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Klebsiella pneumoniae is a leading cause of pneumonia and septicemia across the

world. The rapid emergence of multidrug-resistant K. pneumoniae strains necessitates

the discovery of effective drugs against this notorious pathogen. However, there is

a dearth of knowledge on the mechanisms by which this deadly pathogen subverts

host cellular machinery. To fill this knowledge gap, our study attempts to identify the

potential mechanisms of host cell subversion by building a K. pneumoniae–human

interactome based on rigorous computational methodology. The putative host targets

inferred from the predicted interactome were found to be functionally enriched in the

host’s immune surveillance system and allied functions like apoptosis, hypoxia, etc.

A multifunctionality-based scoring system revealed P53 as the most multifunctional

protein among host targets accompanied by HIF1A and STAT1. Moreover, mining

of host protein–protein interaction (PPI) network revealed that host targets interact

among themselves to form a network (TTPPI), where P53 and CDC5L occupy a

central position. The TTPPI is composed of several inter complex interactions which

indicate that K. pneumoniae might disrupt functional coordination between these protein

complexes through targeting of P53 and CDC5L. Furthermore, we identified four

pivotal K. pneumoniae-targeted transcription factors (TTFs) that are part of TTPPI and

are involved in generating host’s transcriptional response to K. pneumoniae-mediated

sepsis. In a nutshell, our study identifies some of the pivotal molecular targets of

K. pneumoniae which primarily correlate to the physiological response of host during

K. pneumoniae-mediated sepsis.

Keywords: pathogen–host interaction, biomolecular network, host cell hijacking, p53 signaling cascade, immune

surveillance machinery

INTRODUCTION

Klebsiella pneumoniae is a nosocomial pathogen that can cause a wide repertoire of infections,
including pneumonia (Prince et al., 1997), sepsis (Cryz et al., 1984; Karabinis et al., 2004),
meningitis (Saccente, 1999; Wu et al., 2009), bacteremia (Stotka and Rupp, 1991; Ko et al., 2002),
urinary tract infection (UTI) (Stotka and Rupp, 1991), and pyogenic liver abscesses (Chung et al.,
2007; Wu et al., 2009; Siu et al., 2012; Lin et al., 2013). K. pneumoniae accounts for 5–20% of
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bacterial sepsis worldwide which is often associated with poor
prognosis and severe outcomes including death (Nordmann
et al., 2009; Eddens and Kolls, 2012). K. pneumoniae was
originally found to infect patients with a compromised immune
system and with other comorbidities like diabetes, cancer, and
organ transplantation (Garcia de la Torre et al., 1985; Lin et al.,
2013; Lee et al., 2017). However, in recent years, there is an
increased emergence of hypervirulent and multidrug-resistant
strains of K. pneumoniae that has the potential to cause infection
even in the healthy, immune-sufficient individuals (Kader et al.,
2007; Lin et al., 2012; Olaitan et al., 2014). The emergence of
hypervirulent and antibiotic-resistant strains of K. pneumoniae
and their worldwide spread necessitate more comprehensive
research on K. pneumoniae that could shed light into the
molecular details of K. pneumoniae-mediated pathophysiology.

There are mainly four types of virulence factors in
K. pneumoniae: (i) capsule (Struve and Krogfelt, 2003; Schembri
et al., 2005; Evrard et al., 2010; Rendueles, 2020), (ii) fimbriae
(Murphy et al., 2013; Lin et al., 2017), (iii) lipopolysaccharides
(Kamaladevi and Balamurugan, 2016), and (iv) siderophores
(Holden et al., 2016, 2018; Zhang et al., 2017) that have been
well studied and are important for virulence in infection models.
However, there are several genes in the K. pneumoniae genome
that remain poorly characterized and might have potential roles
in virulence (Pranavathiyani et al., 2020). A previous study has
identified some of the in vivo fitness genes in K. pneumoniae
which are required by this pathogen to survive and adapt to the
host environment (Bachman et al., 2015). These fitness genes
include genes responsible for the branched-chain amino acid
synthesis and serum resistance.

Although fitness and virulence are related to each other, they
are two distinct entities. Fitness genes are defined as the genes
in a pathogen whose deletion impedes its growth within a host,
whereas virulence factors are proteins whose deletion reduces
its pathogenicity (Subashchandrabose and Mobley, 2015). To
be a successful virulence factor, a pathogen protein must have
physical interactions with host cell biomolecular machinery
including proteins (Casadevall and Pirofski, 2001; Wallqvist
et al., 2015). This facilitates host cell subversion by the virulence
factors of the pathogen (Crua Asensio et al., 2017). However,
often a subset of fitness imparting genes act as virulence
factors (Subashchandrabose and Mobley, 2015), for instance,
in uropathogenic Escherichia coli (UPEC) the type IV pilus
which is a known virulence factor and is involved in imparting
fitness to the pathogen (Subashchandrabose and Mobley, 2015).
According to Subashchandrabose and Mobley (2015), type IV
pilus confers some selective advantages to UPEC and thus helps
it to survive in the urinary tract of the host. In this connection,
Crua Asensio et al. (2017) advocate that fitness of a pathogen
is determined by the successful interaction of the pathogen
with its host. They also showed that the higher the fitness of
a pathogen protein, the more it tends to interact with host
cell proteins. To this end, there is no protein interaction data
available between the fitness genes ofK. pneumoniae and proteins
in the human host. Therefore, the complete molecular details
of host-cell subversion mechanisms by K. pneumoniae indeed
remain unidentified.

Thus, a K. pneumoniae-human protein–protein interaction
(KHPPI) network could not only help us to identify the key
virulence and fitness-related factors in K. pneumoniae but also
would give us a mechanistic insight into the putative functions
and molecular interactions perturbed by K. pneumoniae during
its infection. However, previous large-scale systematic yeast two-
hybrid (Y2H) studies focussed on virus–host PPI networks
(Calderwood et al., 2007; Simonis et al., 2012; Luo et al.,
2016; Farooq, Q. ul et al., 2020). Bacterial–host PPI networks
are largely unidentified with exception to few studies (Dyer
et al., 2010; Memiševiæ et al., 2015). Also, for a bacterial
pathogen, which has a large genome constituting thousands or
more genes, identification of virulence factors and large-scale
mapping of their host protein interactors demands both time
and a lot of effort. In this context, computational strategies to
identify putative host targets by pathogen play a pivotal role
(Arnold et al., 2012).

