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Abstract

Background: The reservoir of Plasmodium infection in humans has traditionally been defined by blood slide positivity. This
study was designed to characterize the local reservoir of infection in relation to the diverse var genes that encode the major
surface antigen of Plasmodium falciparum blood stages and underlie the parasite’s ability to establish chronic infection and
transmit from human to mosquito.

Methodology/Principal Findings: We investigated the molecular epidemiology of the var multigene family at local sites in
Gabon, Senegal and Kenya which differ in parasite prevalence and transmission intensity. 1839 distinct var gene types were
defined by sequencing DBLa domains in the three sites. Only 76 (4.1%) var types were found in more than one population
indicating spatial heterogeneity in var types across the African continent. The majority of var types appeared only once in
the population sample. Non-parametric statistical estimators predict in each population at minimum five to seven thousand
distinct var types. Similar diversity of var types was seen in sites with different parasite prevalences.

Conclusions/Significance: Var population genomics provides new insights into the epidemiology of P. falciparum in Africa
where malaria has never been conquered. In particular, we have described the extensive reservoir of infection in local
African sites and discovered a unique var population structure that can facilitate superinfection through minimal overlap in
var repertoires among parasite genomes. Our findings show that var typing as a molecular surveillance system defines the
extent of genetic complexity in the reservoir of infection to complement measures of malaria prevalence. The observed
small scale spatial diversity of var genes suggests that var genetics could greatly inform current malaria mapping
approaches and predict complex malaria population dynamics due to the import of var types to areas where no widespread
pre-existing immunity in the population exists.
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Introduction

Hundreds of millions of Plasmodium falciparum infections persist

for many months in the human population to sustain malaria

transmission where anopheline mosquito vectors are only

seasonally available. These chronic, largely undetected, infections

constitute the reservoir of infection and serve to fuel continued

malaria transmission.
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During the past era of malaria eradication the size and

persistence of the reservoir of infection were considered major

obstacles to the eradication of P. falciparum in Africa [1]. The

duration of a single infection was measured to be 150 to 200 days

using models and epidemiological observations of blood smear

data [2]. Today, with the advantage of molecular tools, we

understand that individuals in endemic areas harbor chronic P.

falciparum infections composed of several genetically distinct

haploid parasite genomes introduced by single and/or multiple

(superinfection) mosquito bites [3,4,5]. The duration of infection of

individual genotypes is influenced by age, prior exposure,

coinfection and superinfection [3,4,6]. Density-dependent regula-

tion of parasitemia has also been shown to occur among

Plasmodium spp and genotypes in coinfected semi-immune children

[3]. Considering these infection dynamics, the parasite rate

(prevalence) as defined by blood slide positivity does not accurately

describe the complexity of the reservoir of infection and yet

remains the mainstay for monitoring and evaluating malaria

control [7]. Consequently, we considered how best to characterize

the reservoir of infection in humans using parasite genetics/

population genomics.

Diversity measures based on polymorphic antigen encoding

genes, barcoding, microsatellite loci and genome-wide single

nucleotide polymorphisms [5,8,9] define the number of distinct

alleles and/or genomes per infected human, the latter termed

multiplicity of infection (MOI). They also define the estimated

number of distinct genomes in a population. This molecular

epidemiological information, while useful to evaluate changes in

transmission intensity, fails to capture any specific information

about the reservoir. As the ability of the parasite to persist by

clonal antigenic variation (i.e. achieve a chronic infection) plays a

key role in transmission from human to mosquito, we propose that

the diversity of the genes underlying this phenotype provides a

genetic fitness estimate of the reservoir, to complement existing

molecular surveillance for drug resistance mutations [10], genes

encoding vaccine antigens [11,12], and microsatellite loci [8].

P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1),

encoded by the var multigene family, is considered the major

polymorphic surface antigen of the infected erythrocyte involved

in clonal antigenic variation (reviewed in [13,14]). PfEMP1,

expressed during maturation by trophozoite (blood stage) and

early gametocyte (transmission stage) parasites [15], mediates

binding to endothelial cell receptors in the deep vasculature of host

tissues [13,14]. To achieve chronic infection by immune evasion,

parasites periodically switch PfEMP1 isoforms displayed on the

erythrocyte membrane by differential expression of up to 60

members of the var multigene family found throughout each

parasite genome [13,14,16]. This process of clonal antigenic

variation is believed to be responsible for parasite persistence and

chronic infection seen in naturally infected individuals, as depicted

in Figure 1 where a chronically-infected individual displays

successive waves of parasitemia mediated by antigenic switching.

To characterize the reservoir of infection, we investigated the

molecular epidemiology of the var multigene family in three local

African parasite populations representing a range of epidemiologic

characteristics (Table 1) with an expectation that we would see

more var diversity in high transmission sites. Bakoumba, Gabon is a

rural village of ,3000 people in the South East in an area of meso-

to hyperendemic P. falciparum. Pikine, Senegal is a suburb east of

Dakar city with ,770,000 inhabitants living in an area of

hypoendemic malaria. Kilifi, Kenya is a rural district of ,600,000

people on the East Coast, where malaria is hypo- to mesoendemic.

Var gene diversity data were collected using a previously published

population genomic framework [17]. We set out to determine i)

the extent of var gene diversity in three African sites, ii) the level of

var gene differentiation across the African continent, and iii) the

population structure of var genes in Africa.

