the full map (Fig. 2) showing rows of numbered modules organized by

conditions that show similarities (a–c) and module clusters arranged by related conditions (d,e). Each column heading is followed by the code (Fig. 2) of the

data set on which the condition was analyzed. The box at the top right of Figure 2 contains details for these abbreviations. (a) Cell cycle modules induced in

HCC, small cell lung cancer and grade-three breast cancer, repressed in several normal tissues, in chronic lymphocytic leukemia (CLL) and acute myeloid

leukemia (AML). (b) Growth regulatory modules are mostly used by hematologic malignancies. In most cases, a particular condition shows either uniform

induction or repression of most growth-modulating modules, both apoptotic and antiapoptotic. (c) Signal transduction modules representing a variety of

pathways are coregulated in various tumors. Most modules are repressed in HCC and ALL. A subset is induced in activated B-like diffuse large B-cell

lymphoma (DLBCL), and another subset is reduced in stage T1 lung adenocarcinoma. White elements indicate modules that are both induced and repressed

in the same condition, either because some module genes were induced and others repressed or because the modules were induced in certain arrays and

repressed in others from the same condition. GPCR: G protein–coupled receptors; RTK: receptor tyrosine kinase. (d) Immune system conditions use similar

modules in distinct ways. Many modules are shared across tumor types, cell types and data sets, including DLBCL, ALL, AML, CLL and follicular lymphoma.

But each condition has a unique module signature. CNS: central nervous system; ECM: extracellular matrix. (e) CNS tumors are characterized by a

combination of CNS–specific genes, immune response modules, ECM and cyotoskeletal proteins, and neural signaling modules. Lung carcinoid tumors, of
neurological origin, use similar modules.
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tion and reduced cell death. DUSP2 has been implicated in acute
leukemia10; the other genes may offer new therapeutic targets.

The steroid catabolism module (Fig. 5) primarily contains steroid
hormone enzymes (8 of 13) whose expression is repressed in a subset
of HCC and hepatic cell lines (relative to hepatitis-infected liver tissue
and HCC; 31 arrays; P o 4 � 10�8). This may indicate more than a
general reduction in metabolic processes. Expression of an additional
module (#404), consisting of steroid hormone receptors (6 of 25
module genes) and binding proteins (15 of 25), is repressed in a subset
of HCC and hepatic cell lines (relative to hepatitis-infected liver tissue
and HCC; 24 arrays; P o 2.5 � 10�6). This reduction of steroid
hormone catabolism in HCC is consistent with the fact that HCC is

significantly more prevalent in men and postmenopausal women17

and that elevated levels of serum testosterone predict an increased
HCC risk. Overall, these results suggest that an imbalance in the
generation of steroid hormones and in receiving steroid hormone
signals may have a role in hepatitis and HCC.

Other modules provide insight into a variety of tumors. For
example, the bone osteoblastic module (Fig. 6) consists of genes
associated with proliferation and differentiation of bone-building cells.
These genes are induced in 172 arrays, including a subset of breast
cancer samples (relative to other breast cancer and human mammary
epithelial cells; 37 arrays; P o 5.6 � 10�14) and a subset of nontumor
hepatitis-infected liver (relative to other hepatitis-infected liver tissue
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Figure 5 Steroid catabolism module (#505), a module that responds

significantly to one specific condition: liver tissue and tumor samples.

(a) Expression profile of genes in the steroid catabolism module. Details of

data presentation are as described for Figure 4. LiC, liver cancer. Asterisks

denote general annotations. (b) Module genes (purple) in the context of the

androgen and estrogen metabolism pathway. The pathway was adapted from

the Kyoto Encyclopedia of Genes and Genomes pathway database7, showing

only metabolic steps associated with human enzymes. Enzymes are shown

as rectangles; metabolites as circles. Steroid hormones and their catabolic

end products are highlighted in light green and light blue, respectively. Most

of the module genes are associated with catabolism of androgens and

estrogens (which occurs in the liver).

Figure 4 Growth inhibitory module (#173), a

module that responds significantly to one specific

condition: acute leukemia. (a) Expression profile

of genes in the growth inhibitory module. Shown

are all arrays in which expression of the module’s

genes changed significantly, and the direction of

change (induction or repression) in each such

array (red or green, respectively). Gray pixels

represent missing values. The arrays

corresponding to acute leukemia are indicated by

brown pixels in the top row, followed by an

abbreviated code of the data set in which they

were analyzed. Asterisks denote general

annotations. The membership of the module

genes in the two gene sets from which the
module was generated is shown (left, purple

pixels). (b) Module genes (purple) in the context

of the MAPK pathways of proliferation and

apoptosis. The pathway was compiled from

known interactions in the literature. All of the

module genes were significantly repressed in

acute leukemia, and most are known to inhibit

cell growth (bold blue border). Only DUSP2 was

previously implicated in acute leukemia; other

module genes are new potential targets.
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Figure 6 Bone osteoblastic module (#234), a module that responds significantly to multiple conditions, including breast cancer, lung cancer, HCC and ALL.