Among the several computational strategies used to predict
pathogen–host interaction network, interolog-based predictions
are fairly robust and have been widely used previously to predict
the PPI landscape between the many unknown pathogens of
interest and their host cellular proteins (Kumar and Nanduri,
2010; Rapanoel et al., 2013). This method uses previously
characterized PPI data from other well-studied species pairs
(a pathogen and a host) and inferred PPIs for the unknown
pathogens of interest–host of interest species pairs by orthology-
based deductions. The limitation of this method is that it
does not give any information on PPIs of bacterial pathogen
proteins that are strain-specific or are poorly conserved across
phylogenetic lineages. Moreover, interolog-based approaches rely
on known pathogen–host interactome which are previously
inferred by experiments; it cannot predict novel interactions
(Wang et al., 2020). In addition, with increase in evolutionary
distances between species, processes like neofunctionalization
occur and this makes the interolog-based approaches error-
prone due to difficulty in ortholog prediction based on poor
sequence similarity (Eichinger et al., 2016). In this context, motif-
based and protein structure-based inferences of host–pathogen
interactions show great promise (Via et al., 2015; Sámano-
Sánchez and Gibson, 2020). Short linear motifs act as potential
site for pathogen–host interactions and these linear motifs also
show convergent evolution which cannot be captured through
interolog approach (Zanzoni et al., 2017). However, lack of well-
reviewed protein structures in K. pneumoniae limits application
of structure-based inferences of protein–protein interactions
(PPIs) between K. pneumoniae and its human host.

Here, in this study, we first designed an interolog-based
three-step computational strategy where we have integrated
multiple high throughput pathogen–host interaction datasets
and used them as a template to derive a comprehensive
molecular interaction map between K. pneumoniae and the
human host. This interaction map was then further filtered based
on in vivo fitness, Gene Ontology (GO)-term similarity, and
secretion propensities of K. pneumoniae proteins. Subsequent
network-based downstream analyses with K. pneumoniae-
targeted host proteins were executed where we integrated host’s
high throughput genetic, proteomic, and transcriptomic dataset
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to identify influential molecular targets shedding light into the
mechanism of host cell subversion. We observed predicted host
targets to be highly enriched with proteins that are an integral
part of the host’s immune surveillance machinery. We identified
a key influential molecular target, P53 which could have a
profound role in K. pneumoniae-mediated disease pathogenesis.
We observed that multifunctional protein P53 mediates several
inter-complex interactions. Therefore, targeting P53 and its
interactome could be an effective strategy by K. pneumoniae
to disrupt coordination between protein complexes. Moreover,
we identified four key transcription factors (TFs) that were
observed to be differentially expressed in K. pneumoniae positive
sepsis patients. These four TFs (HIF1A, STAT1, ETS2, and
EGR1) were found to be interactors of P53 and could potentially
regulate several downstream DEGs in sepsis patients. Together,
our results, based on computational predictions, indicate that
targeting P53 and its interactors could have a profound effect on
the host’s physiology during K. pneumoniae-mediated infection.
However, these results are based on in silico strategies and need
to be validated experimentally.

MATERIALS AND METHODS

Retrieval of Sequences of Klebsiella

pneumoniae KPPR1 Strains
The protein sequences and annotations of K. pneumoniae KPPR1
strain were retrieved from NCBI Refseq database (O’Leary
et al., 2016) using the following link: https://ftp.ncbi.nlm.nih.
gov/genomes/refseq/bacteria/. The sequences thus retrieved were
further screened. Hypothetical proteins and incomplete protein
sequences were eliminated from the analysis.

Identification of Interologs
Host–Pathogen Interaction Database (HPIDB) version
3.01 (Kumar and Nanduri, 2010) was used to retrieve all
experimentally established pathogen–host PPI (PHPPI) data.
Only those PPIs that were inferred from experiments such as
Y2H, co-immuno-precipitation, and other experimentally robust
protocols were considered to be the template for predicting
KHPPI. NCBI reciprocal BlastP (Altschul et al., 1990) was
used to search for homologous proteins in the proteome of
K. pneumoniae KPPR1 strain and Homo sapiens. We used a
stringent cut-off of E-value less than 10−10, 90% query coverage,
and 50% sequence similarity for blast homology search. To
find out the potential KHPPIs that play a significant role in
K. pneumoniae virulence, we chose K. pneumoniae fitness factor
as a screening constraint of KHPPI. The KHPPI was screened and
only those K. pneumoniae proteins were chosen which has a high
fitness value in the mouse model. The K. pneumoniae KPPR1
fitness data were retrieved from Bachman et al. (2015). Genes
with high fitness values are those that are essential for survival
within the host. Here, we chose fitness ratio > 2.0 and cedar
P-value = 0 (confirmed by cedar analysis) as a cut-off. The entire

1https://hpidb.igbb.msstate.edu/

set of predicted KHPPI (both filtered and raw) along with fitness
data are provided in Supplementary Tables 1, 2, respectively.

GO Term Similarity Analysis Between
Inferred Homologs
We first downloaded the functional annotations of each member
of the homolog pairs from uniport database (Bateman et al.,
2017). The functional annotations were based on GO terms.
We considered a given homolog pair to be functionally similar
if they shared at least one common GO term between them.
To calculate the significance level of the observed proportion
of functionally similar homolog pairs in our dataset, we
compared the functional similarity of real homolog pairs to
that of randomized non-homologous protein pairs. A list of
non-homologous protein pairs (did not yield a significant hit
when reciprocal protein blast search was conducted against
K. pneumoniae. A significant reciprocal blast hit is defined as
E-value 10−10, query coverage ≥ 90%, sequence identity > 50%)
was generated for each of pathogen proteins. Supplementary

Table 3 shows the pathogen species used to generate the
list of non-homologous protein pairs along with the number
of non-homologous proteins against each of these pathogen
species. These were added up to a total of 11,357 non-
homologous gene pairs between K. pneumoniae genome and
other pathogen genomes, respectively. We randomly chose 183
(because there were 183 K. pneumoniae homolog pairs that
yielded filtered KHPPI) non-homologous gene pairs for 1000
times and observed their functional similarity. The observed
proportion of functionally similar gene pairs in homologs was
higher compared to non-homologs in each of the 1000 times
(P = 3.43 × 10−5; Fisher’s exact test).

Prediction of Secretion Propensity of
K. pneumoniae Proteins
To assess the secretion propensity of the 183 K. pneumoniae
proteins obtained herein, we combined two prediction strategies,
i.e., (i) BastionHub (Wang et al., 2020) and (ii) EffectiveDB
(Eichinger et al., 2016). We have used BastionX (included in the
BastionHub suite) to predict the secretion propensity of each
of the K. pneumoniae proteins. BastionX utilizes a machine-
learning-based approach to predict the secretion propensity
of the given proteins. It can predict substrates of Type I–
VI secretion systems in Gram-negative bacteria. The predicted
results of BastionX are provided in Supplementary Table 4. On
the other hand, EffectiveDB predicts substrate of Type III, IV,
and VI secretion systems through detection of secretion peptides.
It can also predict the secretion propensity of a given protein
through detection of Eukaryotic-Like Domains (ELDs) in the
protein sequences. ELDs are widely present in virulence effectors
of Gram-negative bacteria (Gomez-Valero et al., 2019; Mondino
et al., 2020). Hence, an enrichment of ELDs in a given protein
sequence indicates high probability of it to be secreted.

