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Abstract

Transition row metal ions are both essential and toxic to microorganisms. Zinc in excess has significant toxicity to bacteria,
and host release of Zn(II) at mucosal surfaces is an important innate defence mechanism. However, the molecular
mechanisms by which Zn(II) affords protection have not been defined. We show that in Streptococcus pneumoniae
extracellular Zn(II) inhibits the acquisition of the essential metal Mn(II) by competing for binding to the solute binding
protein PsaA. We show that, although Mn(II) is the high-affinity substrate for PsaA, Zn(II) can still bind, albeit with a
difference in affinity of nearly two orders of magnitude. Despite the difference in metal ion affinities, high-resolution
structures of PsaA in complex with Mn(II) or Zn(II) showed almost no difference. However, Zn(II)-PsaA is significantly more
thermally stable than Mn(II)-PsaA, suggesting that Zn(II) binding may be irreversible. In vitro growth analyses show that
extracellular Zn(II) is able to inhibit Mn(II) intracellular accumulation with little effect on intracellular Zn(II). The phenotype of
S. pneumoniae grown at high Zn(II):Mn(II) ratios, i.e. induced Mn(II) starvation, closely mimicked a DpsaA mutant, which is
unable to accumulate Mn(II). S. pneumoniae infection in vivo elicits massive elevation of the Zn(II):Mn(II) ratio and, in vitro,
these Zn(II):Mn(II) ratios inhibited growth due to Mn(II) starvation, resulting in heightened sensitivity to oxidative stress and
polymorphonuclear leucocyte killing. These results demonstrate that microbial susceptibility to Zn(II) toxicity is mediated by
extracellular cation competition and that this can be harnessed by the innate immune response.
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Introduction

S. pneumoniae is the world’s foremost bacterial pathogen and a

leading cause of death in young children in developing countries

[1,2,3]. One of the major factors associated with the incidence and

severity of S. pneumoniae infections in these children is dietary zinc

deficiency (a significant ongoing problem in developing countries

[4,5]). Zinc, which occurs as the divalent cation Zn(II), is the

second most abundant transition metal in humans and has crucial

roles in many facets of the immune system [6,7]. The physiological

concentration ranges of Zn(II) range from a few mM to over

100 mM and it has been suggested that Zn(II) interacts with up to

10% of all human proteins [8,9,10]. Zn(II) concentrations are

elevated in response to inflammation and bacterial infection as a

consequence of Zn(II) release from damaged or apoptotic cells,

and from sequestering proteins such as metallothionein. Despite

the requirement of Zn(II) for optimal immune function, diseases in

developing countries associated with Zn(II)-poor status are

predominantly acute respiratory infections, otitis media and

diarrhea [7]. In recent years clinical trials of Zn supplementation

have been undertaken in developing countries and meta-analyses

of multiple trials [11,12] have shown a clear association between

Zn(II) supplementation and a reduction in the incidence and

severity of pneumonia and diarrhea. However, to date no clear

mechanism for the protective effect of Zn(II) has been identified.

Zn(II) is also an essential micronutrient for bacteria, although it

has significant toxicity at high concentrations [13,14,15,16,17].

However, the molecular basis of zinc toxicity remains poorly

defined. Studies from our laboratory have previously demonstrat-

ed that the pneumococcal surface antigen A (PsaA) from S.

pneumoniae has a clear interaction with Zn(II) [18] despite not being

involved in its uptake, which occurs via a distinct Zn(II) ATP-

binding cassette (ABC) permease [19,20]. PsaA is the solute-

binding protein (SBP) of a manganese-specific ABC permease

encoded by the psaBCA locus. Mn(II) is an essential trace element

for both prokaryotes and eukaryotes where it has roles in many

cellular processes [21]. In S. pneumoniae Mn(II) regulates a diverse

array of genes and has been shown to have roles in competence

and in managing oxidative stress [22,23]. Notably, the importance

of Mn(II) for oxidative stress management, beyond its role in

manganese superoxide dismutase, is an area of growing research.

Recently, Mn(II) was shown to be able to substitute for ferrous iron

in a nonredox metabolic enzyme to protect carbon metabolism

under conditions of oxidative stress [24]. Intriguingly, both Mn(II)

and Zn(II) are acquired by SBPs belonging to the Cluster A-1

family [25] of prokaryotic transporters [19]. The tertiary structure
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of the respective SBPs are very similar, although key differences

are present at the metal binding sites [26]. Mn(II) acquisition,

mediated by PsaA, is important for S. pneumoniae growth,

proliferation and virulence [27]. In S. pneumoniae, loss of psaA

results in a massive reduction of virulence in systemic, respiratory

tract and otitis media murine models of infection [27,28,29]. The

importance of Mn(II) for the virulence of bacteria has also been

observed in a number of other pathogens including Bacillus

anthracis, S. pyogenes, and Staphylococcus aureus [30,31,32]. Therefore,

as the S. pneumoniae Mn(II) ABC permease PsaBCA is essential for

growth in vivo, we hypothesized that Zn(II) could compete for

Mn(II) binding, and thereby mediate toxicity by impairing Mn(II)

acquisition.

In this paper, we present the biophysical characterization of

PsaA and show how Zn(II) competition for Mn(II) transport in vitro

impairs growth and renders S. pneumoniae hypersensitive to

oxidative and polymorphonuclear leukocyte killing. We then

illustrate the significance of these findings by showing how in vivo

host Zn(II) concentrations change in response to S. pneumoniae

infection. Taken together, this study presents a new paradigm for

the molecular basis of bacterial susceptibility to Zn(II) toxicity, due

to its extracellular competition for an essential metal ion

micronutrient transporter, and its exploitation in vivo by the host

immune response.

Results

PsaA is a high affinity Mn solute binding protein
We first determined the binding constants (KA) of Mn(II) and

Zn(II) with PsaA using isothermal titration calorimetry (ITC).

Representative binding isotherms of apo-PsaA are shown in Fig. 1A

and B (for further details see Text S1). The derived affinity

constants (1/KA = KD) calculated for 1:1 complexes of PsaA with

Mn(II) or Zn(II) were 3.361.0 nM and 23161.9 nM, respectively.

