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Abstract 

Background: Metabolic syndrome (MetS) is a multimorbid long-term condition without consensual medical defini-
tion and a diagnostic based on compatible symptomatology. Here we have investigated the molecular signature of 
MetS in urine.

Methods: We used NMR-based metabolomics to investigate a European cohort including urine samples from 
11,754 individuals (18–75 years old, 41% females), designed to populate all the intermediate conditions in MetS, from 
subjects without any risk factor up to individuals with developed MetS (4–5%, depending on the definition). A set of 
quantified metabolites were integrated from the urine spectra to obtain metabolic models (one for each definition), 
to discriminate between individuals with MetS.

Results: MetS progression produces a continuous and monotonic variation of the urine metabolome, characterized 
by up- or down-regulation of the pertinent metabolites (17 in total, including glucose, lipids, aromatic amino acids, 
salicyluric acid, maltitol, trimethylamine N-oxide, and p-cresol sulfate) with some of the metabolites associated to 
MetS for the first time. This metabolic signature, based solely on information extracted from the urine spectrum, adds 
a molecular dimension to MetS definition and it was used to generate models that can identify subjects with MetS 
(AUROC values between 0.83 and 0.87). This signature is particularly suitable to add meaning to the conditions that 
are in the interface between healthy subjects and MetS patients. Aging and non-alcoholic fatty liver disease are also 
risk factors that may enhance MetS probability, but they do not directly interfere with the metabolic discrimination of 
the syndrome.

Conclusions: Urine metabolomics, studied by NMR spectroscopy, unravelled a set of metabolites that concomitantly 
evolve with MetS progression, that were used to derive and validate a molecular definition of MetS and to discrimi-
nate the conditions that are in the interface between healthy individuals and the metabolic syndrome.
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Background
Metabolic syndrome (MetS) is a complex disorder 

that puts together different health conditions. When 

untreated, MetS progressively leads to the development 

of metabolic abnormalities, elevates the risk for cardio-

vascular episodes and, ultimately, increases the mortality 
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[1]. MetS constitutes a first order medical problem with 

a worldwide prevalence between 10 and 40% depending 

on the country or region [2]. �is prevalence is directly 

attributed to unhealthy lifestyle habits, leading to a grow-

ing number of people affected by obesity or diabetes that 

are also associated with the development of MetS.

Albeit its importance, there is no consensus definition 

for MetS, in line with the complex nature of the syn-

drome. �e current diagnostic of MetS is mostly based on 

the coincident identification of at least three from a set of 

known risk factors (RF, Table 1). Several relevant health 

institutions like the World Health Organization (WHO), 

the International Diabetes Federation (IDF), the National 

Cholesterol Education Program-�ird Adult Treatment 

Panel (NCEP:ATP III), the European Group for the Study 

of Insulin Resistance (EGIR), and the American Associa-

tion for Clinical Endocrinology (AACE) differ on which 

risk factors (RF) contribute and/or are essential for diag-

nosing MetS (bold-highlighted RFs in Table  1) [3–8]. 

�ere is consensus on some RF contributing to MetS: 

altered glucose metabolism, obesity, dyslipidemia and 

high blood pressure [9] but it is not clear how many of 

the contributing RF are required to diagnose MetS, nor 

the relation between a given combination of RF and the 

severity of the syndrome. In 2009, a seminal document 

attempted to unify some of the existing definitions for 

MetS and concluded that it emerges only when at least 

three of the abovementioned RF are present, with no sin-

gle one being essential (Harmonized column in Table 1) 

[6]. Cut-off levels for each of the RF were also defined but 

this strategy suffers from the inherent difficulty to obtain 

a causal relationship between a RF and the syndrome.

Another unresolved issue is the putative relation-

ship between MetS and non-alcoholic fatty liver dis-

ease (NAFLD), which is commonly considered to be 

the hepatic manifestation of the metabolic syndrome 

[10], mostly due to their congruent RF. Yet, there is lit-

tle experimental evidence linking both diseases, and 

whether NAFLD and MetS are different expressions of 

the same disease or related comorbidities remains an 

open question.