Function Enrichment Analyses
ClusterProfiler version 3.04 (Yu et al., 2012), an R package,
was used to conduct GO analysis as well as KEGG pathways
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enrichment analysis. The ClusterProfiler uses fisher’s exact test
to identify significant GO terms or KEGG pathways. Benjamini–
Hochberg test was performed to determine the adjusted P-values
of each GO terms and KEGG pathways. Fold enrichment values
were calculated as mentioned below:

Fold enrichment =
m/n

M/N

M = total no. of genes annotated with the given enriched KEGG
pathways or GO terms in human proteome;N = total no. of genes
functionally annotated in H. sapiens proteome; m = total no. of
genes annotated with the enriched KEGG pathways or GO terms
in the host target gene set; and n = total no. of genes in the host
target gene set.

All plots related to function enrichment were generated
using the seaborn package of Python v3.7. The details of the
results of GO and KEGG pathways enrichment analysis are
provided in Supplementary Tables 5, 6, respectively. Each
GO ID or KEGG pathways were assigned with a functional
domain. This functional domain assignment was done very
carefully. GO IDs or KEGG pathways that were similar were
assigned the same functional domain. For instance, GO:0071346
and GO:0071349 (Supplementary Table 5) both refer to
cytokine production, hence their functional domain is the
immune response.

PPI Network Analyses
The human PPI network was constructed based on PPI data
from two resources: (i) STRING version 112 (Szklarczyk
et al., 2019) and (ii) BioGRID version 3.53 (Stark, 2006).
We selected binary PPIs with STRING cumulative score
900 and above. STRING computes score of each PPI
based on the following evidences fusion, co-occurrence,
coexpression, experimental, database, and text mining
and generates a score combining the individual scores of
these evidences. We used the following criteria to screen
the binary PPI inferred from STRING. (1) We excluded
PPIs which were not supported by experimental evidence
and included only those PPIs that were supported with
an experimental evidence. (2) A PPI is excluded from
the dataset if it was supported by only other sources of
evidences like coexpression, co-occurrence, and fusion and
not by experimental evidences. (3) Apart from (1) and (2),
we retained only those PPIs in our dataset which had a
cumulative score ≥ 900. When we incorporated PPI data from
BioGRID, we made sure that the PPI concerned was based
on physical PPI inferred from direct experimental systems
like Y2H. Such high confident PPIs were used to build up
the raw human PPI network (Supplementary Table 7). Using
the following stringency cut-off, we gathered a human PPI
network comprising of 8823 proteins connected through
45,215 interactions.

2https://string-db.org/
3https://thebiogrid.org/

Construction, Visualization, and
Calculation of Network Statistics
Cytoscape version 3.7.1 (Shannon et al., 2003) was used
for construction, visualization, and calculation of topological
parameters of the inferred PPI network.

Integration of Protein Complex Data to
PPI Data
Human protein complex information was retrieved from the core
protein complex dataset of CORUM4 database (Ruepp et al.,
2009). The entire dataset of proteins and the protein complex
in which they participate is provided in Supplementary Table 8.
Degree of intermodularity (DI) was calculated as follows:

DI =
Ci

⋂
Cj

Ci

⋃
Cj

where i and j are two physically interacting proteins; Ci and
Cj are protein complexes in which i and j participate. The DI
ranges from 0 to 1. DI of 0 indicates that the two proteins do not
share any protein complex between them and therefore are inter-
complex or intermodular. This indicates that the protein pairs
involved in interaction might be connecting or coordinating two
or multiple functional protein complexes. If DI value rises above
0 but is still less than 1, it indicates that the protein pairs involved
in interactions have both shared and unshared protein complexes
between them. DI value of 1 indicates that there are no unshared
protein complexes between a given pair of proteins or in other
words both proteins A and B participate in the same protein
complex or complexes (Figure 3A).DI value of 1 indicates strictly
intramodular interactions.

Module Analysis of Weighted Network
MCL clustering in ClusterMaker version 2.0 (Morris et al.,
2011) (a Cytoscape app) was used for module analysis
of the function–function interaction network (FFIN). Each
edge in the FFIN was assigned a weight which is sum of
the number of unique inter-complex PPIs connecting the
respective functions.

Functional Analysis of Inferred Networks
The Biological Networks Gene Ontology tools (BiNGO) (Maere
et al., 2005), a Cytoscape plugin was used to determine enriched
functions in the inferred PPI network. Plots were generated using
Python and R packages.

Regulatory Network Analysis
The human regulatory network was retrieved from the
RegNetwork database5 (Liu et al., 2015) and the Transcriptional
Regulatory Relationships Unraveled by Sentence-based Text
mining (TRRUST) database version 2.06 (Han et al., 2018). Only
experimentally inferred TF-TG interactions were considered for

4http://mips.helmholtz-muenchen.de/corum/
5http://www.regnetworkweb.org/
6https://www.grnpedia.org/trrust/
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FIGURE 1 | Schematic representation of the workflow followed to predict K. pneumoniae-targeted host proteins and subsequent downstream functional analyses

with the K. pneumoniae predictome. To predict K. pneumoniae-targeted host proteins, we devised a three-step computational strategy. In the first step using HPIDb

(an exhaustive repository of experimentally determined host–pathogen interaction datasets), we identified potential interologs between K. pneumoniae and humans

at e-value 10-10, 90% query coverage, and 50% sequence identity. Further, the K. pneumoniae proteins predicted to interact with host proteins were screened

based on their fitness in mouse (Fitness data derived from Bachman et al., 2015). Those K. pneumoniae proteins with a fitness value > 2.0 were retained in step 3;

an in silico GO term similarity check along with secretion propensity checks was carried out. The final KHPPI thus filtered were subjected to further downstream

network analysis.

building up the regulatory network. The human regulatory
network thus built is provided in Supplementary Table 9.

Gene Expression Analysis
Microarray dataset was downloaded from the Gene Expression
Omnibus (GEO) database (Barrett et al., 2013) for five
patients suffering from sepsis with blood culture positive
for K. pneumoniae in a Thailand hospital (GSE69528)
(Pankla et al., 2009). The above-mentioned expression
dataset was analyzed using GEO2R (Barrett et al., 2013).
Only those genes that had adjusted P-value (Benjamini–
Hochberg) < 0.05 and fold change > 2.0 in the t-test
were considered as differentially expressed genes (DEGs).
The above-mentioned cut-off yielded a total of 1413 DEGs
(Supplementary Table 10).

Statistical Analyses
All statistical tests used in this study including Mann–Whitney
U-tests and Fisher’s exact tests were conducted using R
version 4.1.2. Randomization tests were done using in-house
R scripts.

RESULTS

Identification of Potential
K. pneumoniae-Targeted Host Proteins
At first, we aimed to identify the potential host proteins that
interact with K. pneumoniae proteins. To predict this cross-
species PPI, we have designed a three-step computational
strategy (Figure 1).