Var genes are composed of multiple Duffy-binding-like (DBL) and

cysteine-interdomain-rich (CIDR) domains that adhere to host

tissues to enhance parasite survival and contribute to pathogenesis

[14]. DBLa, as the only domain found in nearly all var genes [13], is

the most informative molecular marker of var gene diversity. We

applied the sampling framework to survey the var DBLa domain in

29–30 natural P. falciparum isolates from each of three African

populations. Using a degenerate PCR strategy, we randomly

sampled var genes by amplifying, cloning, and sequencing

approximately 100 copies of the DBLa domain from each isolate

in the population samples [17]. Within each isolate, we eliminated

redundancy (repeated sampling of the same var gene) by defining

distinct var genes as those with less than 96% nucleotide identity to

any other DBLa sequence. At the population level, we designated

distinct ‘var’ types by clustering the var genes, again using the 96%

identity rule [17]. Previous studies have shown that DBLa
sequences share on average ,45–66% amino acid identity, and

the vast majority of sequences share ,75% amino acid identity (e.g.

[17,18]). We compared the diversity in African var DBLa sequence

data with published DBLa data from two local, non-African

populations: a cluster of Amele villages in Papua New Guinea

(PNG) [17], and the municipality of Porto Velho (and suburbs), in

the Western Amazonian state of Rondônia, Brazil [19].

Figure 1. Clonal antigenic variation and parasite persistence. Asexual P. falciparum parasitemia followed over time in a naturally infected
Puerto Rican child. The parasitemia follows a pattern of recurrent peaks that decline in amplitude with time. The parasitemia in this child, believed to
be a clone, lasted nearly 800 days. These successive peaks of parasitemia are consistent with antigenically distinct waves of parasitemia in P.
falciparum infection believed to be mediated by PfEMP1 that allow for parasite persistence [14]. The intra-host dynamics of parasitemia observed in
semi-immune children [3] and induced human infections [49] are best explained by variant-specific immunity to PfEMP1 variants encoded by the var
multigene family [50] rather than by immunity to single-copy antigen genes. Figure composed using data from [51].
doi:10.1371/journal.pone.0016629.g001
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Materials and Methods

Ethics Statement
Informed consent was obtained from all participants in the

study. All data were analyzed anonymously. For the study in

Gabon, ethical permission was obtained from the Ethics

Committee for Research in Human Medicine, International

Center for Medical Research, Gabon, and NYU School of

Medicine Institutional Review Board. The informed consent

procedure for the study consisted of a presentation of the aims of

the study to the community. Individuals (or their parents) were

asked to volunteer. At the time of collection, the purpose and

design of the study were explained to each individual and verbal

informed consent was collected by a minimum of two people. The

verbal consent process was consistent with the ethical expectation

at the time of enrollment. The ethics committees specifically

approved this procedure. For the study in Senegal, ethical

permission was obtained from the Ethics Committee of Cheikh

Anta Diop University in Dakar and NYU School of Medicine

Institutional Review Board. A verbal form of consent was chosen

by the local scientific team as they considered it to be the most

appropriate method of consent for this type of study. Verbal

informed consent was obtained by the clinician reading the

consent form to each participant. After verbal informed consent

was obtained, the clinician signed and documented consent on the

written consent form. The ethics committees specifically approved

this procedure. For the study in Kenya, ethical approval was given

by the Kenya Medical Research Institute (KEMRI) National

Ethical Review Committee and NYU School of Medicine

Institutional Review Board. Written consent was obtained from

each participant.

Study sites and populations
We compared three epidemiologically and geographically

distinct P. falciparum populations of Central Africa (Bakoumba,

Gabon), West Africa (Pikine, Senegal) and East Africa (Kilifi,

Kenya). Bakoumba, Gabon isolates were collected from volunteers

from the rural village of Bakoumba in the Haut-Ogooue Province

[20]. This village consists of around 3000 people within a 10 km

radius. Bakoumba is meso- to hyperendemic for P. falciparum with

highly seasonal transmission. The entomological inoculation rate

(EIR) during a peak transmission time has been measured as 0.83

infective bites/person/night [21], with an estimated mean EIR of

0.28 infective bites/person/night over a full year [22]. Isolates

were collected from 604 children aged between 6 months to 10

years, presenting with non-clinical (asymptomatic) malaria in May

2000 [23]. We sampled var genes from 29 of these isolates.

Pikine, Senegal isolates were collected from individuals

attending an outpatient clinic in Pikine, a suburb to the East of

Dakar city. The population of Pikine near the time of the study

was around 770,000 people living within a 10 km radius. In this

area, malaria is hypoendemic with seasonal transmission between

Table 1. Characteristics of the populations surveyed.

Survey Site
Date of
collection

Annual EIR
(infective
bites/person/
year)a

Human
pop.
sizeb

Clinical
presentation

Age of
individuals
surveyed

Age-
specific
pop.
sizec

Age-specific Pf
prevalenced

Age-
specific
mean
MOIe

Total # of
genomes in
the age-
specific pop.f

Bakoumba,
Gabon

2000 102 3,000 Asymptomatic 6 months
- 10 years

848 51.7% 2 877

Pikine, Senegal 2000–2005 0.014–0.86 768,826 Uncomplicated
malaria, outpatient.