(a) Expression profile of genes in the bone osteoblastic module. Details of data presentation are as described for Figure 4. LiC, liver cancer; BC, breast

cancer; LC, lung cancer; L, leukemia. Asterisks denote general annotations. (b) Module genes in the context of the molecular pathways underlying bone

remodeling. The pathways are shown for the differentiation and matrix remodeling events (light blue arrows) of the three main cell types in bone and

cartilage: chondrocytes (top), osteoblasts (middle) and osteoclasts (bottom). The coordination and balance among the three processes results in either bone

building or resorption. The module genes (purple) are primarily associated with proliferation and differentiation of chondrocytes and osteoblasts. Even those

module genes that are related to osteoclast induction encode proteins that are typically secreted by osteoblasts. The genes include both intracellular or

membrane proteins (thin black border) and extracellular secreted ones (bold blue border), thus forming a coherent and self-sufficient autocrine module.

(c) The expression and function of 32 module genes in normal tissues based on previous immunohistochemical and in situ hybridization experiments. Almost

all (31 of 32) of the genes function in bone or cartilage (blue), and 14 are expressed primarily (pink) or uniquely (purple) in bone or cartilage. In contrast, only

8 of the genes are angiogenic (green), and another 5 genes are partly associated with blood vessels or antiangiogenic function (yellow). (d) The expression of

23 of the 32 module genes in epithelial tumors and their surrounding stroma based on previous immunohistochemical and in situ hybridization experiments.

Whereas 19 of the genes are associated with breast cancer (green) or other epithelial tumors (orange), only 4 are expressed solely in stroma (blue).
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and HCC; 47 arrays; P o 10�10). Expression of these genes is
repressed in 361 arrays, including subsets of HCC (relative to other
hepatitis-infected liver tissue and HCC; 48 arrays; P o 2 � 10�9),
a subset of ALL1 acute lymphoblastic leukemia (relative to other
acute lymphoblastic leukemia and acute myeloid leukemia; 10 arrays;
P o 9 � 10�6) and a subset of lung cancer samples (relative to other
lung cancers; 120 arrays; P o 10�33).

Bone-related clinical conditions have been associated with all of
these malignancies. In particular, bone metastasis is a key phenomenon
in breast cancer, and some breast metastases are known to be
osteoblastic18. Not all primary breast tumors activate the osteoblastic
module, consistent with the fact that many breast metastases to bone
are not osteoblastic18 and probably use different mechanisms19. Bone
metastasis is also common in lung cancer18 and was recently impli-
cated in HCC20. Finally, ALL has been associated with reduced
bone-mass density in a subpopulation of individuals21. The bone
osteoblastic module reflects these diverse phenomena and may
partially explain them. Although osteoblastic metastasis is also com-
mon in prostate cancer18, the module was not substantially expressed
in the prostate cancer samples in our compendium. As several genes
in the module that are known to be transcriptionally induced in
prostate cancer (MGP, IGF2, IL6 and GHR) are not induced in
this data set, we suspect that these arrays are uninformative about
osteoblastic metastasis.

The induction of the bone osteoblastic module in breast cancer is
particularly interesting. Previous studies suggested that breast tumors
preferentially metastasize to bone owing to a cycle of positive feedback
through reciprocal secretion of growth factors between the tumor and
bone cells18. It was previously unclear, however, whether the molecular
mechanisms necessary to initiate this cycle are present in the primary
tumor19. We found that both the secreted growth factors and the
intracellular proteins required to receive their signal were induced in
primary breast cancer tumors, suggesting that the primary tumor uses
the osteoblastic mechanism for its own paracrine proliferation. One
might suspect that the module is induced in the surrounding stroma
rather than in the tumor itself. Previous immunohistochemical and
in situ hybridization experiments (Fig. 6d) indicate that 19 of the
32 module genes are expressed in epithelial cells in tumors and some
also in metastasis of breast cancer to bone (e.g., IGF2 (ref. 18), BMP4
(ref. 18), IL6 (ref. 18), FRZB22 and activin A23). Only 4 of 32 genes, all
of which encode secreted proteins, are expressed solely in the stroma,
indicative of possible paracrine signaling between tumor and breast
stroma. This process may be subsequently substituted by signaling
between the metastasized tumor and bone stroma. Thus, this bor-
rowed module may both be innately useful to the primary tumor and
provide a mechanism for effective osteoblastic bone metastasis. This
hypothesis is consistent with recent findings on the metastatic poten-
tial of primary tumors24,25 and identifies several new targets for
further research.