All these ambiguities underline the need for new more 

objective and accurate signatures of MetS, ideally based 

on molecular and quantifiable descriptors. Metabolomics 

is a powerful tool to investigate MetS since all its con-

tributing RF are expected to significantly alter metabo-

lism [11]. Urine is metabolically very concentrated, not 

homeostatized and the very large number of metabolites 

found in urine may properly account for all the contrib-

uting RF to MetS [12–15]. In turn, NMR is particularly 

adequate for the analysis of complex solutions such as 

plasma, serum and urine [16] and it has been applied to 

study MetS, in serum samples so far [17].

In here, we have investigated MetS by using a large 

cohort of individuals mostly from a Southern Euro-

pean population (two Spanish regions), analysing close 

to 12,000 urine samples by NMR spectroscopy. �e 

cohort includes volunteers of the general population and 

Table 1 Definition criteria for the diagnosis of MetS according to the different organizations

Organizations: WHO: World Health Organization; EGIR: European Group for the Study of Insulin; AACE: American Association of Clinical Endocrinology; NCEP:ATPIII: 

National Cholesterol Education Program-Third Adult Treatment Panel; IDF: International Diabetes Federation

IFG: impaired fasting glucose; IGT: impaired glucose tolerance; FG: fasting plasma glucose; T2DM: type 2 diabetes; WC: waist circumference; WHR: waist-hip ratio; BMI: 

body mass index; TG: triglycerides; HDL-C: HDL cholesterol; BP: blood pressure; m: male; f: female

† Bold highlighted factors are compulsory for the given de�nition. Obtained from refs. [6, 27, 46]

‡ IR: Insulin resistance, de�ned as hyperinsulinemia: top 25% of fasting insulin values among the nondiabetics

§ Family history of T2DM, sedentary lifestyle, advanced age, ethnic groups susceptible to T2DM, polycystic ovary syndrome

WHO EGIR AACE NCEP:ATPIII IDF Harmonized

Glucose metabo-
lism (FG MG/DL)

IGT, IFG, T2DM or 
lowered insulin 
sensitivity†

IR‡

FG ≥ 110
IGT or IFG (but not 

diabetes)†
FG ≥ 100 FG ≥ 100 or

T2DM
FG ≥ 100 or treat-

ment

Obesity (BMI KG/
M2, WC CM)

WHR(m) > 0.90 
WHR(f ) ˃ 0.85 or 
BMI ˃ 30

WC(m) ≥ 94 
WC(f ) ≥ 80

BMI ˃ 25 WC(m) ≥ 102 
WC(f ) ≥ 88

Elevated WC, 
ethnicity, and 
gender speci�c†

Elevated WC, 
population, and 
country specific

Dyslipidemia (TG, 
HDL-C MG/DL)

TG ˃ 150 or HDL-
C(m) ˂ 35 HDL-C(f ) 
˂ 39

TG ˃ 177 or HDL-C 
˂ 39

TG ≥ 150 or  
HDL-C(m) ˂ 40, 
HDL-C(f ) ˂ 50

TG ≥ 150 or  
HDL-C(m) ˂ 40, 
HDL-C(f ) ˂ 50

TG ≥ 150 or 
treatment or 
HDL-C(m) ˂ 40, 
HDL-C(f ) ˂ 50 or 
treatment

TG ≥ 150 or 
treatment or 
HDL-C(m) ˂ 40, 
HDL-C(f ) ˂ 50 or 
treatment

Hypertension (BP 
MMHG)

 ≥ 140/90  ≥ 140/90  ≥ 130/85  ≥ 130/85  ≥ 130/85 or treat-
ment

 ≥ 130/85 or treat-
ment

Other factors Microalbominuria ˃ 
30 mg/g

Not relevant Other risk  factors§ Not relevant Not relevant Not relevant
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patients that presented one or several RF associated to 

MetS. An integrative analysis of this large spectra data-

base allowed corroborating some of the already reported 

biomarkers, reporting novel ones and, most importantly, 

obtaining a metabolic signature of MetS progression and 

identifying the relative contributing risk for each factor.