The ITC data indicated that Zn(II) had an affinity nearly two

orders of magnitude lower than Mn(II), consistent with the role of

PsaBCA in Mn(II) acquisition under physiological conditions.

Nevertheless, the data suggested Zn(II) could compete for PsaA

binding at high concentrations.

Mn(II) and Zn(II) bind to PsaA with no apparent structural
difference to the protein

The crystal structure of PsaA had previously been determined

with Zn(II) tetrahedrally coordinated by the four metal-binding

residues (His67, His139, Glu205 and Asp280) [18] but no

structure for the Mn(II)-loaded protein has been reported. We

crystallized Mn(II)-loaded PsaA and determined its structure at

2.7 Å resolution (PDB ID: 3ZTT). Well-defined and continuous

Figure 1. Biophysical characterization of purified PsaA.
(A) Representative ITC measurements for titration of 4.5 mM PsaA with
40 mM Mn(II). (B) Titration of 20 mM PsaA with 250 mM Zn(II). For each
experiment the rates of heat release are shown above the correspond-
ing plots of integrated heat. Both of the curves were fitted to a single
site (n = 1) model and the KD calculated from replicate experiments
(6 SEM). (C) The overall fold of PsaA with the metal ion shown in purple
between the two domains. (D) The metal binding site. The 2FO-Fc

electron density map (contoured at the 1.0s level) is shown in blue for
the coordinating residues and the metal ion. The Mn(II) is shown as a
purple sphere and the residues are in ball-and-stick representation
(carbon atoms in green, oxygen in red and nitrogen in blue). Also
shown in orange is the anomalous difference Fourier map contoured at
the 5.0 s level, computed using the Bijvoet differences collected at the
manganese K-edge peak wavelength. (E) Thermal stability of PsaA. The
sets of curves show the thermal transition of 10 mM PsaA incubated
with 10 mM Mn(II) or 10 mM Zn(II). The curves are representative of three
independent experiments (n = 3). (F) Thermal stability of PsaA with
increasing Mn(II) concentrations as indicated.
doi:10.1371/journal.ppat.1002357.g001

Author Summary

Dietary zinc deficiency is a global health problem affecting
almost two billion people. Infectious diseases associated
with zinc deficiency include respiratory infections caused
by bacteria, and notably, Streptococcus pneumoniae, which
is responsible for more than 1 million deaths annually. The
association between zinc and immunity is well known, but
the mechanism by which zinc provides protection against
infectious diseases has remained a mystery. Previously, we
found that manganese was essential for S. pneumoniae
growth and its ability to cause disease. Intriguingly, we
also observed that zinc could bind to the manganese
transport protein. Therefore, we sought to determine if
zinc could inhibit manganese transport, and to observe
what the effects would be on S. pneumoniae. We found
that zinc prevented manganese uptake. This slowed
bacterial growth and rendered it hypersensitive to
immune cell killing. We also observed that, during S.
pneumoniae infection in mice, zinc released by the host
increased to concentrations that could compete for
manganese uptake. Our study provides direct evidence
for how zinc is toxic to bacteria by preventing manganese
uptake. Furthermore, we show how this could be
harnessed by the immune system, thereby providing a
scientific basis for the protective effect of zinc against
infectious diseases.

Mechanism for Bacterial Susceptibility to Zinc

PLoS Pathogens | www.plospathogens.org 2 November 2011 | Volume 7 | Issue 11 | e1002357



electron density was observed for the active site residues that

tetrahedrally coordinated the metal ion (Fig. 1C and D), which

was identified as Mn(II) (see Text S2 for further details). The

tetrahedral coordination of Mn(II) is analogous to Zn(II)

coordination in PsaA (Fig. S1) and the structures of other Cluster

A-1 SBPs (Treponema pallidum TroA [33], Synechocystis 6803 MntC

[34], Synechocystis 6803 ZnuA [35] and E. coli ZnuA [26]). Overall,

our structural analysis indicates that PsaA is capable of binding

Mn(II) and Zn(II) with only very minor accompanying structural

changes in the final loaded state (Fig. S1C and D).

Metal ion discrimination within the Cluster A-1 SBPs is

proposed to occur through subtle differences in the binding sites,

Zn(II)-binding being favoured by the presence of three N ligands

(from His residues), and Mn(II)-binding being favoured by two N

(His) and two O (Asp or Glu) ligands [26]. We determined, by

ITC, that Zn(II) binding had a high enthalpy (DH = 218.26

0.4 kcal.mol21) relative to Mn(II) (DH = 27.561.1 kcal.mol21),

as would be predicted by the Irving-Williams series for the stability

of metal ion complexes [36]. However, the preference of PsaA for

Mn(II) is the result of the highly unfavourable entropic

contribution of Zn(II) binding (2TDS = 9.560.4 kcal.mol21)

relative to Mn(II) (2TDS = 24.060.9 kcal.mol21). Thus, the

binding free energies (DG) of the PsaA-Mn(II) and PsaA-Zn(II)

complexes (211.560.2 kcal.mol21 and 28.960.2 kcal.mol21,

respectively) are consistent with both the preference for Mn(II)

under physiological conditions and the observed difference in

affinity of the protein (1 order of magnitude = 1.41 kcal.mol21).

Mn(II) preference for PsaA is, therefore, due to differences in the

entropic contributions.

Metal ion effects on PsaA thermal stability
We employed a thermal stability assay (TSA) to measure the

influence of Mn(II)- and Zn(II)-specific binding on the melting

temperatures (Tm) of PsaA. This assay observes the overall stability

of the folded state of the protein as a function of the Tm. Metal-ion

ligands that bind and stabilise the protein’s quaternary structure

induce a more thermo-stable structure, i.e. a higher Tm. ‘As

prepared’ PsaA (Fig. 1E) was found to have a major transition at

62.1uC, corresponding to the apo-protein, and a minor peak at

72.9uC, corresponding to the co-purifying Zn(II) form (present in ‘as

prepared’ PsaA) (Table S1). This interpretation was confirmed by

analysis of cation-free PsaA binding site point mutants that were

purified as apo-proteins (Fig. S2, Table S1). Co-incubation of PsaA

with saturating Zn(II) increased the overall Tm to 72.9uC (Fig. 1E,

Table S2). In contrast, saturating Mn(II) only increased the Tm of

the apo-PsaA to 65.1uC and did not affect the Zn(II)-PsaA complex.