In the first step, we built a potential K. pneumoniae–
human cross-species PPI (KHPPI) based on the interolog
approach. We assembled high-throughput bacterial pathogen–
human host PPI data from HPIDB and used them as templates
to identify potential KHPPIs through stringent homology search
against K. pneumoniae proteome. Since the host species in the
template PPI was human, we carried out the homology search
between pathogen proteins and K. pneumoniae proteins only.
Upon stringent reciprocal blast search (E-value ≤ 10−10, query
coverage ≥ 90%, and sequence identity > 50%) of the template
PPI against K. pneumoniae proteome, we were able to identify
3634 putative PPIs between 913K. pneumoniae proteins and 1831
human proteins (Supplementary Table 1).
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The second step of our computational workflow includes the
screening of 913 K. pneumoniae proteins which were predicted to
interact with 1831 human proteins in the previous step. We here
adopted a screening technique based on fitness ratio in published
mouse models (Bachman et al., 2015). The rationale behind
considering fitness as a factor for screening K. pneumoniae
proteins is the relationship between the fitness of pathogen
proteins and its tendency to interact with host proteins (Crua
Asensio et al., 2017). It has been previously shown by Crua
Asensio et al. (2017) that pathogen proteins whose deletion incur
a high fitness cost on the survival of pathogen within the host
play an instrumental role in interaction with host proteins. So, we
have deployed fitness as a factor to screen the 913 K. pneumoniae
proteins obtained in step 1. Bachman et al. (2015) quantified
fitness as a ratio of bacterial inoculum mutated and injected into
amouse by bacterium inoculum obtained frommouse lung. They
emphasized on 332 K. pneumoniae proteins that had a fitness
ratio ≥ 2.0 and a cedar P-value of 0 (Supplementary Table 2).
This implies that the deletions of these individual 332 genesmight
cause a twofold fitness defect in K. pneumoniae within the host.
We noticed that there were 183 K. pneumoniae proteins which
were common to both the subset of 332 fitness factor proteins and
913 K. pneumoniae proteins involved in the interaction with the
host (identified in the previous step). These 183 K. pneumoniae
proteins were observed to be interacting with 532 human proteins
yielding a total of 720 PPIs (Supplementary Table 1).

In the third step, we tried to show thatK. pneumoniae proteins
involved in interactions with the human host proteins are indeed
(1) true homologs of previously known pathogen proteins in
the template PPI and that these (2) K. pneumoniae proteins
are secretory proteins localizing in pathogen host interface to
mediate potential interactions with the host proteins. To achieve
our first aim, we conducted an in silico GO term similarity
analysis where we retrieved the functional annotations of the
proteins that are homologous between K. pneumoniae and other
pathogen species from uniprot. We noticed that 152 out of 183
K. pneumoniae (∼83%) proteins show functional similarity with
the corresponding homolog in other pathogen species, i.e., they
shared at least one GO term between them. The rest of the 17%
of the homologous had unknown functions. This percentage of
83% was indeed higher than that expected by chance (Odd’s
ratio = 2.21, P-value = 2.76 × 10−5; Fisher’s exact test) (see
section “Materials and Methods”). Thus, it could be inferred that
the 183 homologs of K. pneumoniae that comprise the screened
or filtered KHPPIs were probably enriched in true functional
homologs. Since very few (17%) of the homolog pairs have
unknown functions, we did not eliminate them as elimination of
these pairs with unknown functions could lead to elimination of
potential host interactors from our dataset.

Next, we tried to show that K. pneumoniae proteins
identified to be interacting with human host proteins through
interolog approach are secretory proteins that act like effector
molecules in K. pneumoniae. For this, we predicted the secretion
propensity of each of the 183 K. pneumoniae proteins by
combining two independent prediction tools BastionHub and
EffectiveDB (Eichinger et al., 2016; Wang et al., 2020). The
results of these two prediction servers were summarized in

Supplementary Table 4. In total, we found 162 K. pneumoniae
proteins that were found to have putative secretory property
due to possession of signal peptides and or ELDs. There were
3, 24, 3, and 1 proteins belonging to Type II, Type III, Type
IV, and Type VI secretion system, respectively (Supplementary

Table 4). There were 31 K. pneumoniae proteins out of
183 that participated in secretion systems and therefore are
highly secretory (Supplementary Table 4). Apart from this,
effectiveELD yielded 131 K. pneumoniae proteins that were
enriched in ELDs and thus could behave like effectors. This
again shows that > 85% of the inferred K. pneumoniae
proteins are secretory in nature and might localize in the
host–pathogen interface to facilitate interaction with the host
proteins. However, 21 proteins were there that do not show any
secretory property. We therefore eliminated these 21 proteins
from our analysis. This led to a total of 671 interactions between
162 K. pneumoniae and 508 host interactors. These 508 host
target proteins were subjected to further downstream analysis
to provide functional implications of these interactions in the
context of host cell physiology.

K. pneumoniae-Targeted Host Proteins
Are Enriched in Tightly Interlinked,
Overlapping and Immune-Related
Functions
In this section, we aimed to identify underlying metabolic
pathways and biological processes that are targeted by K.
pneumoniae. The 508 host targets inferred in the previous
section were subjected to detailed function enrichment analyses
using GO terms and KEGG pathway information. GO terms
were further subdivided into three categories: (i) GO biological
processes (GObp), (ii) GO molecular functions (GOmf), and (iii)
GO cellular compartment (GOcc). The results of this enrichment
analyses are delineated below.

GObp Enrichment Analysis

There were 136 statistically significant GObp terms (P < 0.05;
Fisher’s exact test, multiple test correction using Benjamini–
Hochberg method) which were further grouped into 11
functional categories (Supplementary Table 5). The average fold
enrichment values for each of these 11 functional categories,
ranked in ascending order are depicted in Figure 2A. The
number of shared proteins between each of these functional
categories is represented in Figure 2B. GObp terms related
to cytokine production, antigen processing and presentation,
and immune receptor-mediated signaling are found to be
highly enriched among host targets. GObp terms like hypoxia,
response to oxidative stress, JAK-STAT cascade, ubiquitin-
mediated protein degradation, and apoptosis which might have a
direct impact on immune surveillance machinery are also found
to be enriched among host targets.

GOmf Enrichment Analysis

We identified 18 statistically significant GOmf terms (P < 0.05;
Fisher’s exact test, multiple test correction using Benjamini–
Hochberg method). These GOmf terms were further broadly
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FIGURE 2 | Results of the GO enrichment and KEGG pathways enrichment analyses. (A,C,E,G) Lollipop plots of GObp, GOmf, GOcc, and KEGG pathways

enrichments, respectively. Here, X-axis represents fold enrichment of each of the enriched functional domains derived from enriched GO terms and KEGG pathways.