Methods
Sample cohorts from healthy individuals and patients

A large cohort including individuals (n approx. 12,000) 

with different degree of the MetS was collected from 

this specific study. �is cohort consisted of four different 

subcohorts (OSARTEN, OBENUTIC, PREDIMED and 

KIROLGETXO) recruited in a European country (Spain) 

and another one in different European regions (NAFLD). 

�e relevant data for each subcohort is summarized in 

the Supplementary material (text and Additional file  1: 

Tables S1–S5). �e procedures for sample collection and 

handling were the same one for every subcohort under 

consideration and abided standard operating proce-

dures. Following the Declaration of Helsinki principles, 

all participants in the study provided informed consent 

to clinical investigations, with evaluation and approval 

from the corresponding ethics committee. All data was 

anonymized to protect the confidentiality of participants.

Sample preparation

Samples were stored at − 80  °C and, on the day of the 

analysis, were defrosted at room temperature during 

30 min. Aliquots were centrifuged at 6000 rpm for 5 min 

at 4  °C and then 630 μL of the supernatant were trans-

ferred into a 1.5 mL tube. Subsequently, 70 μL of a phos-

phate buffer (1.5  M  KH2PO4/K2HPO4, 2  mM  NaN3, 1% 

TSP in 70%  D2O, pH 7.4) were added in the same micro-

centrifuge tube to minimize pH variation. �e mix of 

urine and buffer was briefly vortexed and 600 μL of the 

mixture were finally transferred into a 5 mm NMR tube.

NMR measurements

Experiments were performed as previously described 

[18, 19]. In brief, two complementary experiments were 

recorded per sample: a one-dimensional (1D) 1H spec-

trum with water presaturation for metabolite quantifica-

tion and a two-dimensional (2D) J-resolved 1H spectrum. 

For selected samples, a 2D 1H,1H- TOCSY (TOtal Cor-

relation SpectroscopY) spectrum was also recorded to 

confirm metabolite identification. Metabolites were iden-

tified from the 1D 1H NMR spectra using the Chenomx 

NMR software (version 8.6) and corroborated by experi-

mental spiking when necessary.

Filtering of samples

A multivariate clustering algorithm, DBSCAN (Den-

sity-based spatial clustering of applications with noise), 

was used with bins as input variables after Pareto scal-

ing. After filtering and validation of the general char-

acteristics, a total of 9,367 (94%), 960 (98%), 465 (96%), 

246 (100%) and 101 (100%) of the samples for the 

OSARTEN, PREDIMED, OBENUTIC, NAFLD and 

KIROLGETXO subcohorts were further considered as 

valid samples.

Statistical analysis

A cohort composed of OSARTEN, OBENUTIC, and 

PREDIMED subcohorts was used to analyse the 16 

pathological conditions. A principal component analy-

sis (PCA) was used to summarize and visualize (by PC 1 

and 2) each condition, which was represented by its aver-

age profile. Each pathological condition was compared 

with the apparently healthy (0000) one. �is comparison 

employed Wilcoxon nonparametric hypothesis testing 

for each bin to identify those with a statistically signifi-

cant difference (p-value < 0.05), after adjustment by the 

False Discovery Rate (FDR) method to control for Type 

I errors due to multiple comparisons. Binary logarithms 

of fold-changes  (log2FC) were used to quantify the mag-

nitude and direction of differences. Fold-changes were 

calculated as the average of a variable within the target 

condition divided by its average within the apparently 

healthy condition.

Different conditions and bins were clustered and 

organized as dendrograms in heatmaps, using hierar-

chical clustering by the complete-linkage method and 

Euclidean distances. To quantify differences between 

average profiles of conditions, a multivariate Euclidean 

distance (with autoscale) was calculated between the 

apparently healthy and all other conditions. Resulting 

distances were scaled (range 0 to 1) and translated into a 

colour code for a graph connecting the different adjacent 

conditions, which was generated with igraph (R package 

version 1.2.6).