Titration of Mn(II) with PsaA showed that apo-PsaA demonstrated a

stepwise increase in Tm (Fig. 1F, Table S2) from 63.2uC to 70.2uC,

while the PsaA-Zn(II) subpopulation (72.9uC peak) was not affected

by the Mn(II) additions. In conclusion, the TSA unexpectedly

showed that Zn(II) induced greater thermal stability than Mn(II),

despite Mn(II) having a higher affinity for PsaA.

Extracellular Zn(II) competitively affects Mn(II) uptake in
Pneumococcus

We then sought to determine the phenotypic effect of Zn(II) on

PsaA-mediated Mn(II) uptake. This was assessed by in vitro metal

ion competition assays with wild-type S. pneumoniae and the DpsaA

mutant grown in the presence of differing ratios of Zn(II) in a semi-

synthetic medium. Increasing the Zn(II):Mn(II) ratio slowed

bacterial growth and at very high ratios, i.e. at 1000:1 [1000 mM

Zn(II):1 mM Mn(II)], S. pneumoniae growth was completely

inhibited (Fig. 2A). Growth was restored, albeit heavily delayed,

at Zn(II):Mn(II) ratios of 100:1 and 250:1, while at ratios of 50:1

and 10:1 Zn(II):Mn(II), S. pneumoniae growth was essentially the

same as in the basal medium (Fig. 2A). Growth at inhibitory Zn(II)

concentrations could be reversed by Mn(II) supplementation to a

1:1 ratio relative to the Zn(II) concentration (Fig. 2B), consistent

with a competitive effect of Zn(II) for PsaA. The inhibitory effect of

Zn(II) was also observed on exponential phase growing cells

Figure 2. In vitro metal competition. In vitro growth measurements
of S. pneumoniae wild-type (D39) and DpsaA. (A) Bacteria were grown in
C+Y medium consisting of the following Zn(II):Mn(II) ratios (in mM):
1000:1, 250:1, 100:1, 50:1 10:1, 1:1, and C+Y with 1 mM MnSO4,
respectively. Data are mean (6 SEM) A600 measurements from seven
independent biological experiments (n = 7). (B) Bacteria were grown in
C+Y medium consisting of the following Zn(II):Mn(II) ratios (in mM):
100:1, 250:1, 100:100, 250:250, and C+Y+1 mM MnSO4 supplementation,
respectively. Data are means (6SEM) A600 measurements from seven
independent biological experiments (n = 7). (C) Bacteria were grown in
C+Y medium supplemented with 1 mM MnSO4 until an A600 of 0.3 was
reached. Cells were washed in C+Y medium and then inoculated to an
A600 of 0.2 in C+Y medium consisting of the following Zn(II):Mn(II) ratios
(in mM): 100:1, 300:1, and 1000:1. Data are means (6SEM) A600

measurements from seven independent biological experiments (n = 7).
(D) In vitro growth measurements of the DpsaA mutant. Bacteria were
grown in C+Y medium consisting of the following Zn(II):Mn(II) ratios
(in mM): 100:1, 10:1, and C+Y+1 mM Mn supplementation, respectively.
The wild-type S. pneumoniae D39 grown in C+Y+1 mM Mn supplemen-
tation is shown for reference. Data are means (6SEM) A600 measure-
ments from seven independent biological experiments (n = 7). (E) S.
pneumoniae intracellular Zn(II) accumulation determined by ICPMS.
Data are mean (6 SEM) ng Zn(II)/g cell measurements from duplicate
measurements of 2 independent biological experiments. (F) Intracellular
Mn(II) accumulation determined by ICPMS. Data are mean (6 SEM) ng
Mn(II)/g cell measurements from duplicate measurements 2 indepen-
dent biological experiments. The statistical significance of the
differences in concentrations was determined by a two-tailed unpaired
t-test. P-values of ,0.05, ,0.005 and ,0.0005 are denoted by *, ** or
***, respectively.
doi:10.1371/journal.ppat.1002357.g002

Mechanism for Bacterial Susceptibility to Zinc
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(Fig. 2C). The addition of Zn(II) at ratios of 300:1 and 1000:1

inhibited growth of S. pneumoniae within 120 minutes (2–3

generations). Intriguingly, high ratios of Zn(II):Mn(II) slowed the

growth rate of S. pneumoniae similar to that of the isogenic DpsaA

mutant.

Previously, our group has reported that the phenotypic effects of

a DpsaA mutant include compromised Mn(II) uptake and a slower

growth rate, relative to wild-type S. pneumoniae [28]. As the DpsaA

strain lacks PsaA, and consequently has no functional high affinity

Mn(II) importer, we predicted that the mutant would be

insensitive to Zn(II) competition. Consistent with this hypothesis,

we observed that competitive ratios of Zn(II):Mn(II), e.g. 250:1

(Fig. 2D), had no effect on the already slower growth rate of the

DpsaA mutant.

Extracellular Zn(II) exerted a clear effect on the growth rate of

S. pneumoniae. As this could occur through a number of possible

routes in a complex biological system, we sought to determine if

extracellular Zn(II) was influencing intracellular metal concentra-

tions by conducting inductively coupled plasma mass spectroscopy

(ICPMS) on S. pneumoniae grown in different Zn(II):Mn(II) ratios.

We observed that at the competitive ratio of 100:1, i.e. growth

perturbing, the concentration of Zn(II) was essentially the same as

that at the non-competitive 10:1 Zn(II):Mn(II) ratio (Fig. 2E, Table

S3). This indicated that despite the high concentration of

extracellular Zn(II), intracellular Zn(II) homeostasis was not being

disregulated. The intracellular concentrations of Zn(II) increased

nearly two-fold in the wild-type when grown in the presence of

high extracellular Zn(II) (10:1 and 100:1 Zn(II):Mn(II) ratios).