5 years and
older

635,514 3.6% 1.42 32,487

Kilifi, Kenya 2002 0.0–53 350,000 Non-severe malaria,
hospitalized

2 to 104
months

106,784 19% 2.32 47,070

Amele, Papua
New Guinea
[17]

1999 44–293 5,300 Asymptomatic 6 months
– 11 years

2153 37.4% 1.82 1466

Porto Velho,
Brazil [19,31]

2001–2006 10 380,884 Asymptomatic to
acute, non-severe

Not specified 380,884 0.46% 1.79 3136

Characteristics of the populations surveyed are listed in this table. For comparison, population characteristics corresponding to the Amele and Porto Velho published
datasets are included. The population level data are estimated from published surveys and/or calculated as described:
a. Sources for annual Entomological Inoculation Rate (EIR): Bakoumba [22]; Pikine [24]; Kilifi [27]; Amele [52]; Porto Velho [53]. EIR reported as daily rates have been
converted to annual rates by multiplying by 365. The Amele EIR estimate is specific to P. falciparum and excludes P. vivax infected bites.
b. Sources for population (pop.) estimates: Bakoumba [54]; Pikine (2002 Census) [55]; Kilifi (extrapolation based on demographic surveillance population) [56]; Amele
(1987 survey) [57]; Porto Velho (2004 Census) [58].
c. Age-specific population sizes were estimated by multiplying the age-structured population frequencies by the total population size. Where the age-specific
population in this study overlapped only partially with reported age groups, the proportion of overlap within the age group was used for the calculation. Country-level
populations frequencies for Gabon, Kenya, and Senegal were calculated from reference [59]. For the Amele population, population frequencies were calculated from the
age structure of the surveyed individuals in reference [60], reported to match the age structure of the population. For the Porto Velho, all age groups were included.
d. Sources for age-specific P. falciparum (Pf) prevalence estimates: Bakoumba [61]; Pikine [24]; Kilifi (2002 estimate) [56]; Amele [62]; Porto Velho [63].
e. Age-specific multiplicity of infection (MOI) estimates were derived from the following sources: Bakoumba [20]; Pikine [64] scoring multiple infections as double
infections; Kilifi [65] simple average of the two sites; Amele [48] using all three markers; Porto Velho [66] using all three markers and counting multiple infections as
double infections. These estimates of MOI reflect the age-range from which the samples were taken and are used to project the total circulating genomes in each
population. They do not reflect the mean MOI for the study sites across all age groups.
f. Estimated total number of genomes in the age-specific population was calculated as:

number of genomes~age specific human population size|P:falciparum prevalence|mean MOI

doi:10.1371/journal.pone.0016629.t001
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August and December, and an estimated annual EIR range of

0.014 to 0.86 infective bites/person/year (averages to a daily EIR

of 0.00004 to 0.002 infective bites/person/night) [24]. Isolates

were collected as part of malaria treatment studies from adults and

children 5 years of age or greater presenting with symptoms

consistent with mild malaria including fever, chills, and headache,

and a positive malaria blood smear [25]. Samples were collected

between 2000 and 2005. We sampled var genes from 29 of these

isolates.

Kilifi, Kenya isolates were collected from individuals from the

rural District of Kilifi, located in the Coast Province of Kenya.

Kilifi District, at the time of the study, had a population of around

600,000 people living in rural villages within 75 km of each other.

The estimated population from which the study participants came

was around 350,000 people at the time of the study. Malaria is

endemic in the area, with two annual peaks of transmission and

subsequent disease in May to July, and in November [26]. Mean

daily EIR varies by specific location, ranging from 0.000–0.145

infective bites/person/night [27]. Blood samples were taken from

children (aged 2-104 months) admitted to the pediatric ward of the

Kilifi District Hospital with a final diagnosis of non-severe malaria

(no prostration, no respiratory distress, no prolonged seizures or

coma). Samples were collected in 2002. We sampled var genes

from 30 of these isolates.

We selected for inclusion in this study isolates identified as

single-genome infections by genotyping of Merozoite Surface

Protein 2 (msp2) [28]. This biased the investigation towards

younger children in the study populations. In summary, Kilifi

isolates were from hospitalized, non-severe clinical cases from a

large rural catchment with transmission ranging from low to high;

Pikine isolates were from outpatient, non-severe clinical cases from

an urban population with low transmission; and Bakoumba

isolates were from asymptomatic, non-clinical cases from a

smaller, rural catchment with high transmission. Together, these

populations represent in a wide range of malaria epidemiologies in

Africa.

DNA extraction and genotyping
Genomic DNA for each isolate was obtained by extraction of

dried blood spots or whole blood with the QIAamp DNA Blood

Mini Kit (Qiagen) according to the manufacturer’s instructions.

Isolates used for var gene sampling were identified as single

genotype infections by genotyping of msp2 using PCR amplifica-

tion and restriction enzyme digestion [28]. In addition, we

genotyped each isolate at 12 microsatellite repeat loci amplified

by PCR with fluorescent-labeled primers [29]. Microsatellite

alleles were differentiated by DNA fragment length as determined

on an ABI 3700 sequencer and scored using GeneMapper

software (Applied Biosystems). Some field isolates used in the

study contained two genotypes when both methods were used.

These methods confirmed that no two African isolates in the study

were genotypically identical.