Classi�cation models for MetS

For each available MetS definition a binary classification 

model was built, with heatmap selected bins as input and 

MetS diagnosis (no/yes) as output. �e data was ran-

domly divided into training (75%) and testing (25%) sets. 

�e performance was summarized in ROC curves for 

each MetS definition, including their AUCs with pertain-

ing 95% confidence intervals and cut-off points to maxi-

mize the Youden index with associated specificity and 

sensitivity parameters.
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Microalbuminuria analysis

A semi-quantitative analysis using a test strip was done 

to each urine sample for the detection of proteinuria. �e 

output results were considered as negative/positive if the 

value of proteinuria (identified as microalbuminuria) was 

lower/higher than 10 mg/dL.

Results
Setting the problem

To investigate the molecular signature of MetS, we first 

identified the RF that may contribute to the syndrome 

from the general characteristics of the donors. Four 

factors have well-known association with the develop-

ment of MetS and they have been included in this study 

(Table  1): alterations in glucose metabolism, obesity 

(determined from BMI since waist circumference was 

inaccessible), dyslipidemia and hypertension. �e WHO 

also considers microalbuminuria as a potential RF, but it 

is not routinely determined in all the medical check-ups 

and we have evaluated its putative influence in MetS with 

an independent sub-study (vide infra).

Our study was designed not only to investigate the con-

tribution for each of the RF to MetS independently, but 

also to evaluate all their possible combinations, a total 

of 16  (24) different conditions. We used a nomenclature 

for the conditions where the digits represent the four risk 

factors  (RF1  RF2  RF3  RF4), binary coded by "1" or "0" to 

indicate that the given factor is present or absent in the 

condition (Table  2). According to this notation, a 0000 

sample would originate from an apparently healthy sub-

ject while, for instance, a sample encoded as 1011 would 

belong to a patient that has diabetes, dyslipidemia and 

hypertension, but no obesity. A quantitative definition for 

the inclusion criteria for each of the RF is also listed in 

Table 2.

Additional file  1: Table  S6 shows the number of sam-

ples allocated to each condition (including OSARTEN, 

PREDIMED and OBENUTIC subcohorts), also stratified 

by sex. �e apparently healthy condition is more preva-

lent than the rest of conditions, due to the characteristics 

of the OSARTEN subcohort, formed of active popula-

tion. Even though some conditions are less prevalent, 

the number of samples in each condition is enough to 

reach high statistical power. In the worst case (1110, with 

62 samples), it is still possible to detect a Cohen’s small-

medium effect size with more than 80% power in com-

parisons with the apparently healthy condition.

The urine 1H NMR spectrum is sensitive to MetS

NMR-based metabolomics of urine allows the quanti-

fication of several hundreds of metabolites that include 

central metabolism, xenobiotics, metabolites from 

microbiota and nutrition derivatives among others [20] 

and, therefore, is an optimal source of information for 

the metabolic characterization of MetS. An unsuper-

vised PCA analysis of the urine NMR spectra of the dif-

ferent subcohorts (Additional file 1: Figure S1) reported 

no significant differences, validating their full inclusion 

in the study. From all classified spectra, an average spec-

trum was composed for each of the 16 conditions. A 

PCA analysis of their mean profiles (Fig. 1A) shows that 

all conditions separate well in 2D principal components 

space, highlighting a differential manifestation of RF in 

the urine spectrum. Interestingly, four well-differenti-

ated clusters of conditions can be observed in the PCA 

plot, that always discriminates well between diabetes and 

hypertension (coloured ellipses in Fig.  1A), consistent 

with previous observations [15], while obesity and dys-

lipidemia are separated only within each cluster, indicat-

ing a lower level of modification of the urine metabolites 

induced by these two factors [21, 22].