Although this had no apparent physiological effect, as demon-

strated by the 10:1 Zn(II):Mn(II) ratio, the higher intracellular

concentrations may render S. pneumoniae more susceptible to Zn(II)

toxicity if Zn(II) efflux pathways were blocked or impaired.

Collectively, these data support a model whereby high concen-

trations of extracellular Zn(II) were competitively inhibiting Mn(II)

uptake and, as the intracellular Zn(II) concentration observed for

the 100:1 and 10:1 Zn(II):Mn(II) ratios were essentially the same, it

follows that the intracellular Zn(II) and hence Zn(II) toxicity was

not due to toxic intracellular accumulation.

Zn(II) is not transported via the Psa ABC permease
The lack of significant variation in the intracellular Zn(II)

concentrations between the 100:1 and 10:1 Zn(II):Mn(II)-grown

cells suggested that Zn(II) was not transported by the Mn(II)

permease, despite the affinity of PsaA for Zn(II). This inference is

supported by comparisons with the DpsaA mutant, which lacks a

Mn(II) transporter and had similar intracellular accumulations of

Zn(II) to that of wild-type S. pneumoniae (Fig. 2E, Table S3). Taken

together these data suggest a model where PsaA-Zn(II) binding

results in an irreversible ‘‘dead end’’ complex, the physiological

basis of which could be to prevent Zn(II) leakage into the bacterial

cell through the Mn(II) transporter in the presence of high

extracellular Zn(II) concentrations. In contrast, the Mn(II)-PsaA

complex likely represents a reversible complex that, upon

interaction with the ABC permease, delivers the metal ion into

the transporter and allows apo-PsaA to be released. This model is

consistent with our biochemical observations, which found that

Zn(II) conferred very high thermal stabilisation on PsaA in the

TSA, and that Zn(II) removal required unfolding of the protein, as

it was resistant to dialysis, chelation and Mn(II) competition.

Zn(II) competition reduces intracellular Mn(II) resulting in
up-regulation of PsaBCA expression

ICPMS analysis of S. pneumoniae grown in the 100:1 Zn(II):Mn(II)

ratio showed a five-fold decrease in intracellular accumulation of

Mn(II) (P = 0.002) compared to the 10:1 and 1:1 ratios (Fig. 2F

Table S3). Thus, extracellular Zn(II) was inhibiting Mn(II) uptake

by S. pneumoniae, thereby inducing a phenotype similar to a DpsaA

mutant. However, unlike the mutant strain, the 100:1 Zn(II):Mn(II)-

grown S. pneumoniae had an intact high affinity Mn(II) transporter.

The residual Mn(II) uptake observed in the DpsaA mutant most

likely occurs via non-specific transport.

We then sought to determine what effect competitive ratios of

Zn(II) had on PsaBCA expression. The expression of PsaBCA is

regulated by PsaR, a DtxR family regulator, which represses

psaBCA transcription in response to Mn(II) while de-repression

occurs at low Mn(II) or high Zn(II) concentrations [37]. Under our

experimental conditions, 100:1 Zn(II):Mn(II)-grown S. pneumoniae

demonstrated slower growth and decreased intracellular Mn(II)

compared to 10:1 Zn(II):Mn(II)-grown S. pneumoniae, which had

unaffected growth. An analysis of psaA transcription and psaA

expression found that, in 100:1 Zn(II):Mn(II)-grown cells, both

were highly up-regulated relative to the 10:1 grown cells (Fig. S3A

and S3B). As the intracellular Zn(II) concentrations in both the

100:1 and 10:1 Zn(II):Mn(II)-grown S. pneumoniae were essentially

the same, the observed PsaR-dependent up-regulation of expres-

sion of the psaBCA operon would be most likely due to the Mn(II)

starvation phenotype and similar to that previously observed in the

DpsaA strain [37].

Zn(II) competition heightens sensitivity of S. pneumoniae
to oxidative killing

Mn(II) restriction in S. pneumoniae has two well established

consequences, namely a reduction in oxidative stress response

capability and a concomitant loss of in vivo virulence [23,28,29].

Therefore, to assess whether the Zn(II)-dependent inhibition of

Mn(II) uptake was inducing a DpsaA-like phenotype, we investi-

gated the capacity of 100:1 Zn(II):Mn(II)-grown S. pneumoniae to

tolerate oxidative stress mediated chemically, via paraquat or by

human polymorphonuclear leucocytes (PMNs).

Paraquat is a redox compound that generates superoxide in the

cytoplasm, and survival after exposure requires effective oxidative

stress management [23]. After 30 min. of paraquat exposure both

the 100:1 Zn(II):Mn(II)-grown S. pneumoniae and the DpsaA strain

had significantly lower survival rates (31% [P = 0.046] and 18%

[P = 0.040], respectively) when compared to the Mn(II) replete

wild-type S. pneumoniae (100%) (Fig. 3A). Following the hypothesis

that reduced Mn(II) accumulation results in hypersensitivity to

oxidative stress, we next examined whether this heightened

susceptibility to killing extended to human PMNs (Fig. 3B). Both

the 100:1 Zn(II):Mn(II)-grown S. pneumoniae and the DpsaA strain

had significantly lower survival rates after incubation with PMN

(13.4% [P = 0.0292] and 5.0% [P = 0.0285], respectively) when

compared to the Mn(II) replete wild-type S. pneumoniae (22.3%).

The increased susceptibility of the DpsaA mutant and the 100:1

Zn(II):Mn(II) grown wild-type S. pneumoniae demonstrates that

Mn(II) has a direct role in resisting PMN killing. Taken together

these data show that Zn(II) competitively inhibits intracellular

Mn(II) acquisition in S. pneumoniae leading to significantly increased

susceptibility to oxidative stress, similar to the DpsaA strain.

Infection by S. pneumoniae in vivo elicits an increase in
the Zn(II):Mn(II) ratio

The physiological consequences of Mn(II) deprivation, as a

result of Zn(II) competition in vitro, suggested that S. pneumoniae

survival in vivo could be compromised, similar to the DpsaA strain.