(B,D,F,H) Partial heatmaps showing the number of host targets shared between each of the enriched GObp, GOmf, GOcc, and KEGG pathways. (I) Venn diagram

where the blue, green, and purple circles represent GObp, GOmf, and KEGG pathways, respectively. The number within each circle represents the number of

multifunctional host targets in the respective functional categories. Five multifunctional proteins were common to three of the functional categories; these were P53,

HIF1A, and STAT1. (J) Heatmap showing the aforementioned highly multifunctional host targets and the functions in which they participate.

classified into seven functional groups (Supplementary Table 5)
related to immune surveillance machinery. The average fold
enrichment values of the enriched GOmf categories are depicted
in Figure 2C. Figure 2D shows that these functional groups
share a considerable fraction of proteins among themselves. This
indicates that the host targets are multifunctional and might have
a role in inter-functional cross-talks.

GOcc Enrichment Analysis

There were 42 statistically significant enriched GOcc terms
that were broadly classified into 15 groups (P < 0.05; Fisher’s
exact test; multiple test correction using Benjamini–Hochberg
method) (Supplementary Table 5). Figure 2E represents the fold
enrichment values of these 15 GOcc groups. It is observed from
the aforementioned groups that K. pneumoniae target proteins
localize at the elementary sites of host–pathogen interactions
which include extracellular matrix (ECM) membrane ruffles and
endocytic vesicles.

KEGG Pathway Enrichment Analysis

There were 26 statistically significant KEGG pathways among the
inferred host targets (P < 0.05; Fisher’s exact test; multiple test

correction using Benjamini–Hochberg method; Supplementary

Table 6) which were further grouped into 14 subgroups.
Figure 2G represents the average fold enrichment values of
enriched KEGG pathways. Figure 2H shows that there are a
significant number of proteins shared between the different
enriched pathways. This implies that host targets could be
involved in multiple pathways and have a role in pathway cross-
talk. Among these, the NFKB signaling pathway is crucial for
generating an immune response against any given pathogen.
Moreover, the infectious disease pathway has several KEGG
pathways targeted by other pathogens under it like HTLV-
1, leishmaniasis, tuberculosis, etc. This again indicates the
convergent targeting of metabolic pathways by a diverse range of
individual pathogens.

From function enrichment analyses, it is inferred that
K. pneumoniae-targeted host proteins are multifunctional
and participate in diverse immune-related functions.
Figures 2B,D,F,H show that there is a large degree of molecular
overlap between enriched pathways, biological process and
molecular functions. Hence, from these observations, we found
it interesting to ask whether there is a group of common
multifunctional proteins between each of these categories,
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i.e., GObp, GOmf, and KEGG pathways. To address this
possibility, we deployed a score-based functional prioritization
strategy (see Supplementary Methods) and identified three
multifunctional target proteins, HIF1A, STAT1, and TP53; TP53
encoding tumor suppressor protein P53 is a known master
integrator of the host’s immune system (Madenspacher et al.,
2013). HIF1A and STAT1 are all involved in physical interaction
with P53 (Townsend et al., 2004; Obacz et al., 2013; Zhou et al.,
2015). The interaction between P53 and HIF1A is fundamental
for the induction of hypoxic pathways (Zhou et al., 2015). The
hypoxic pathways are pivotal for regulating blood oxygen level
which drops drastically in patients with pneumonia and sepsis
(Hirota, 2015). It has also been observed that P53 regulates
inflammation and autoimmunity by triggering proinflammatory
cytokines owing to STAT1 activation (Campbell et al., 2012).
Thus, P53 and its interaction partners could play a potential
role in K. pneumoniae-mediated infection. This notion gets
consolidated in subsequent downstream analyses.

K. pneumoniae Preferentially Targets
Inter-Complex or Intermodular
Protein–Protein Interactions
The functional enrichment analysis indicates that
K. pneumoniae-targeted host proteins are participated in
multiple interrelated functions and are involved in molecular
cross-talk between biological processes and immune-signaling
pathways. To further establish this fact, we here studied the
K. pneumoniae-targeted PPIs and interrogated whether the PPIs
targeted by K. pneumoniae are intermodular. Intermodular
protein interactions are those that arise between two proteins
that never share any given protein complex between them
and intramodular protein interactions are those that occur
between two proteins that share at least one protein complex
between each other (Song and Singh, 2013). For instance,
in Figure 3A, P53 and HIF1A physically interact with each
other in the human PPI network. Both the proteins P53 and
HIF1A participate in distinct protein complexes without a
single protein complex being shared between them. On the
contrary, Figure 3B shows an intramodular or intra-complex
interaction between protein CDC5L and PABPC1, both of
which participate in the spliceosomal protein complex. To
validate this hypothesis, we designed a brief computational
workflow (Supplementary Figure 1A). We started with
building the human PPI network by assembling experimentally
established PPI data from two resources BioGRID and STRING
(Supplementary Table 7). We next selected K. pneumoniae-
targeted PPIs where both the proteins involved in interactions
are targeted by KP. Next, we considered the largest connected
components (LCC) of the aforementioned K. pneumoniae-
targeted interactions. The LCC of the K. pneumoniae-targeted
PPI network (TTPPI) consisted of 65 target proteins connected
through 100 connections (Supplementary Table 7). To
analyze the proportion of inter-complex interactions in this
K. pneumoniae-targeted PPI network, we took two approaches:
(i) we calculated the proportion of inter-complex interactions
in the targeted network and compared it with non-targeted PPI

network (Supplementary Table 7). Non-targeted PPI network
is composed of PPIs that involve those proteins that are never
targeted by K. pneumoniae. Figure 3C shows that the proportion
of inter-complex interactions inK. pneumoniae-targeted network
is way higher than non-targeted PPI network (61 connections
out of 100 were identified to be inter-complex interactions which
are approximately 61% of the total targeted connections). This
consolidates our hypothesis that K. pneumoniae preferentially
targets inter-complex PPIs as compared to intra-complex
PPIs. (ii) We formulated the DI (see section “Materials and
Methods”) of a PPI and compared the DI between targeted
PPI and non-targeted PPI. The DI can be calculated as the
number of shared protein complexes between two proteins
divided by the total number of protein complexes in which
the two proteins participate. It was observed that the DI of
K. pneumoniae-targeted PPI network was significantly higher
as compared to the non-targeted network (Figure 3B). This
confirms our hypothesis that K. pneumoniae preferentially
targets intermodular or inter-complex PPIs.

P53 and CDC5L Form the Backbone of
Cross Complex Interactions
In the previous section, we showed that K. pneumoniae
preferentially targets inter-complex or intermodular PPIs.
Supplementary Figure 1C shows that TTPPI has several
K. pneumoniae-targeted, inter-complex interactions that could
play an important physiological role in coordinating the
functions of these protein complexes. Next, we extracted only the
inter-complex connections from the TTPPI and derived a smaller
network (ITTPPI) (Supplementary Table 7). Supplementary

Figures 1B,C indicate that two proteins in the ITTPPI network
play an influential role in maintaining network robustness
as they participate in multiple inter-complex connections.
These two proteins are P53 and CDC5L. P53 has the second
largest degree or inter-complex connections in this network
(Kp53 = 17; Kaverage = 5) while CDC5l ranks the highest
influential node in the network with K of 21. Thus, both of
these two proteins are important for maintaining molecular
cross-talk between several interrelated functional complexes.
For instance, P53 not only participates in different functional
complexes related to apoptosis and DNA damage response
but also forms unique 17 PPIs with different protein partners
that participate in allied functional complexes like chromatin
remodeling, immune signaling, and mRNA processing. Thus,
coordination of these functional complexes, e.g., apoptosis
and immune signaling, could be perturbed in K. pneumoniae-
mediated infection via P53. The connections of CDC5L with
its protein partner might help in the maintenance of molecular
cross-talk between complexes like proteasomal degradation,
chromatin modification, etc.