Based on these results, we then compared each condi-

tion to the apparently healthy one (samples from individ-

uals with 0000). �e heatmap in Fig. 1B shows the results 

obtained from the univariate analysis of the acquired 

urine samples, considering the intensity of the spectral 

bins as variables. �e conditions (in the abscise axis) 

and the bins/metabolites (in the ordinate axis) have been 

sorted according to unsupervised cluster analysis. �e 

bins have been assigned to the contributing metabolites 

and up to 17 different metabolites (and one unassigned 

bin) contribute to the discrimination of the conditions 

(Table  3). For the metabolites that are present in more 

than one bin, the most significant bin was used for the 

metabolite quantification. For each condition, the p-value 

indicates the statistical significance of the variation with 

respect to apparently healthy individuals (see asterisks 

inside the squares), while the fold change is colour-coded 

according to the bar legend: a red/blue value in the heat-

map indicates up/down regulation of the bin. In most 

cases, all the bins that correspond to a given metabolite 

produce consistent fold changes, while the small differ-

ences observed in the magnitude of the fold change can 

be attributed to the metabolic heterogeneity of certain 

bins. Yet, citric acid shows upregulation at the 2.66 ppm 

bin and downregulation at the 2.57  ppm bin (Fig.  1B). 

�is is explained by the large sensitivity of citric acid to 

pH and osmolarity, that produces small changes in the 

chemical shift and the intensity of the (outer) bins vary 

accordingly (Additional file 1: Figure S2) [23].

Several important conclusions can be extracted from 

the heatmap: (i) MetS emerges as a complex metabolic 

scenario where some metabolites upregulate and some 

others are downregulated in urine, (ii) the (unsupervised) 

cluster analysis sorts the conditions in a way that natu-

rally progresses towards the consensus definition of MetS 
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(i. e., the conditions with more RF = 1 fall in the right side 

of the heatmap and vice versa); (iii) the metabolic vari-

ation is concomitant to the progression towards MetS, 

with close-to-linear variations of the metabolite concen-

trations as a function of the conditions; and (iv) most of 

the pertinent metabolites are related to the molecular 

pathophysiology of the RF under consideration (Table 3): 

aromatic amino acids and histidine have been already 

associated to MetS [24–26]; insulin resistance is obvi-

ously related with an increase in glucose [27] and/or with 

elevated urine levels of p-cresol sulfate [28]; hyperten-

sion is associated with low imidazole concentrations [29, 

30]; upregulation of steroid lipids is a hallmark for dys-

lipidemia and obesity [31–34] and a set of the discovered 

metabolites are related to obesity [35], salicyluric acid 

[36] and trimethylamine N-oxide (TMAO) [37, 38]). In 

turn, we also associate here, for the first time, some other 

dysregulated metabolites to MetS: methylhippuric acid, 

maltitol, 4-hydroxyphenylpyruvic acid (4-HPPA), trigo-

nelline, quinolinic acid and nicotinuric acid.