Therefore, we investigated the levels of Mn(II) and Zn(II), and

other cations, in tissue samples collected from naı̈ve and S.

Mechanism for Bacterial Susceptibility to Zinc
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pneumoniae-infected mice. For naı̈ve mice, the ratios of Zn(II) to

Mn(II) in niches that would be subject to colonization by S.

pneumoniae did not exceed ,60:1 (Table 1). Thus, the observed

ratios of Mn(II) to Zn(II) within these physiological niches should

be permissive for Mn(II) acquisition by PsaBCA. For mice infected

with S. pneumoniae, the samples harvested 48 hours post-infection

showed significantly shifted metal ratios, with Zn(II) concentra-

tions increasing in all tissues (Table 1, Fig. 3C). This effect was

largely specific for Zn(II), although minor increases were observed

with Fe(II) in the nasopharynx and the brain and Cu(II) in blood

serum (Table S4). The increase of Zn(II) was most dramatic in

blood serum and the nasopharynx, where the Zn(II):Mn(II) ratio

increased to approximately 900:1 (P = 0.0292) and 330:1

(P = 0.0163), respectively. The lack of variation among the

majority of other metal ions examined (Table S4) indicated that

elevation of Zn(II) has a major role in host response to S. pneumoniae

infection.

These findings were consistent with the earlier study of Strand

and co-workers [38], which found that Zn(II)-deficient mice had

heavier S. pneumoniae nasopharyngeal colonization, compared to

the Zn(II) replete mice, and only Zn(II) deficient mice had S.

pneumoniae bacteremia. The dramatic elevation of Zn(II) observed

in these two tissues, upon infection with S. pneumoniae in our study,

suggested that Zn(II) could compete with Mn(II) (which remained

largely unchanged) for PsaA interaction (Table 1, Fig. 3D) and,

therefore, demonstrate that metal ions have a role in ameliorating

bacterial propagation and dissemination in vivo.

Discussion

Although nearly 30% of all proteins contain metal ions [21], an

excess of certain transition metal ions can exert significant toxicity.

The potential roles of such metals in resisting bacterial invasion are

increasingly being recognized. Notably the importance of copper

in macrophages for bactericidal activity has recently been

demonstrated [39]. Our present study provides the first direct

evidence that extracellular Zn(II) can exert its toxicity towards S.

pneumoniae by competing with Mn(II) for binding to the PsaA solute

binding protein, thereby preventing the acquisition of Mn(II) via

the Psa permease. While our study was being completed, Jacobsen

and co-workers similarly proposed that Zn(II) toxicity results in

cytoplasmic Mn(II) deficiency, but no evidence for the mechanism

was provided [40]. We have shown that Zn(II) competition results

in reduced Mn(II) accumulation and elicits a phenotype nearly

identical that of an isogenic DpsaA mutant. Reduced intracellular

Mn(II) perturbs bacterial growth as the capacity to manage

oxidative stress, which occurs during aerobic growth, is compro-

mised [23,28]. This is particularly noticeable during the outgrowth

of stationary phase cells, which showed impaired growth at

Zn(II):Mn(II) ratios of 100:1 and greater, while exponential phase

growing cells were inhibited at higher ratios, presumably as Mn(II)

was titred out by cell division. This may also indicate that Mn(II)

has distinct intracellular roles at different stages of S. pneumoniae

growth. Very high (.1 mM) concentrations of zinc completely

bacterial inhibited growth and it is likely that under these

conditions Zn(II) toxicity was mediated by mechanisms in addition

to competition for PsaA. Our findings also provide a physiological

rationale for the Zn(II)-dependent regulation of PsaR [37] as a

mechanism for regulating expression of the Mn(II) transporter

during exposure to high levels of the competing cation. Cluster A-

1 SBPs are present in a broad range of pathogenic bacteria, such

as S. pneumoniae, Yesinia pestis, Staphyloccocus aureus, and S. pyogenes

[19,31,32,41], and so the competitive mechanism of Zn(II) toxicity

proposed for S. pneumoniae could also extend to these bacteria.

This investigation also resolves an area of significant confusion

as to the presence of Zn(II) in the original crystal structure of PsaA

[18], which has remained contradictory to all of the physiological

Figure 3. In vitro effects on bacterial survival and in vivo metal
concentrations. (A) Paraquat killing of the S. pneumoniae wild-type
(D39) and DpsaA mutant grown in C+Y+1 mM Mn, and S. pneumoniae
grown in 100 mM Zn(II):1 mM Mn(II) (D39 100:1). Survival was calculated
as a percentage of colonies at 30 minutes compared to 0 minutes. The
experiment was performed with 3 independent biological samples
(n = 3) and data are the means (6SEM). (B) PMN killing of S. pneumoniae
D39 and DpsaA mutant grown in C+Y+1 mM MnSO4, and S. pneumoniae
grown in 100 mM Zn(II):1 mM Mn(II) (D39 100:1). The experiment was
performed in triplicate (n = 3) and shown data are means (6SEM). (C) In
vivo niche Zn(II) comparisons. Zn(II) accumulation determined by ICPMS
from mouse tissues of naı̈ve (n = 5) and S. pneumoniae-infected mice
(n = 10). The statistical significance of the differences in the in vivo
mouse tissue Zn(II) concentrations was determined by a two-tailed
unpaired t-test. (D) In vivo niche Mn(II) comparisons. Mn(II) accumula-
tion determined by ICPMS from mouse tissues of naı̈ve (n = 5) and S.
pneumoniae-infected mice (n = 10). The statistical significance of the
differences was determined by a two-tailed unpaired t-test. P-values of
,0.05, ,0.005 and ,0.0005 are denoted by *, ** or ***, respectively.
doi:10.1371/journal.ppat.1002357.g003

Table 1. Physiological ratios of tissue metal concentrations.