High throughput var DBLa sequencing of African isolates
Var gene sampling based on the DBLa domain was performed

as described elsewhere [17]. Briefly, DBLa domains were

amplified from individual isolate genomic DNA samples using

degenerate primers to blocks B, D, and/or H [30]. For eight of the

29 Bakoumba isolates, DBLa domains were amplified using

primers to blocks D and H (Fwd-AGRAGYTTYGCN-

GAYATHGG Rev-AACCAYCTYAARTAYTGNGG) with

PCR conditions as published [17]. For the remaining 21

Bakoumba isolates, DBLa domains were amplified using primers

to blocks B and H (Fwd-GCMTGYGCDCCRTWYMGAMG

Rev-TCKGCCCATTCYTCRAACCA; primer sequences pro-

vided by J. Smith). PCR conditions for these primers were as

follows: 2 ml isolate genomic DNA, 1x Ampli Taq Gold reaction

buffer (Applied Biosystems), 2.5 mM MgCl2, 0.15 mM dNTPs, 20

pmoles of each primer, 2.5 Units Ampli Taq Gold (Applied

Biosystems). PCR cycling was carried out on a Perkin Elmer 9600

thermal cycler and involved 1 cycle of 95uC for 10 mins; 35 cycles

of 95uC for 5 secs, 50uC for 20 secs and 60uC for 45 secs; 1 cycle

of 60uC for 2 mins. For the Kilifi and Pikine isolates, DBLa
domains were amplified using the primers to blocks B and H noted

above. PCR conditions were 1 ml genomic DNA, 0.15 mM dNTPs,

2.5 mM MgCl2, 20 pmoles of each primer, 2.5 units Hotmaster Taq

DNA Polymerase (Eppendorf). Reactions were performed in an

Eppendorf EP Gradient Mastercycler thermal cycler at 94uC for

2 min; 35 cycles of 94uC for 5 sec, 50uC for 20 sec, and 60uC for

45 sec; and a final cycle at 60uC for 2 min. PCR bands of between

450–700 bp were purified using agarose gel electrophoresis and

extraction with the Qiaquick Gel Extraction kit (Qiagen) according

to manufacturer’s instructions. PCR products were cloned and at

least 96 clones sequenced with Universal forward and reverse

primers as described previously [17]. Sequences from Gabon have

been deposited in GenBank under the following accession numbers:

DQ134044-6; DQ134086-92; DQ134281-2; DQ134514-5181;

DQ135183-232; DQ135243-8; DQ135261-8; DQ135349-51;

DQ135354; DQ135382; DQ135400; DQ135406-7; DQ135409-

22; DQ135426-41; DQ135444-48; DQ135460-597. Sequences

from Kilifi and Pikine have been deposited under the accession

numbers HQ732288-HQ733853.

Var sequence data from Papua New Guinea and Brazil
Var sequence data from all 30 isolates comprising the ‘local

population’ from Amele, Papua New Guinea [17] were down-

loaded from GenBank. Accession numbers for downloaded Amele

sequences are listed in Table S1. Var sequence data from 42

isolates from Porto Velho (and suburbs), Brazil [19,31] were

downloaded from the supplementary online file Supplemental

Table 4 (applic6.txt) in [19]. Of the 43 Porto Velho isolates

described [19], we excluded isolate S20 collected in 1985 and

included the remaining 42 isolates collected from 2001–2006. A

list of the 42 isolates included in the analysis can be found in Table

S2. These sequence data encompass a region spanning the semi-

conserved blocks D and H of the DBLa domain.

Var sequence analysis
We have previously published our framework for analyzing var

sequence data [17]. For comparability, block B-H var sequences

were trimmed at the 59 end before analysis so that only the block

D-H region was compared. Quality controlled var gene

sequences were aligned at 96% sequence identity using

Sequencher 4.6 software (Genecodes) to remove redundancy

among the reads from each isolate. We classified var sequences

into distinct types through alignment using Sequencher 4.6 with

a 96% sequence identity cutoff to identify matching sequences

among isolates.

Microsatellite Analysis
Twelve microsatellite markers were genotyped in P. falciparum

isolates from Kilifi, Kenya (n = 47) Pikine, Senegal (n = 30);

Bakoumba, Gabon (n = 24) were genotyped as previously

described [29]. The isolates used for microsatellite analysis

included 30 Kilifi isolates, 29 Pikine isolates, and 24 Bakoumba

isolates used in the var gene analysis. Microsatellite haplotypes

were defined for each parasite isolate and used for population

genetic analysis. Microsatellite alleles were scored using Gene-

P. falciparum var Gene Diversity in Africa
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Mapper software (Applied Biosystems). For the population genetic

analyses of microsatellites we used the software program FSTAT

[32].

Cumulative diversity curves
Smoothed cumulative diversity curves, analogous to species

accumulation curves, were plotted on Microsoft Excel with

averaged data generated from EstimateS 8.0 software [33] set to

50 runs.

Richness estimates
Non-parametric statistical estimates of richness, Chao1 and

Abundance-based Coverage Estimator (ACE), and 95% confi-

dence intervals were calculated using EstimateS 8.0 [33]. The

Chao1 statistic [34] estimates the total number of types in a

population using frequency data on types seen once only and types

seen twice only. While the Chao1 estimator relies on singleton and

doubleton data to estimate unseen species, the ACE estimator [35]

utilizes all frequency data, divided into abundant types and rare

types. We applied a cutoff value for rare groups of 10 as suggested

[36]. Chao1 estimates were derived as a lower-bound estimate of

richness, whereas ACE better approximates a point estimate of

richness [36]. In the setting of equal probability of distribution and

sampling of types, the Chao1 estimator yield a point estimate of

richness. These estimators cannot predict a probable maximum

richness. Curves depicting the stability of richness estimates with

sample size were calculated using EstimateS [33].

Frequency plots and rank abundance curves
Frequency plots and rank abundance curves [37] were

tabulated and plotted using Microsoft Excel.

Estimates of the number of genomes in survey
populations

An approximation of the number of circulating genomes in a

survey population was calculated as follows:

number of genomes~human population size|

parasite prevalence|

mean multiplicity of infection(MOI)

In this case, the survey population refers to the age-specific

population from which P. falciparum isolates were taken, and the

population size reflects the estimated population of that age group.