Towards a molecular discrimination of MetS

To further illustrate the relationship between the 

observed metabolic changes and MetS, in Fig.  1C we 

sketched a correlation map where adjacent conditions 

differing by only one RF are connected by lines and col-

oured by their Spearman’s correlation distance to the 

apparently healthy condition (0000), as indicated. �e 

graph shows once more that the variation of the urine 

metabolome (colors in Fig.  1C) agrees well with MetS 

progression (raising number of RF = 1). Furthermore, 

the graph also reveals that not all the factors equally con-

tribute to MetS progression; instead, for a given number 

Fig. 1 Univariate and Multivariate analyses for the MetS subtypes. A PCA for the mean profiles for the 16 conditions under consideration. Each 
condition contains (or not) the risk factor according to Table 1. Color ellipses indicates clusters for subjects with: diabetes (green), hypertension 
(purple), both factors (yellow) or none of the two (blue). B Heatmap for the different conditions as compared to the apparently healthy condition 
(0000). The conditions (in the abscise axis) and the bins/metabolites (in the ordinate axis) have been sorted according to cluster analysis. The 
relevant bins that contributed to the heatmap have been assigned to the corresponding metabolite, as indicated. The fold change is colour-coded 
according to the bar legend. For each condition, the statistical significance of the variation with respect to apparently healthy individuals is 
determined by the p-value, shown inside the squares. C Spearman correlation distances to the healthy condition for all the conditions. Colours 
represent the distance to the apparently healthy (0000) condition, as indicated in the legend. The lines connect adjacent conditions. MetS definition 
according to WHO, EGIR and AACE is represented by squares and triangles; definition from NCEP:ATPIII and Harmonized is represented by squares, 
triangles and rhombus; definition by IDF is represented by squares and rhombus. 4-HPPA: 4-hydroxyphenylpyruvic acid; TMAO: trimethylamine 
N-oxide. The orange ellipse embraces all the conditions that would correspond to MetS according to our metabolic definition
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of accumulated RF, certain progression pathways are 

more pathogenic than others. �is was used to generate 

a molecular signature of MetS (1111, 1101, 1011 & 1001; 

orange-highlighted in Fig. 1C), that partially differs from 

the MetS definitions, based on symptom accumulation. 

For instance, the conditions 1110 and 0111 are both con-

sidered as MetS by many definitions, but they would fall 

in an intermediate position between MetS and an appar-

ently healthy metabotype, according to our analysis. On 

the other hand, condition 1001 (with just hypertension 

and diabetes) is metabolically closer to MetS despite 

being generally considered as non-MetS.

We have also used the spectral database to create met-

abolic models of MetS (see Research Design and Meth-

ods for details) adapted to the different criteria used to 

define the MetS. To that end, we have first identified the 

number of cases with MetS condition, according to the 

different definitions, and using the general character-

istics of the curated pool of 10,792 subjects. Only three 

out of the five different definitions from Table  1 can be 

truly distinguished with the general characteristics avail-

able in our cohort (here called independent definitions). 

Specifically, the MetS definition according to the WHO, 

EGIR and AACE are represented by the cluster of 1111, 

1011, 1101 and 1110 conditions (squares and triangles 

in Fig. 1C); the MetS definition from NCEP:ATPIII and 

Harmonized are represented by the former conditions 

plus 0111 (squares, triangles and rhombus in Fig.  1C), 

and the IDF MetS definition is represented by the 1111, 

1101, 1110 and 0111 conditions (squares and rhombus in 

Fig. 1C). Using these classifications, we found 642 cases 

for the NCEP:ATPIII or Harmonized definitions, 552 

cases for the IDF definition and 494 cases for the WHO, 

EGIR or AACE definitions. Subsequently, we used the 

spectral information collected from the urine samples to 

train and test three metabolic models that maximizes the 

differences between the MetS and non-MetS conditions, 

one per independent definition and using 75% (8,094) 

/25% (2698) samples as training/validation cohorts. Fig-

ure  2A–C shows the ROC curves for the three models 

under consideration. Moreover, we have scrutinized the 

cohort, calculating its probability of undergoing MetS, 

for the three models/independent definitions (Fig.  2D–

F). Specifically, after applying each model, samples were 

scored with a "MetS probability" between 0 and 1. �e 

figure represents the distribution of these scores as a 

smoothed histogram (kernel densities). �ese plots evi-

dence that people without MetS tend to cluster together 

in the region of low scores while people with MetS tend 

to be spread mainly along high score regions, also reflect-

ing the heterogeneity of the syndrome. �e results show 

that the models, based solely on the metabolomic analysis 

of urine samples, can identify MetS, in excellent compli-

ance with all three independent definitions, with AUROC 

values between 0.83 and 0.87. We believe that the dis-

crepancies reflect the differences between our molecular 

Table 3 Summary of metabolites discriminating MetS

n.a: not applicable

* For metabolites with more than one associated bin, those results with the higher abs(log2FC) are showed

† Binary logarithms of fold-changes (log2FC), their 95% con�dence intervals and p-values were calculated between MetS and non-MetS conditions

‡ Numbers in parentheses represent the bibliographic reference where this metabolite is related to the pertaining RF