Zn(II)/Mn(II) Ratio

Sample Naı̈ve (n = 5) Infected (n = 10) Fold Change*

Brain 33 93 2.8

Lung 39 96 2.4

Nasopharynx 63 336 5.3

Blood serum 37 905 24.4

*The statistical significance of the differences between the metal ion
concentrations before (naı̈ve) and after (infected) infection for all samples were
analyzed using a two-tailed unpaired t-test. P-values for all analyses were at
least ,0.05.
doi:10.1371/journal.ppat.1002357.t001
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data for the role of the Psa permease in S. pneumoniae. Here we

show PsaA in complex with its physiological ligand and the

difference in the affinities for Mn(II) and Zn(II) confirm its

physiological role in Mn(II) acquisition. Our biophysical charac-

terization also provides an explanation for the presence of Zn(II) in

the original crystal structure. The thermal stabilization data show

that Zn(II) binding induces a highly stabilized from of PsaA and it

is highly likely that this would preferentially crystallize in

comparison to the less thermally stable apo- form of the protein.

This is also consistent with the behaviour of other Cluster A-1

Mn(II)-SBPs, all of which show a preference for Mn(II) but still

retain an interaction with Zn(II), albeit at a lower affinity.

Furthermore, consistent with the lack of solvent access to the

binding site in the metal loaded-PsaA structures, we observed that

Zn(II) could not be extracted from PsaA by chelating agents,

despite the protein’s lower affinity for the metal, or by competition

with Mn(II). This supports our observations that, at high ratios,

Zn(II) binding to PsaA could effectively inactivate the Psa

permease leading to impairment of Mn(II) uptake as shown in

our in vitro studies.

Our study also highlights the importance of Zn(II) during in vivo

infection and implicates a role for Zn(II) in the host immune

response. Dietary zinc deficiency is a global health issue that affects

2 billion people [42] and, in developing countries, zinc deficiency

is associated with a higher burden of respiratory disease [4,43]. In

recent years Zn(II) supplementation therapies have proven to be

efficacious in reducing the incidence of respiratory infections

[4,5,12,43]. These studies have also shown that inadequate dietary

Zn(II) can reduce mean blood serum Zn(II) concentrations by up

to 76%. Thus, dietary Zn(II)-deficiency can significantly reduce

the Zn(II):Mn(II) ratio in the blood and, presumably, other tissues

[4,5,43].

The association between Zn(II) and optimal immune function is

well known and our findings offer a plausible molecular

explanation for the protective role of zinc. We have shown that

Zn(II) concentrations were significantly elevated within 48 hours

of bacterial infection in all niches colonized by S. pneumoniae,

consistent with the importance of Zn(II) in the innate immune

response. Furthermore, a comparison between the naı̈ve and

infected states clearly shows that the alterations in metal ion

concentrations in host niches were essentially Zn(II)-specific with

only isolated changes observed for other trace elements. We

propose that it is likely that the observed increase in Zn(II)

concentration in vivo is due to extracellular release of Zn(II) to

recruit immune effector cells [44,45] and to compete for Mn(II)

acquisition. This inference is consistent with the massive elevation

of the Zn(II):Mn(II) ratio in the nasopharynx and in blood serum,

two niches that were hyper-susceptible to S. pneumoniae colonization

in Zn(II)-deficient mice [38]. Furthermore, our observations are

also consistent with the recent findings of Corbin and co-workers

[13], who found that the Gram-positive pathogen Staphylococcus

aureus had a similar dependence on Mn(II) in abscess tissue, where

the host protein calprotectin was identified as mediating in vivo

Mn(II) restriction. Assessing in vivo metal ion bioavailability

remains a technical challenge, since even in blood serum, metal

ions may be sequestered in proteins and other carrier molecules.

Despite this caveat, which applies to this study and others such as

Corbin and co-workers [13], our data directly implicate the

specific elevation of Zn(II) as a major factor in host response to

infection.

Based on the available data we propose that, during in vivo

infection, Mn(II) bioavailability could be restricted due to

elevation of Zn(II):Mn(II) ratio by the release of Zn(II) from

damaged or apoptotic cells and from sequestering proteins such

as metallothionein. This would initially slow S. pneumoniae growth

while also increasing its susceptibility to oxidative killing, as it is

the ratio, not the absolute concentration of the two metal ions,

that is important. This would be consistent with the requirement

of Mn(II) uptake for S. pneumoniae infection in vivo, as the DpsaA

mutant is totally avirulent [27,28,29]. Zn(II) was released during

infection at high ratios relative to Mn(II) in the nasopharynx and

in blood serum. In our in vitro studies, these ratios were inhibitory

and it is not unreasonable to speculate that these ratios in vivo

could obfuscate Mn(II)-PsaA interactions and thereby induce a

Mn(II)-starvation phenotype in the invading pathogen. The

host release of Zn(II) would have the additional benefit of also

driving recruitment of leukocytes and other components of the

innate immune response [44,45]. The cumulative effect of this

would be that elevation of the Zn(II):Mn(II) ratio in vivo would

also increase the susceptibility of S. pneumoniae to oxidative killing

by immune effector cells, such as PMNs, as we have shown in

vitro, thereby facilitating more efficient defence against the

invading pathogen.

PMNs are a major component of the innate response and in

addition to their oxidative killing mechanisms they contain large

stores, up to 50% of their total protein, of the metal binding

protein calprotectin [46]. Corbin and co-workers [13] first

postulated that calprotectin could be released and directed at

bacterial pathogens as a mechanism for restricting metal ion

availability in vivo. Supporting this inference, they observed that

calprotectin-deficient mice had increased abscess formations and

bacterial burdens relative to infected wild-type animals. Release of

calprotectin by PMNs during the immune response could also

have a significant effect on the Zn(II):Mn(II) ratio, by sequestering

Mn(II). This would increase the susceptibility of invading bacteria

to oxidative killing mechanisms, consistent with both the earlier

suggestions of Corbin and co-workers [13] and in our model for in

vivo Mn(II) starvation of the invading bacterium.