This survey population size does differentiate between symptom-

atic and asymptomatic individuals, but rather includes all

individuals of the specified age range. Population size estimates

for each geographic unit were obtained from multiple sources as

indicated in the Table 1. These population sizes were then

adjusted to reflect the age-group specific population using

published data on the age structure of each population. Sources

for estimates of parasite prevalence and of MOI are referenced in

Table 1. Data on parasite prevalence and MOI were selected to

match to specific age groups and geographic locations surveyed

where possible.

Estimates of further sampling efforts
Using the ACE estimate of var type richness and a statistical

predictor of the number of new species or types encountered in

further sampling of a population [38], we estimated the proportion

of var types in a population that will be identified given a range of

sample sizes in each population. The model uses frequency

information from ‘rare’ types, and we have used the suggested

frequency cutoff of 10 for rare types [36]. The projections account

for sampling of multiple infections in the population. Calculations

were performed using the ‘Multinomial Model’ implemented in

the software package SPADE [36], and plotted on Microsoft

Excel.

Results

Sampling depth
For each African isolate, the sampling yielded high quality DNA

sequence data for a median of 83 (range 12–181) var clones. This

sampling provided approximately 50% (median 24, range 3–47

unique var DBLa D–H tags) of the estimated 50–60 var genes per

genome (Table 2). We measured depth of var gene sampling in

each population with a cumulative diversity curve [17] depicting

the rate at which new var types were identified with the collection

of unique sequences from each isolate. Despite identifying ,700

unique var sequences per African population, many var types

remained undiscovered in each population as indicated by failure

of the curves to plateau (Figure 2A). In contrast, sampling of the

non-African populations of Amele and Porto Velho was more

complete (Figure 2A).

Table 2. Var sampling and estimated var type richness in African and non-African populations.

Site
Genomes
sampled

Unique var
DBLa tags
sampled

Observed var
types

No. of var types
found in only 1
isolate (%)

Chao1 richness
estimate (95% CI)

ACE richness
estimate

Proportion of total
types sampleda

Bakoumba, Gabon 29 787 666 597 (90%) 4540 (3452–6053) 5557 15%

Pikine, Senegal 29 672 603 554 (92%) 5116 (3712–7156) 4844 12%

Kilifi, Kenya 30 699 656 622 (95%) 7565 (5292–10951) 8028 9%

Amele, Papua New
Guinea [17]

30 452 180 103 (57%) 369 (290–506) 370 49%

Porto Velho, Brazil
[19,31]

42 443 140 59 (42%) 232 (186–332) 205 60%

For each population, the total number of genomes sampled, the non-redundant DBLa block D-H tags recovered, and the number of distinct var types identified are
summarized. Estimates of richness (total var types) are listed using Chao1 and ACE estimators. Figures for Amele and Porto Velho were derived using published
sequence data.
a. Calculated as follows: proportion sampled~

observed vartypes

Chao1 richness estimate
:

doi:10.1371/journal.pone.0016629.t002
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Proportion of genomes surveyed
To determine the proportion of P. falciparum genomes surveyed

in each population, we used parameter estimates from the

literature to calculate the number of circulating P. falciparum

genomes in each age-specific population:

circulating genomes~age specific human population size|

parasite prevalence|mean MOI

While population size and parasite prevalence varied greatly

among populations, overall we sampled a minority of the

circulating P. falciparum genomes in each population (Table 1).

We estimated that in Bakoumba we sampled 29 of 877 circulating

genomes (3.3%); in Pikine, 29 of 32487 genomes (0.09%); and in

Kilifi, 30 of 47070 genomes (0.06%). Correspondingly, in Amele

[17], 30 of an estimated 1446 parasite genomes (2.0%) were

sampled, and in Porto Velho [19], 42 of an estimated 3136

genomes (1.3%) were sampled (Table 1).

Estimates of var richness
Due to this shallow sampling, we applied statistical estimators

designed for incompletely sampled data sets to estimate var richness

(the total number of var types in the population). Var gene diversity

was found to be high in all three African parasite populations using

Figure 2. Diversity and sharing of var types among African and non-African populations. A) Cumulative diversity curves for each of the
five populations. These averaged curves plot the cumulative number of var types observed with successive sampling of var sequences. A well-
sampled population will show a curve that levels off and approaches an asymptote, that would approximate the total number of types in the
population. The curves from the three African populations (Bakoumba, Pikine, Kilifi) did not show evidence of leveling off, in contrast to the curves
from Amele, Papua New Guinea [17] or Porto Velho, Brazil [19]. Sampling of the African populations has not yet begun to approach the limits of
diversity. B) Sharing of var types among the three African population samples. Between 26 and 41 var types were shared among any two population
samples; only 10 var types were found in all three populations. C) The majority of var types in each continent were not found in the other continents.
Only 5 var types were found in all three continents. Samples from Bakoumba, Pikine, and Kilifi represent Africa, samples from Amele represent Asia-
Pacific, and samples from Porto Velho represent the Americas.
doi:10.1371/journal.pone.0016629.g002
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the Chao1 non-parametric statistical estimator, suitable for data

sets with numerous rare types [34]. The richness estimates

considered the age and clinical symptoms of each human

population. We estimated 4540 var types in the Bakoumba

population, 5116 types in Pikine, and 7565 types in Kilifi. In

contrast, a log-order fewer var types were projected in the non-

African populations: 369 in Amele (Papua New Guinea) and 232

in Porto Velho (Brazil). Projections using another non-parametric

estimator (Abundance Coverage Estimator) yielded similar results

(Table 2).