The Potential Functional Cross-Talks
That Might Be Perturbed by
K. pneumoniae
In this section, we aimed to evaluate the functional impact
of cross complex interactions disrupted by K. pneumoniae.
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FIGURE 3 | (A) Schematic representation of inter and intramodular interactions. Intermodular interactions are defined as the interactions between two proteins A and

B if they participate in distinct functional complexes without having any shared protein complex between A and B (DI = 0). Intramodular interactions are defined as

the interactions between protein A and B when there is at least one functional protein complex shared between A and B (DI = 1). (B) Boxplot showing a significant

difference in the distribution of DI between targeted PPI and non-targeted PPI. DI is defined as the ratio of the number of shared protein complexes between two

targeted and non-targeted interacting protein pairs to the total number of unique protein complexes in which A and B participate. (C) Stacked bar plot showing a

higher percentage of intermodular interactions among targeted PPIs as compared to non-targeted PPIs.

Supplementary Table 8 enlists proteins targeted by
K. pneumoniae along with the functional complexes in
which they participate. These protein complexes were further
grouped into 15 major classes according to their functions:
(a) immune signaling, (b) chromatin modification, (c) DNA
damage response, (d) apoptosis, (e) cytoskeleton organization,
(f) proteasomal degradation, (g) transcriptional control, (h)
translation, (i) integrin receptor signaling, (j) mRNA processing,
(k) cell migration, (l) protein folding, (m) cell division, (n)
vesicular transport, and (o) hypoxia. All of these functions are
tightly associated with each other by multiple K. pneumoniae-
targeted inter-complex PPIs. Figure 4A shows a circos diagram
in which the width of the ribbons connecting each function
represents the number of unique K. pneumoniae-targeted
inter-complex interactions between given functions. For
instance, there is a wide ribbon connecting immune signaling
to proteasomal degradation which indicates that there are a
large number of inter-complex connections between immune
signaling complexes and proteasomal degradation machinery.
This, in turn, points at the fact that proteasomal degradation
machinery has multiple molecular cross-talks with immune

signaling processes which is also well documented in literature
(Kammerl and Meiners, 2016). Next, we constructed an FFIN
from the aforementioned inter-complex interaction data where
each node denotes a particular function or biological process,
and the connection between them represents the number of
inter-complex PPIs. Each edge connecting the nodes is assigned
with a weight which is the sum of the number of inter-complex
PPIs between the given functions or nodes. Figure 4B shows that
as we gradually increase the stringency of the FFI in terms of edge
weight, the network shrinks. At highly stringent edge weight,
the network consists of only three nodes, i.e., immune signaling,
proteasomal degradation, and mRNA processing. This hints at
an important mechanism of immune regulation. It has been
reported previously that immune regulators are often controlled
or regulated by the process of proteasomal degradation (Hu
and Sun, 2016). Hence, from these observations, we infer that
K. pneumoniae might interfere with proteolytic degradation
of immune system modulators like P53. This, in turn, shows
that these three biological processes have the highest number of
inter-complex interactions that are targeted by K. pneumoniae.
At the lowest stringency, the network grows in size, and many
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FIGURE 4 | (A) Circos plot representing the functions or biological processes of protein complexes that are connected by intermodular PPIs targeted by KP. The

width of the ribbons within the circus plot represents the number of host targets that mediate the above-mentioned inter-complex interactions, i.e., wider ribbons are

indicative of a higher number of host target proteins while narrow ribbons indicate the existence fewer number of host target proteins mediating the given

inter-complex interactions. (B) How the FFIN shrinks as we increase the edge weight of the FFIN network. The X-axis here represents the edge weight (measured as

the no. of inter-functional connections, i.e., number of inter-complex PPIs) and the Y-axis represents the network size measured as the number of nodes.

other nodes are added including integrin receptor signaling, cell
migration, apoptosis, hypoxia, or oxidative stress.

We have observed in the previous section that most of this
inter complex interaction or functional cross-talks observed
are mainly mediated by the master coordinator P53. It is also
noticed (Supplementary Figure 1C) that K. pneumoniae targets
the interaction of P53 with its protein partners. In the next
stage of our analysis, we explored the impact of K. pneumoniae
targets in the host regulatory network as well. In this connection,
we identified different regulatory cascades that could mediate
transcriptional response of host in K. pneumoniae-mediated
sepsis. Here also, the role of P53 centric ITTPPI was prominent
as we identified four pivotal K. pneumoniae-targeted TFs (TTFs)
which are an integral part of ITTPPI (Supplementary Figure 1C)
to be the major source of transcriptional response in human host.

Identification of Key
K. pneumoniae-Targeted TFs That
Regulate Downstream Sepsis
Responsive Genes and Their
Connections With P53
Previous studies suggest that 5–20% of bacterial sepsis is
caused by K. pneumoniae. Moreover, patients suffering from
K. pneumoniae-mediated sepsis are often associated with poor
prognosis and severe outcomes like death (Meatherall et al.,
2009; Fukuyama et al., 2014). Hence, we find it interesting to
investigate whether some of the inferred host targets in our
study play an instrumental role in K. pneumoniae-mediated
sepsis. To figure this out, we designed a four-step computational
strategy (see Supplementary Figure 2), where in the first step,
we assembled information on TFs and their target mRNAs

(TGs) in humans from the public databases to build a raw
regulatory network (RTRN) (Supplementary Table 9). In the
second step, we derived a sepsis regulatory network (SRN) from
RTRN by selecting only the genes in the RTRN that are found
to be differentially expressed under sepsis conditions (DEGs).
The complete list of DEGs in K. pneumoniae positive sepsis
patients is provided in Supplementary Table 10. In the third
step, we derived K. pneumoniae specific SRN or KPSRN where
we retained only TFs that were targeted byK. pneumoniae (TTFs)
and their downstream TFs (TTFGs) or TGs (Supplementary