Collectively, this study demonstrates the biophysical basis of

metal specificity for an essential bacterial cell-surface protein and

its importance for bacterial propagation. We have provided direct

evidence of how the usually non-toxic metal ion Zn(II) mediates

toxicity to S. pneumoniae, namely by competition for Mn(II)

acquisition leading to intracellular Mn(II) starvation. Furthermore,

we have provided a molecular explanation for how this could be

harnessed and exploited by the innate immune system to heighten

the bacterium’s sensitivity to immune effector cells. This has great

significance in the context of the nutritional importance of Zn(II)

and its association with optimal immune function.

Materials and Methods

Ethics statement
All procedures performed in this study were conducted with a

view to minimising the discomfort of the animals, and used the

minimum numbers to generate reproducible and statistically

significant data. All experiments were approved by the University

of Adelaide Animal Ethics Committee (Animal Welfare Assurance

number A5491–01; project approval number S-2010–001) and

were performed in strict adherence to guidelines dictated by the

Australian Code of Practice for the Care and Use of Animals for

Scientific Purposes.

Expression and purification of wild-type and mutant
derivatives of PsaA

High-level expression and purification was conducted as

described previously [47]. PsaA was enriched for Mn(II) by

harvesting cells and purification in the presence of 5 mM MnSO4.
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SDS-PAGE and western blotting was conducted as described

previously [28].

Apo-PsaA generation and ICPMS
Demetallated (apo) PsaA was prepared from Mn(II)-enriched

PsaA (50 mM) that was heated to 62.5uC in the presence of

0.5 mM EDTA for 5 minutes. The sample was then cooled for

10 min, centrifuged and 18,000 6 g for 10 min and the

supernatant desalted on a PD10 column (GE Healthcare). The

sample was analyzed for Zn(II) and Mn(II) content by boiling

10 mM protein at 95uC for 20 min in 3.5%, 7% or 14% HNO3.

Samples were analyzed on an Agilent 7500cx ICP-MS (Adelaide

Microscopy, University of Adelaide). Routine treatment used 3.5%

HNO3 as no differences were found in the quantity of metal

released. Apo-PsaA was defined as having less than 10% total metal

content on a mol metal/mol PsaA basis.

Construction and cloning of Glu205RGln and
Asp280RAsn mutants of PsaA

Point mutants were constructed by overlap extension PCR,

essentially as described previously [48]. The mutants were

confirmed to be in-frame by PCR and sequence analysis using

primers flanking each gene in question. The primers used for

construction and validation of the mutants are listed in Table S5.

Overlap extension products were then cloned, in frame, into the

respective restriction sites in pQE30 (Qiagen, Germany).

Biophysical analyses
ITC was performed using a VP-ITC unit (Microcal, USA) with

apo-PsaA, 4.5, 10, 15 or 20 mM, in 20 mM sodium phosphate

buffer, pH 6.5 at 25uC. Samples were centrifuged and degassed

prior to analysis. MnSO4 was injected at 3 min intervals with 56

injections of 4 ml with a 10 second injection time. ZnSO4 was

injected at 3 min intervals with 28 injections of 10 ml with a 20

second injection time. A stir rate of 307 per min was used in both

experiments. Data were analyzed using the Origin 7.0 software

(Microcal) and the parameters (6 SEM) determined. The thermal

shift assay was based on the Thermfluor assay [49] conducted

using 10 mM PsaA in 100 mM MOPS, pH 7.2, 150 mM NaCl,

56 SYPRO Orange (Invitrogen) in the presence of 10 mM to

1000 mM metal, using a Roche LC480 Real-Time Cycler. For

further details see Text S3.

In vitro growth measurements
Frozen stock S. pneumoniae D39 were prepared as described

previously [28]. For in vitro growth measurements, frozen stock

culture was added to C+Y with 1 mM MnSO4 and supplemented

with ratios of metal ions as specified. The starting A600 was 0.05 for

all cultures. For the Zn(II) challenge experiment a frozen stock

culture was added to C+Y with 1 mM MnSO4 to a starting A600 of

0.05 and grown to an A600 of 0.3. Cells were washed with C+Y, pre-

warmed to 37uC, and then reinoculated into C+Y with 1 mM Mn

SO4 and supplemented with 100 mM, 300 mM or 1 mM ZnSO4, to

an A600 of 0.2. Cell growth was then monitored at A600. All analyses

were carried out in at least biological triplicate. Bacteria prepared in

this manner were washed twice, each in 10 volumes of PBS, before

western blotting. For ICPMS analyses cells were washed 3 times,

14,000 x g for 10 min, in PBS +5 mM EDTA and then washed 3

times with PBS. The dry cell mass was determined and the material

boiled at 95uC for 20 min in 3.5%, 7% or 14% HNO3. The metal-

ion containing supernatant was collected by centrifugation at

14,000 x g for 30 min and metal content determined on an Agilent

7500cx ICPMS (Adelaide Microscopy, University of Adelaide).

Routine treatment used 3.5% HNO3 as no differences were found

in the quantity of metal released.

In vivo metal content determination
Outbred 5–6 week old female CD1 (Swiss) mice were used in

these experiments, under the approval of the Animal Ethics

Committee of The University of Adelaide. For metal content

determination in naı̈ve mice (n = 5), samples of nasopharynx,

lungs, blood and brain were harvested as described previously

[50], using PBS only (without trypsin or EDTA). For metal content

determination in mice challenged with pneumococci (n = 10) were

infected intranasally with approx. 107 c.f.u. of S. pneumoniae D39,

following the procedures described previously [50]. Mice were

sacrificed at 48 hr-post-infection and samples of nasopharynx,

lungs, blood and brain of each mouse were harvested and

processed as described previously [50], again using PBS only.

Tissue samples were analyzed for mass, except blood serum, and

boiled in 3.5% HNO3 for 20 min at 95uC. Blood serum was

diluted in 7% HNO3 and boiled for 20 min at 95uC. The metal-

ion containing supernatant was collected by centrifugation at

14,000 x g for 30 min and metal content determined on an Agilent

7500cx ICPMS (Adelaide Microscopy, University of Adelaide).

The tissue concentrations of metal ions were calculated using the

mass or volume of tissue dissolved in HNO3.