The downregulation of the bone osteoblastic module in HCC, ALL
and lung cancer is also notable. There is no clear explanation for this
downregulation in lung and HCC tumors, but repression of this
growth-inducing module in the ALL bone marrow samples provides a
potential explanation for the reduced bone mass density in ALL. Dlx3
and Dlx5, two ALL-1 targets that are crucial to osteoblast proliferation
and differentiation26, are part of the module.

In conclusion, our method provides a global view of cancer and
shows that tumors can be characterized by combinations of a relatively
small number of modules. Several other methods have been proposed
for global analysis of microarray data27–29. Notably, our work, which is
the first to apply such global analysis to human data, uses existing

biological knowledge directly, in the form of gene sets and clinical
annotations. Furthermore, unlike recent meta-analysis4 of a large
compendium of cancer expression profiles, our approach focuses on
identifying modules of genes and is independent of predefined queries
(Supplementary Note online).

The results of our analysis are publicly available on a data-mining
website; the automated tool that we used to generate the analysis is
also available. This tool allows researchers to construct a module map
from any collection of gene sets and expression data in any organism
and to study new data in the context of a large compendium.
Although the quality of current annotations and normalization
procedures may limit the map’s accuracy, our examples indicate that
many phenomena are sufficiently robust to be detected using our
approach. Thus, our approach provides a valuable tool for under-
standing the molecular basis of cancer, both for specific tumors and
for tumorigenic processes in general.

METHODS
DNA microarray data set. We downloaded data available for 1,975 human

DNA microarrays from the Stanford Microarray Database and the Center for

Genomic Research at the Whitehead Institute (Supplementary Table 1 online).

We normalized the expression of each gene g in every data set separately. For

data sets generated using Affymetrix chips, we first determined the log (base 2)

of the expression value of gene g in each array (truncating to 10 expression

values that are below 10). For data sets generated using spotted cDNA chips, we

used the log-ratio (base 2) between the measured sample and the control

sample. In both types of data sets, we then normalized the (log-space)

expression value of gene g in each array relative to its average expression in

all the arrays in the same data set, by subtracting its average in that data set

from each of its expression measurements. After this normalization, the mean

value of a gene, in each data set, is zero.

Gene sets. We compiled 2,849 gene sets, obtained as follows: 1,281 from the

Gene Ontology8 hierarchy (downloaded on July 2003, version 1.320); 114 from

the Kyoto Encyclopedia of Genes and Genomes7 (downloaded on May 2003);

53 from the Gene MicroArray Pathway Profiler9 (downloaded on July 2003);

101 tissue-specific expressed gene sets6 (one gene set was defined for each array

by taking all genes above absolute expression of 400; we removed genes whose

absolute expression was 4400 in 450 of the 101 arrays); and 1,300 gene sets

obtained by clustering each of the data sets of Supplementary Table 1 online

using a published clustering method (the P-cluster algorithm27) and taking

clusters of coexpressed genes.

Identifying arrays in which the expression of gene sets changes significantly.

To identify the arrays in which each gene set was significantly induced (or

repressed), we defined the induced (or repressed) genes in each array to be

those genes whose change in expression was greater (or less) than twofold. For

each gene set and each array, we calculated the fraction of genes from that gene

set that were induced (or repressed) in that array and used the hypergeometric

distribution to calculate a P value for this fraction (compared with the null

hypothesis of choosing the same number genes at random). We corrected for

multiple tests using the false discovery rate correction with 5% false rate.

Statistical significance of array–gene set pairs. We evaluated the number of

array–gene set pairs in which the gene set was significantly induced (or

repressed) in the array (as described above). Overall, we found 299,233 such

pairs; only 14,962 would be expected by chance (P o 0.05), suggesting that the

selected gene sets are informative for the cancer compendium (Supplementary

Fig. 2 online).

Automatic identification of gene set clusters. We carried out (bottom-up)

hierarchical clustering of the gene sets in the matrix of all significant array–gene

set pairs30. This resulted in a tree in which each leaf node, corresponding to

some gene set G, is associated with a vector (indexed by arrays) that is zero

everywhere except for entries that correspond to arrays in which set G was

significantly induced (or repressed), in which case the entry contains the
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fraction (or negative fraction) of genes from set G that are induced (or

repressed) in an array a. Each internal node is associated with a vector

representing the average of all of the gene set vectors at its descendant leaves.