Both Bakoumba and Amele represent surveys of asymptomatic

children in small (,10 km diameter), high transmission villages. A

comparison of data from these two sites revealed considerably

greater local var diversity specific to Africa. In Amele nearly half of

the ,400 projected var types were identified after sampling 30

genomes, whereas a similar sampling effort in Bakoumba yielded

only 15% of the ,4500 projected var types (Table 2). It follows

that nearly a log-order more genomes must be sampled in

Bakoumba compared to Amele to fully catalogue local var diversity

(Figure S1). The references cited in Figure S1 and in other

Supporting Information figures and tables are listed in Text S1.

Geographic differentiation of var types and microsatellite
markers

Minimal sharing of var types was observed among the three

African populations (Figure 2B) suggesting spatial diversity. Of the

1839 African var types sampled, 66 (3.6%) were shared between

any two sites and only 10 (0.5%) were found in all three sites.

Genotyping of microsatellite repeat markers [29] in these samples

demonstrated evidence of geographic differentiation at the

genome-wide level between West Africa and East/Central Africa.

Each parasite isolate had a unique microsatellite haplotype, but

there was overlap among haplotypes (ie: matching alleles at one or

more loci). The microsatellite diversity statistics are shown in

Table S3. Analysis of the 3 African populations revealed no

significant differentiation among the Kilifi and Bakoumba

populations as measured by Wrights FST (FST = 0.019) (Table

S4). However, Pikine and Kilifi populations were significantly

differentiated (FST = 0.039; P,0.01) and Pikine and Bakoumba

showed low levels of differentiation (FST = 0.019) which did not

reach statistical significance. When grouped together, Kilifi and

Bakoumba populations remained significantly differentiated from

Pikine (FST = 0.033; P,0.01). While these data together suggest

geographic differentiation of var genes within Africa, we have

interpreted this observation with care as the paucity of shared var

types may simply reflect shallow sampling in any site (Figure S2).

Comparisons across continents revealed few shared var types

between African sites and the well-sampled Amele or Porto Velho

sites (Figure 2C) demonstrating larger scale geographic variation in

var genes. Two of the shared var types have high sequence

homology with the previously described unusual semi-conserved

var gene var1CSA found in most parasite isolates [13] (Table S5).

Var gene population structure
The population structure of var genes in Africa, as defined by

organization of var gene repertoires within and among isolates,

differed greatly from that observed in PNG or Brazil (Figures 3

and 4). Within a local African population, the majority of var types

were rare, i.e. identified in only one of the 29–30 isolates sampled.

In contrast, there were fewer rare types and considerable overlap

in var repertoires in local Amele and Porto Velho parasite

populations. It is noteworthy that the three African populations

showed similar patterns of abundance (predominantly rare types)

(Figure S3) despite marked differences in transmission and

epidemiology.

Comparison of var diversity with malariometric indices
Var diversity data was compared with standard malariometric

indices such as prevalence of a positive blood smear and

entomological inoculation rate (EIR), i.e. the number of bites by

infectious mosquitoes received per person per year (Figure 5). We

observed high var type richness throughout a range of parasite

prevalence and transmission intensities in the African populations.

Across continents, despite similar transmission levels and parasite

prevalence in Amele and Bakoumba, large differences in var type

richness were seen. Conversely, despite large differences in

Figure 3. Frequency distribution of var types in the five population samples. Bakoumba, Kilifi, Pikine, Amele, and Porto Velho. In
parenthesis next to each population is the number of isolates (n) sampled from the population. On the horizontal axis is the frequency class (in
number of isolates) for each var type. The vertical axis depicts the number of var types found in each frequency class. For example, in the Kilifi dataset
622 var types were found in one isolate; 28 var types were each found in two isolates, etc. In the African populations, the overwhelming majority of
var types were found in only one isolate. Differences in frequency distribution of var sequences were statistically significant by x2 analysis (p,0.0001)
(Table S6).
doi:10.1371/journal.pone.0016629.g003
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transmission and parasite prevalence, Amele and Porto Velho

displayed similar var richness that was an order of magnitude lower

than in the African populations. Strikingly, no correlation existed

between var richness and prevalence, or var richness and EIR

among the sites. The finding of high var type richness in low

prevalence/low transmission settings such as Pikine demonstrates

that var genetics can quantitatively discern complexity in the

parasite reservoir.

Discussion

The goal of any malaria elimination campaign is to reduce the

reservoir of malaria infection in humans to zero locally. Success

towards elimination would be monitored by measuring reductions

in malaria transmission intensity using both EIR [7] and antigen-

specific serological methods [39]. Reductions in the size of the

reservoir of infection in humans would be monitored by blood

smear positivity [7]. This measure is well known to be insensitive

to changes in transmission intensity when parasite prevalence or

rates reach 1 to 5% [7]. It also does not identify the extent of

diversity of the reservoir nor the existence of multiple genomes per

host. Similarly, more sensitive species-specific diagnostic methods

currently in development will not capture this information.

Current efforts in malaria genomics have neglected to analyze

the reservoir of infection.

Here we present the first study to explore the reservoir of

infection in local parasite populations, through the lens of the

diversity of the major surface antigen of the blood stage of P.

falciparum. We have focused on the var genes as a measure of

parasite fitness due to their role in both establishing chronic P.

falciparum infections and promoting transmission to the mosquito.