Table 9). The TGs in the KPSRN were functionally analyzed
using GO analysis in the final step. The functional enrichment
analysis using the TGs yielded five important functional groups
which are: (a) antigen processing and presentation, (b) immune
system process, (c) response to hypoxia, (d) hexose metabolic
process, and (e) regulation of programmed cell death or apoptosis
which are previously reported to be linked to the outcome and
progression of septicemia (Träger et al., 2003; Noritomi et al.,
2009; Chaudhry et al., 2013; Wu et al., 2017; Bouras et al., 2018).
The detailed results of the GO analysis have been represented in
Supplementary Table 11. As the aforementioned five functional
groups are related to the sepsis outcome they are of utmost
significance. However, there might be other significant functional
groups (Supplementary Table 11) that are related to host’s
response to pathogenic insult. One such group is genes linked
to cation homeostasis. It has been reported earlier that bacterial
pathogen like K. pneumoniae competes with the host to scavenge
nutrients like trace cations especially iron and calcium (Palmer
and Skaar, 2016). Therefore, metal ion homeostasis may not be
directly associated with sepsis outcome or progression but is
important for bacterial survival within the host. The TTFs and
TTFGs involved in the regulation of each of these functional

Frontiers in Microbiology | www.frontiersin.org 10 February 2021 | Volume 12 | Article 613067

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Saha and Kundu Host Cell Subversion by K. pneumoniae

classes of proteins are represented in Figures 5A–E. Figures 5A–
E show that there are four pivotal TTFs, ETS2, EGR1, STAT1,
and HIF1A which targets four of the five downstream functional
clusters including apoptosis, hexose metabolic process, hypoxia,
and immune system process.

It is also interesting to note that these four TFs are all
associated with P53 centric ITTPPI. The connections between
each of these four TFs with P53 are elucidated in Supplementary

Figure 1C. P53 and its contribution to pneumonia are well
studied previously where it was shown that P53 regulates and
coordinates the function and fate of phagocytes in mouse lungs
(Madenspacher et al., 2013). In our study, we did not observe
any significant changes in the expression level of P53 in sepsis
patients as compared to healthy individuals. But, the involvement
of interactors or regulators of P53 is observed in host response
to K. pneumoniae-mediated sepsis. This hints at the fact that
K. pneumoniae might perturb P53 and its interaction with close
allies to cause sepsis in the host. Thus, the p53 centric ITTPPI
obtained in PPI network analysis contains some of the interactor
TFs of P53 which controls downstream regulation of functional
DEGs in K. pneumoniae positive sepsis patients.

DISCUSSION

This study aims to decipher host–pathogen bio-molecular
interactions that may shed light on the potential mechanisms
of K. pneumoniae virulence within the host. Our study can be
divided into four individual stages.

Stage I involves the identification of host targets using the
interolog approach and subsequent screening of the inferred
interactions by in vivo fitness, in silico prediction of GO term
similarity, and secretion propensities. Interolog approaches of
PPI prediction often yield false positives. To minimize retention
of false positives in our dataset, we have deployed the three
screening filters, i.e., in vivo fitness, GO term similarity, and
secretion propensity. To date, the interolog approach has been
widely used to predict bacteria–host PPI (Remmele et al., 2015;
Kumar et al., 2019). This method has few limitations, for
instance, the method is homology dependent and does not
predict interactions between proteins that are strain-specific or
lineage-specific. Second, it relies on experimentally validated
bacteria–host PPI data which is used as a template to predict
the potential PPIs. Currently, there is a dearth of experimentally
validated bacteria–host PPI data as experimental methods used to
infer PPIs are time-consuming and require a lot of efforts. Protein
structure-based predictions of PHPPI are also used in many
studies (Mariano and Wuchty, 2017). However, the lack of well-
reviewed K. pneumoniae protein structures in publicly available
databases limits the application of the structure-based method to
identify potential KHPPIs. On the other hand, virulence effectors
that are successfully deployed by the pathogen to hijack host
immunity have high in vivo fitness cost upon deletion from
pathogen genome (Crua Asensio et al., 2017). Thus, this method
of prioritization using fitness enables us to analyze the effect
of influential virulence effectors produced by K. pneumoniae
on host’s physiology. Moreover, we have added two additional

screening filters: (i) GO term similarity between the inferred
homologs which predict the homologs obtained using reciprocal
blast search are potentially true homologs and (ii) secretion
propensity which assess the obtained K. pneumoniae proteins
involved in interaction with the host are extracellular or are
secreted at host–pathogen interface to carry out interaction with
potential host targets. However, all the molecular targets inferred
in this study are computationally predicted and need further
experimental validations.

Stage II involves function enrichment analyses followed by
functional prioritization protocol. The results of stage II analysis
indicate that host targets are associated with immune surveillance
machinery of host. This further hints at the hijacking of the
host’s immune system by K. pneumoniae. Moreover, we obtained
five most multifunctional proteins (based on multifunctionality
scores) which are P53, HIF1A, and STAT (Figure 2I). All of
these five multifunctional proteins are closely associated with
P53 in terms of physical interaction or transcriptional regulation
(Townsend et al., 2004; Rozan and El-Deiry, 2006; Obacz et al.,
2013). P53 itself is a master coordinator of immune system
(Lowe et al., 2013; Menendez et al., 2013; Levine, 2020) and
is responsible for its effect in diverse functions and pathways
(Junttila and Evan, 2009; Brooks and Gu, 2010) including its
contribution to apoptosis and DNA damage response (Brooks
and Gu, 2010). P53 has also been shown to cross-talk with
hypoxic pathways which are pivotal in lung infection (Obacz
et al., 2013; Zhou et al., 2015). This cross-talk takes place
between P53 and the hypoxia-inducible factor, HIF-1 alpha,
which is an inducer of hypoxic response in human (Greijer
and van der Wall, 2004). On the other hand, P53 and STAT1
cooperate to induce cell death in response to DNA damage
(Townsend et al., 2004). It has also been previously proposed
that P53 is involved in TNF alpha-induced apoptosis (Rokhlin
et al., 2000). In a nutshell, the two multifunctional proteins, i.e.,
HIF1A and STAT1, are all connected with P53 either through
direct interaction or through transcriptional regulation. This
gives an initial hint that P53 and its associated proteins could
be highly influential targets of K. pneumoniae. But how P53
and its allies could be related to the physiological response
of host during K. pneumoniae infection remains unidentified.
To explore this, we have studied the human PPI network and
transcriptional regulatory network in stage III and stage IV
of our analyses.