Real-time RT-PCR
One-step relative quantitative real time RT-PCR using a Roche

LC480 Real-Time Cycler, was performed as described previously

[48]. The psaA primers are listed in Table S4 and were used at a

final concentration of 200 nM per reaction. 16S rRNA was

employed as a control. Amplification data were analyzed using the

comparative critical threshold (22DDCT) method [48].

Crystallization, data collection and structure
determination

Manganese-enriched IMAC-purified protein was further puri-

fied on a HiLoad 26/60 column. The protein was eluted in 0.2 M

MnSO4, 0.2 M NaCl and 20 mM HEPES/NaOH, pH 7.5 at

20uC. The peak-containing fractions were analyzed for purity

by SDS-PAGE and selected fractions were concentrated to

18 mg.ml21 using Amicon Ultra-4 centrifugal devices (Millipore).

The crystals of the Mn(II)-bound form were optimized by several

rounds of microseeding utilizing the nuclei of Mn(II)-bound PsaA

crystals obtained by vapour diffusion in hanging drops at 18uC
essentially as conducted previously [18]. The seed was introduced

into a drop equilibrated overnight and containing 1 ml of protein

and 1 ml of reservoir solution containing 33% PEG 1500, 0.15 M

SPG buffer pH 4.0, 0.2 M MnSO4 suspended over 0.5 ml of

reservoir solution. SPG buffer was produced by mixing succinic

acid, sodium dihydrogen phosphate, and glycine in the molar

ratios 2:7:7 and pH adjusted by adding 10 N NaOH. Crystals

grew to the maximum size of 200 mm x 200 mm x 100 mm within

7–10 days. For data collection, the crystals were cryoprotected

with 20% glycerol before being flash-cooled by rapid immersion in

liquid nitrogen. The diffraction data were collected on a single

crystal on the MX2 microfocus beamline of the Australian

Synchrotron [51] (Melbourne, Australia) operating at 6545 eV

(for details and refinement statistics see Table S6). For further

details of the data collection and analysis see Text S3.

Bacterial killing assays
Bacteria were grown to an A600 = 0.3 in minimal media with or

without Zn(II) supplementation, washed 3 times with PBS
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+2.5 mM EDTA to remove excess cations and then 3 times with

PBS. Cells were incubated for 30 minutes with 60 mM paraquat

(Sigma-Aldrich) and then serially diluted and plated on blood-

agar. Plates were incubated overnight at 37uC +5% CO2. Survival

was calculated as a percentage of colonies at 30 minutes compared

to 0 minutes. The PMN killing assay was adapted from [52], and

further details are provided in Text S3.

Supporting Information

Figure S1 PsaA-Mn(II) structural comparisons. (A) PsaA-

Mn(II) (PDB ID: 3ZTT) overlayed with MntC-Mn(II) (PDB ID:

1XVL). Superposition was performed using COOT (see Text S2

for further details) using the SSM structural alignment function

(34.2% sequence identity; RMSD = 1.31 Å for 266 Ca atoms).

PsaA shown in green and MntC is in blue. The metal binding site

residues are also shown and the Mn(II) ions are shown as purple

spheres. (B) The metal binding site from S1A is shown in more

detail, with the MntC residues and Mn(II) labels italicised.

(C) PsaA-Mn(II) (green) overlayed with PsaA-Zn(II) (blue) using

COOT (RMSD = 0.496 Å for Ca atoms). (D) The metal binding

site from S1C is shown in more detail. The manganese ion is

shown as a purple sphere and zinc ion is shown as an orange

sphere. The imidazole ring of His-139 is rotated 31 degrees to

accommodate the larger atomic volume of the Mn(II) atom in the

PsaA-Mn(II) structure but this has no effect on the metal ion

distance to the Ne2 ligand.

(TIF)

Figure S2 Thermal stability of PsaA mutants. The

thermal unfolding of the protein was followed by the presence of

the SYPRO Orange fluorescent probe. The samples were pre-

incubated for 10 minutes with the indicated metal ion concentra-

tion and then subjected to thermal unfolding from 25uC to 97uC at

a heating rate of 1uC per minute. The normalized inverse plot of

the first derivative of the fluorescence over temperature allows for

accurate determination of the Tm after background subtraction.

The sets of curves are representative of three independent

experiments. (A) PsaA Gln205 with saturating concentrations of

Mn(II) or Zn(II) (100-fold excess). (B) PsaA Asn280 with saturating

concentrations of Mn(II) or Zn(II) (100-fold excess).

(TIF)

Figure S3 In vitro metal competition effect on psaA
expression. (A) Western blot analysis of lysates of S. pneumoniae

D39 grown in C+Y medium consisting of the following

Zn(II):Mn(II) ratios: 100:1, 10:1, 1:1, respectively. Blots are from

two biological replicates for each growth condition. (B) psaA gene

mRNA concentrations from S. pneumoniae D39 grown in C+Y

medium consisting of different Zn(II):Mn(II) ratios, relative to

concentrations obtained from Zn(II):Mn(II) (1:1) ratio. Real-time

RT-PCR data for the indicated conditions were normalized

against those obtained for the 16S rRNA control. Quantitative

fold differences for the psaA transcript were determined using the

2-DDC
T method30. Data are means (6 SEM) of duplicate reactions

from two biological replicates.

(TIF)

Table S1 Purified PsaA Metal Content (mol metal/mol
protein).

(DOC)

Table S2 Thermal stability of 10 mM PsaA at different
metal ion concentrations.

(DOC)

Table S3 S. pneumoniae metal ion competition.

(DOC)

Table S4 In vivo niche metal concentrations.

(DOC)

Table S5 Oligonucleotide primers used in this study.

(DOC)

Table S6 PsaA-Mn(II) structure data collection and
refinement statistics.

(DOC)

Text S1 Isothermal calorimetric analysis of PsaA.
Interpretation of the ITC analysis of PsaA presented in Fig. 1A

and B.

(DOC)

Text S2 Crystallographic analysis of PsaA-Mn(II). Inter-

pretation of the PsaA-Mn(II) crystal structure presented in Figs. 1C,

D, and S1.

(DOC)

Text S3 Supporting Methods and References.

(DOC)
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