Our choice of this antigen fits the well-established microbiological

paradigm that global surveillance of any antigenically diverse

pathogen (e.g Influenza A, HIV-1) focuses on documenting

diversity of the major surface antigen involved in immune evasion.

A detailed analysis of var genetics within local African sites

compared to previously published data from local sites in PNG

and Brazil was completed. Analysis of 2158 unique var sequences

from 88 African isolates did not reveal the limit to var richness. We

estimate var richness in each local African population to be five to

seven thousand types. These are likely to be underestimates for

several reasons including limited sampling (Figure S4); Chao1

estimates representing a lower bound of richness [34]; greater

diversity when entire var genes are analyzed; and observed fine

spatial heterogeneity such as that seen in plant communities [40]

resulting in non-representative sampling. The richness may be

even higher within the general population of each site if the var

types seen within an age-restricted subset differ from those in the

population at large. Data presented in Figure 5 show that the

depth of diversity affords greater sensitivity to define the reservoir

of infection and measure incremental reductions in the size of the

reservoir with control, particularly in the African sites, compared

to parasite prevalence. Clearly, this extensive variation presents an

opportunity for parasite surveillance, although a major challenge

to vaccine design.

The genomic var diversity data presented complement those

previously reported as our study has focused on local parasite

populations. We showed in the past that high worldwide var

Figure 4. Organization of var genes in Africa (Bakoumba, Kilifi, Pikine), PNG (Amele) and Brazil (Porto Velho). Within each labeled
population, columns represent individual parasite isolates, and the black boxes represent var genes found in that isolate. Black boxes at the top of
Figure 4 represent rare var types (found only in one isolate). Black boxes in the lower portion of Figure 4 depict var types that were found in more
than one isolate within a population. For var types found in more than one isolate, each row represents a distinct type within the population. The key
at the bottom-left of Figure 4 depicts frequency (in number of isolates) with which a particular var type was found in the population sample. Var
types found more frequently were placed towards the bottom of the figure. White space represents an unknown number of var types that were not
sequenced. Note that the amount of whitespace is not associated with numbers of genes missing, but was necessary to demonstrate sharing among
repertoires. There was greater sharing of var types among isolates in the non-African populations compared to the African populations. Among the
African populations, there appears to be more var type sharing in the Bakoumba population.
doi:10.1371/journal.pone.0016629.g004
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diversity existed by comparing Amele (a local PNG population)

with a global dataset [17]. Herein we describe high var diversity in

local African populations, greatly exceeding that in local PNG or

South American populations by at least an order of magnitude.

Supporting our observations, others have described extensive local

African var diversity in studies of severe malaria, although these

studies mostly analyzed transcribed var genes rather than genomic

var genes that constitute the reservoir (e.g. [41,42]). The extent of

var diversity in local African parasite populations compared to

PNG and South America is consistent to that seen for genome-

wide SNPs, microsatellites and mitochondrial genome diversity

data, albeit with greater diversity in the var system [8,43,44]. This

is best explained by the long population history and documented

high recombination rates of P. falciparum in Africa [44].

The observed spatial diversity in var types warrants follow up as

such geographic variation could be extremely important in the

maintenance of diversity, as is the case for plant species [40]. How

var gene variation exists in space and time needs to be elucidated

by appropriate sampling and next-generation sequencing. In

addition, the observed small scale spatial diversity of var genes

suggests that var genetics could greatly inform current malaria

mapping approaches [45] as well as predict complex malaria

population dynamics due to the import of var types to areas where

there is no widespread pre-existing immunity in the population.

Presently, limited var gene data are available from the P. falciparum

genome sequencing projects, and planned 3X coverage for the

majority of genomes is insufficient for assembly of the recombino-

genic telomeric regions where most var genes reside [46]. Despite

next-generation sequencing methods, var genes have largely been

ignored due to these assembly issues. This seems extraordinary

given their importance for parasite survival. Our African data

suggest that we would need to sequence the var genes of hundreds of

genomes to observe the full extent of var DBLa diversity in one local

population (Figure S1). These data also establish the scale of the

next generation sequencing effort and the requirement for high

density spatial sampling in a few endemic areas.

Figure 5. Relationship between var richness estimates and malariometric indices. For each population sampled, var richness estimated
using the Chao1 equation is plotted against A) parasite prevalence and B) transmission as represented by entomological inoculation rate (EIR). We
have used published parasite prevalence and EIR figures which are listed in Table 1. Where EIR has been reported as a range, we have plotted the
midpoint of the range. The bars above and below each point represent the 95% confidence interval of the Chao1 estimate. Despite differences in
transmission intensity and parasite prevalence, the local African populations all exhibited high estimates of var richness, roughly a log-order greater
than the non-African populations.
doi:10.1371/journal.pone.0016629.g005
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Figure 3 and 4 present the first comparative analysis of the

population structure of the var multigene family in multiple local

populations. Despite different epidemiologies in the African

populations, var type frequency distributions (Figure 3) and levels

of repertoire overlap (Figure 4) appeared essentially the same but

significantly different from local PNG and South American

populations. Indeed, negligible var repertoire overlap was seen

within any of three local African settings indicating that

reinfected individuals would be more likely to encounter

parasites with repertoires of var types to which they lack

immunity. We propose that this lack of var repertoire overlap

in parasite genomes within each African site favors superinfec-

tion and persistence in a semi-immune host. This observation

can explain why semi-immune African children harbor multiple

parasite genomes (peak mean MOI of 5 in children 3–7 years

old) and the number of genomes reduces as children become

more immune [5].