In stage III, we mined the human PPI network to identify
regions of the human PPI network enriched in host targets.
We observed that K. pneumoniae targets part of the human
PPI network (TTPPI) which is enriched in inter-complex or
intermodular interactions (Figures 3C,D). P53 and CDC5L
form the essential backbone of inter-complex interactions in the
ITTPPI (Supplementary Figures 1B,C). An influential target of
K. pneumoniae could be CDC5L. Role of CDC5L in cell cycle
regulation, immune surveillance, and DNA damage response
is well studied (Zhang et al., 2009; Mu et al., 2014). Thus,
targeting CDC5L might perturb these physiological processes.
On the other hand, the functional cross-talks targeted by K.
pneumoniae, the majority of which are mediated by P53 and
CDC5L, are enlisted in Figure 4B. Thus, P53 not only acts as the
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FIGURE 5 | Small regulatory networks where key TFs are shown to target the different functional subset of DEGs in K. pneumoniae positive sepsis patients. The red

squares indicate the TTFs, the sea-green hexagon represents TTFGs, and mauve circles represent the TGs. (A–E) The functional subsets of DEGs targeted by TTFs

and TTFGs, i.e., immune system process, antigen processing and presentation, hypoxia, apoptosis, and hexose metabolic process, respectively.

multifunctional protein but also a coordinator of several inter-
complex or intermodular connections. The two most important
intermodular connections targeted by K. pneumoniae are the
connection between immune signaling process and proteasomal
degradation (Zinngrebe et al., 2014; Hu and Sun, 2016; Kammerl
and Meiners, 2016; Ebner et al., 2017; Etzioni et al., 2017) as well
as immune signaling process and DNA damage response (Gasser
and Raulet, 2006; Nakad and Schumacher, 2016; Bednarski and
Sleckman, 2019) (Figure 4B). It has been reported earlier that
proteasomal degradation is a key cellular process that regulates

immune signaling events (Junttila and Evan, 2009; Kammerl and
Meiners, 2016). Thus, disturbing the coordination between these
two pivotal processes, i.e., immune signaling and proteasomal
degradation, may lead to severe impairment of immune function.
Next, the intermodular connections between DNA damage
response and immune signaling process are also targeted by K.
pneumoniae. Immune signaling networks often form alliances
with DNA damage response system (Gasser and Raulet, 2006;
Nakad and Schumacher, 2016). The disruption of coordination
between these two pivotal processes, i.e., immune signaling
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and DNA damage response, can also lead to severe immune
defects (Gasser and Raulet, 2006; Nakad and Schumacher, 2016;
Bednarski and Sleckman, 2019). Therefore, in a nutshell, we infer
that K. pneumoniae targets several intermodular connections by
targeting the P53 interactome. The disruption of coordination
between these functions can severely impact the immune
response of the host. Furthermore, in our next stage, we have
considered K. pneumoniae-mediated sepsis as a disease model
and build a transcriptional regulatory network based on DEGs
in K. pneumoniae positive sepsis which indicates the role of P53
interactome in host’s transcriptional response to sepsis.

In stage IV, we compared host’s transcriptome under
sepsis and healthy conditions, respectively, and identified
DEGs which are the major source of transcriptional response
to K. pneumoniae-mediated sepsis. Using our computational
work flow (Supplementary Figure 2), we found four pivotal
differentially expressed TFs (EGR1, HIF1A, STAT1, and ETS2)
that are part of the P53 interactome, and control downstream
genes which were further functionally grouped into five
interrelated functional categories including apoptosis, antigen
presentation and processing, response to hypoxia, immune
system, and carbohydrate metabolism (Figure 5). Each of these
functions is correlated with the host’s physiological response
during sepsis and therefore is of utmost importance. We would
therefore concentrate on these five functional subsets of genes.
These five functional gene groups are important for adaptive
as well as maladaptive response of host to K. pneumoniae
infection. However, themain caveat of using host’s transcriptomic
data is that it does not differentiate between K. pneumoniae
specific transcriptional response and general response to bacterial
infections. There are many common infection specific pathways
that are activated during other pathogenic insult as well as
K. pneumoniae specific infection. For instance, the antigen
presentation and processing pathways are activated in response
to other pathogens as well in K. pneumoniae specific infection.
Thus, K. pneumoniae specific response cannot be captured using
the current methodology. But it is evident that many of the
K. pneumoniae-targeted host proteins participate in pathways
that are activated during other pathogenic infections as well and
therefore are not K. pneumoniae specific.

Starting with antigen processing and presentation, it
was reported that severe defects in antigen processing and
presentation due to a reduced expression level of HLA genes
are a common scenario in sepsis (Meisel et al., 2009; Wu et al.,
2017). CIITA and RFX5 co-transactivates the HLA genes (Kern
et al., 1995). In our analysis, we found that K. pneumoniae
TTF, RFX5 severely downregulated in K. pneumoniae positive
sepsis patients. Also, we found that both RFX5 and CIITA
cooperate and regulate the HLA genes responsible for proper
antigen presentation (Figure 5B). Sepsis is primarily caused by
overactivation of the immune system leading to the production
of inflammatory cytokines including interleukins and tumor
necrosis factor (TNF) (Chaudhry et al., 2013; Schulte et al.,
2013). Moreover, TNF is a multifunctional cytokine whose role
in apoptosis and hexose metabolism is also reported (Gupta
and Gollapudi, 2005; Remels et al., 2015). In our results, we
observed that K. pneumoniae targets ETS2 whose expression

has been reported to correlate with TNF alpha production
and inflammation in endothelial cells (Wei et al., 2004; Brooks
and Gu, 2010; Remels et al., 2015). Consistent with this
observation, we in our study also found an important role of
ETS2 TFs in the overproduction of TNF (Figures 5A,C–E).
Apart from immunological alterations, metabolic alterations
also take place in sepsis (Träger et al., 2003; Carré and Singer,
2008; Noritomi et al., 2009; van Wyngene et al., 2018). For
instance, hyperglycemia or high glucose level in the blood
often correlates with the severity of sepsis (van Wyngene
et al., 2018). Hyperglycemia could be a result of inefficient
glucose immobilization in the blood of sepsis patients due to
reduced expression of glycolytic enzymes (van Wyngene et al.,
2018). Here in our analysis, we identified a group of glucose
metabolizing genes including HK2 (hexokinase) and PFKB2
(phospho-fructokinase 2) which are regulated by HIF1A another
P53 interactor and a K. pneumoniae target. HIF1A and EGR1
are also found to jointly regulate hypoxic genes like TFRC
(Transferrin receptors) (Tacchini et al., 1999; Holden et al.,
2016) and Caveolins (CAV1) (Bourseau-Guilmain et al., 2016).
Moreover, as previously mentioned, HIF1A, ETS2, EGR1, and
STAT1 are all associated with deregulation of each of these
functional clusters. Four of these TFs have a close association
with P53 as well in the ITTPPI (Supplementary Figure 1C).

Hence, we in this study provide several lines of indications
that targeting of P53 and the P53 centric interactome (ITTPPI)
might result in inducing host’s transcriptional response against
K. pneumoniae infections. Thus, targeting of P53 centric
interactome might be one of the significant strategies adopted by
K. pneumoniae to subvert host biomolecular machinery.
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Supplementary Figure 1 | (A) Brief workflow of the PPI network analysis

describing the major steps of the methodology used to obtain the TTPPI. (B) The

degree distribution of each of the nodes in the intermodular TTPPI network

showing a high degree of P53 (K = 17) and CDC5L (K = 21). (C) The ITTPPI

comprising of only intermodular interactions between K. pneumoniae-targeted

host proteins. The hexagonal node in the ITTPPI network denotes the hub

proteins P53 and CDC5L. The red rectangular nodes in the ITTPPI network are

the TTFs or key regulators responsible for genetic dysregulation in K. pneumoniae

positive sepsis patients.

Supplementary Figure 2 | Computational workflow showing stepwise regulatory

network analyses.
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