We annotated each interior node with the Pearson correlation between the

vectors associated with its two children in the hierarchy. We defined as a cluster

each interior node whose Pearson correlation differed by more than 0.05 from

the Pearson correlation of its parent node in the hierarchy, resulting in 577

clusters of gene sets. Such interior nodes represent points in the tree with a

large gap between the similarities in expression of the node’s children and the

similarity in expression of the node and its sibling.

Testing consistency of a gene with expression of a gene set. Given a gene set G

and a gene g, we tested whether the expression of g was consistent with the

significant changes in the expression of G. We first identified the subsets of

arrays I and R in which G was significantly induced and repressed, respectively.

We then measured the extent to which the expression of g changed by more

(or less) than twofold in arrays in I (or R) with the score

Score ðgÞ ¼
X

fa2Ijg is induced in ag
� logðpaÞ +

X

fa2Rjg is repressed in ag
� logðpaÞ;

where pa is the fraction of genes in array a that are induced (or repressed) by

more than twofold for arrays in I (or in R). This score assigns more weight

to induction in arrays where there are fewer induced genes (and respectively

for repression).

We evaluated the significance of the score for gene g with respect to the null

hypothesis where the genes in each array are randomly permuted. Under this

null hypothesis, the score for gene g is the sum of independent binary random

variables, one for each array in I and R. The random variable corresponding to

array a attains the value �log(pa) with probability pa and the value of 0 with

probability 1 � pa. Because the score for gene g in this model is a sum of

independent random variables, its mean m and variance s2 are the sum of the

means and variances, respectively, of the these variables and can be computed

analytically:

m ¼
X

a2I[R
�pa log pa

s2 ¼
X

a2I[R
pað1 � paÞ log2 pa:

Moreover, by the central limit theorem, the distribution of the score for gene

g under the null hypothesis can be closely approximated by a Gaussian distri-

bution with mean m and variance s2. We used standard methods for computing

the tail probability of a Gaussian distribution to compute the probability of

attaining a score as large as the observed score under the null hypothesis.

Deriving modules from clusters of gene sets. For each cluster of gene sets, we

defined G to be the union of the gene sets in the cluster. We then tested each

gene in G for consistency (as described above). The resulting module consists of

genes whose expression is significantly consistent with the expression of the

gene set (after false discovery rate correction for multiple hypotheses using 5%

false rate). Leave-one-out cross-validation analysis (Supplementary Note and

Supplementary Fig. 1 online) showed that 456 of the 577 gene-set clusters were

significant at P o 0.01. All further analysis was carried out only for the 456

modules derived from these 456 gene set clusters.

Enrichment of clinical annotations. To characterize conditions as a combina-

tion of activated and deactivated modules, we associated each array with the

annotations it represents, from a total of 263 clinical annotations that we

compiled based on published studies (see our project website for the complete

set of clinical annotations). We distinguished between 185 specific annotations

(present in o70% of the arrays in a given category; Fig. 1a and project

website) and 78 general annotations (present in 70% or more of the arrays in a

category). For example, ‘Stage T2’ is a specific annotation in the ‘lung cancer’

category (12.6% of samples in this category), whereas ‘lung cancer’ is a general

annotation (86% of the samples in the ‘lung cancer’ category). For each

module and each annotation, we calculated the fraction of arrays associated

with that annotation of the total number of arrays in which the module is

significantly induced (or repressed) and used the hypergeometric distribution

to calculate a P value for this fraction. For specific annotations, we only

considered arrays in the same category when computing the P value. For

general annotations, we considered all other arrays in the compendium as

background (i.e., the other arrays were marked as not having the general

annotation). In both cases, all annotations were strictly local (e.g., the lung

cancer annotation in the lung cancer category is distinct from the lung cancer

annotation in the ‘various tumors’ category and is reported separately). We

carried out a false discovery rate correction for multiple hypotheses and took

P o 0.05 to be significant in Figure 2.

GeneXPress. We carried out all analysis and visualizations in GeneXPress. This

tool can identify the arrays in which gene sets are significantly expressed, and

the clinical annotations enriched in these significant arrays, and can be used for

any input expression data and gene sets in any organism. GeneXPress is freely

available for academic use.

URLs. More detailed results, including the expression compendium, clinical

annotations that we compiled and all the significant gene set–array pairs,

viewable in GeneXPress, can be found on our project website (http://dags.

stanford.edu/cancer). The website also contains detailed views of all 456

modules in the format of Figures 4–6, which can be searched and browsed

in various ways. GeneXPress is freely available for academic use at http://

GeneXPress.stanford.edu/. All expression data used is available from the

Stanford Microarray Database (http://genome-www5.stanford.edu/Microarray/

SMD/) and the Center for Genomic Research at the Whitehead Institute

(http://www-genome.wi.mit.edu/cgi-bin/cancer/datasets.cgi).
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