Immense var gene diversity and the observed lack of repertoire

overlap in Africa pose a great challenge to malaria control and

elimination in that immunity to infection only develops after many

exposures which may be due to the numerous (antigenically

distinct) var types in each population. Furthermore, the extent of

overlap among the var repertoires will determine cross-immunity

in the host population to distinct parasite genomes. Consequently,

levels of cross-immunity would be higher in PNG and South

American sites compared to African sites. Finally, the low

repertoire overlap in Africa demonstrates the enormous potential

for outcrossing in these parasite populations [47,48] to quickly

generate further genomic diversity of var repertoires unless

elimination strategies are implemented and sustained.

We observed high var diversity in both low and high prevalence

sites in Africa. This striking lack of correlation between prevalence

and var diversity shows that var typing provides a complementary

measure of the reservoir of infection to parasite prevalence. We

propose that this molecular epidemiological surveillance system

will prove particularly useful in monitoring incremental changes in

the population structure and size of the reservoir of infection at low

parasite prevalence in the new era of malaria eradication.

Thus, we conclude that var population genomics provides new

insights into the epidemiology of P. falciparum in Africa where

malaria has never been conquered. In particular, we have been

able to describe the nature and extensive size of the reservoir of

infection in local African sites as well as discover a unique var

population structure that can facilitate superinfection with

minimal overlap among var repertoires.

Supporting Information

Figure S1 The yield of further var sampling efforts. The

predicted proportion of total types observed was plotted as a

function of sample size, using a non-parametric estimator [1]

modeled on data from Bakoumba, Gabon and Amele, Papua

New Guinea. Applying our present framework for sampling,

we would need to sample 320 isolates to achieve 80% coverage

of var types in the surveyed age group in Bakoumba, Gabon. In

contrast, in Amele, PNG a sample of 40 isolates would suffice

to achieve similar coverage. It is clear that to achieve similar

coverage of var types in Africa and PNG requires vastly greater

sampling effort in African populations. These projections were

based on sampling of all parasitemic individuals, and not

limited only to those with single clone infections. Application

of next generation sequencing technologies may result in a

higher yield of var sequences per isolate, and decrease the total

number of isolates needed; however sampling in Africa would

still require much greater number of isolates as compared to

PNG.

(TIF)

Figure S2 Potential effect of sampling depth on appear-
ance of differentiation. Hypothetical sampling of three identical

populations, each containing the same highly diverse set of 1000

distinct var types. A) A random sample of 10% (100 types) is taken

from each of the three populations. B) Assuming equal probability of

sampling each var type, the resulting 10% samples from each

population would demonstrate few var types shared between

populations, even though the composition of each population is

identical. C) A random sample of 80% (800 types) is taken from each

of the three populations. D) If 80% of each population is sampled,

the samples would display greater sharing of var types and would

more closely resemble the true relationship among the populations

(D). This exercise depicts one scenario where shallow sampling of

populations may give the appearance of differentiation. Outcomes

will vary with differences in total diversity, distribution of diversity,

and sharing in the populations compared.

(TIF)

Figure S3 Var rank abundance of African and non-
African populations. For each population, the relative

abundance of each var type was plotted against the abundance

rank of that var type. Relative abundance refers to the proportion

of the total var sequences in the population sample. The slope of

the curve reflects the evenness of the relative abundances of the var

types sampled. A steep curve, as seen in Amele, denotes a more

heterogeneous distribution of types.

(TIF)

Figure S4 Stability of richness estimators with sample
size. In this figure, averaged Chao1 and ACE richness estimates

were plotted against the number of var genes sampled for each

population. Estimates of richness for the African populations

(Kilifi, Pikine, Bakoumba) were a log-order of magnitude greater

than those of the S. American (Porto Velho) or PNG (Amele)

populations. Richness estimates demonstrated stable increases

(slope of curve) with greater sampling [2].

(TIF)

Table S1 List of accession numbers for Amele sequenc-
es used in the analysis. GenBank Accession numbers for the

460 Amele DBLa sequences used in this analysis [3].

(DOC)

Table S2 List of Porto Velho isolates used in the
analysis. DBLa sequences from 42 Porto Velho isolates [4,5]

used in this analysis. Sequence data was downloaded from the

supplementary online file Supplemental Table 4 (applic6.txt) in

reference [4].

(DOC)

Table S3 Allelic diversity of African local populations
based on analysis of 12 microsatellite loci. Kilifi was the

most diverse parasite population, followed by Bakoumba and

Pikine. n = number of samples, SE = standard error.

(DOC)

Table S4 Geographic differentiation of African local
populations based on analysis of 12 microsatellite loci.
Wrights FST values for population comparisons by microsatellite

alleles calculated using FSTAT [6].

(DOC)
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Table S5 African var types shared across populations.
From the datasets analyzed, this table lists the African var types

also found in Amele and/or Porto Velho, as well as var types found

in all three African populations. Under ‘Accession Number,’ a

representative African sequence is listed. The table indicates the

populations in which each type was found. Two shared var types,

DQ135232 and DQ135587, demonstrated high homology to

var1CSA, an unusual semi-conserved var gene [7]. No common

sequences matched the conserved var gene var2csa, however the

primers were not designed to amplify this unique gene.

(DOC)

Table S6 Chi-square test on the distribution var
sequence frequencies among the five populations.
Differences in frequency distribution among the five populations

are statistically significant by x2 analysis (x2 = 1152; p,0.0001).

(DOC)

Text S1 Supporting references.

(DOC)
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