§ 4-HPPA: 4-hydroxyphenylpyruvic acid; TMAO: trimethylamine N-oxide

Metabolite* Variable importance in 
the model

log2FC†
P-value† Associated  RF‡

Glucose 1056.86 1.66 (1.37, 1.94) 5.88e−97 RF1, this study and definition

Formic acid 436.74 − 0.79 (− 0.87, − 0.71) 3.53e−77 n. a

Steroid lipids 364.47 0.57 (0.3, 0.86) 3.68e−31 RF3, this study and definition

TMAO§/1-Methyluric acid 218.32 − 0.54 (− 0.7, − 0.38) 1.58e−30 RF2 [47]

Trigonelline 201.66 − 0.4 (− 0.5, − 0.3) 1.38e−06 RF2 [48]

Tryptophan 198.95 − 0.38 (-0.44, − 0.31) 1.38e−38 RF2 [48]

Quinolinic acid 192.41 0.41 (0.24, 0.59) 1.99e−17 RF2 [36]

Imidazole 184.05 − 0.57 (− 0.7, − 0.43) 1.20e−26 RF4 [29]

Histidine 181.71 − 0.56 (− 0.75, − 0.37) 8.42e−16 RF4 [29]

4-HPPA§/p-cresol sulfate 171.38 0.53 (0.4, 0.67) 1.56e−19 RF1 [43]

Salicyluric acid 164.22 0.42 (0.29, 0.56) 8.77e−14 RF2 [48]

Maltitol 155.43 0.65 (0.45, 0.85) 2.22e−05 RF1 [28]

Methylhippuric acid 153.23 − 0.45 (− 0.54, − 0.36) 3.79e−21 n.a

Nicotinuric acid 146.41 − 0.38 (− 0.5, − 0.27) 1.18e−09 RF2 [48]
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signature and the standard definitions for MetS. Indeed, 

while all independent definitions are largely consistent 

with our derived MetS metabotype, those including insu-

lin resistance as mandatory criteria perform slightly bet-

ter. �is result is consistent with the statistical distance 

of the adiabetic 0111 condition that appears closer to the 

apparently healthy group than to full MetS (Fig. 1C). �is 

condition is included in the NCEP:ATPIII, IDF and Har-

monized definitions.

Finally, the heatmaps segregated by gender (Addi-

tional file  1: Figure S3) renders equivalent results than 

the one obtained for the entire cohort (Fig. 1B), indicat-

ing that sex is not affecting the metabolic characteriza-

tion of MetS. In turn, aging is a well-known risk factor for 

many diseases, including MetS [39]. �e OSARTEN and 

OBENUTIC subcohorts are well-balanced in age while 

the PREDIMED cohort is older on average. A potential 

caveat is, therefore, that our metabolic model might par-

tially monitor the aging process. To discard this pitfall, 

we also analysed an independent cohort (KIROLGETXO) 

that was not used in deriving our metabolic model and 

sampled a senior population (age between 60 and 85) 

with healthy lifestyle including regular sport activities. 

Not surprisingly, this cohort is enriched in people with 

none (n = 34) or only one MetS risk factor (n = 40) (Addi-

tional file 1: Table S4), and our metabolic model accord-

ingly indicates only a very low probability for suffering 

MetS (Fig. 3A).

The role of microalbuminuria and impaired renal function 

in MetS

As the WHO considers microalbuminuria as an RF for 

MetS, we also analysed the proteinuria values (> 10 mg/

dL) for all the urine samples from the OSARTEN 

cohort. Since albumin is the main protein of the urine, 

we equated microalbuminuria with proteinuria. �e 

OSARTEN cohort is large enough to represent most of 

the MetS conditions with sufficient statistical signifi-

cance, despite being strongly biased towards the appar-

ently healthy and more healthy conditions. Additional 

file  1: Figure S4 shows how the percentage of microal-

buminuria increases as the condition approaches the full 

MetS condition (1111, at the right of the plot). �is result 

suggests that microalbuminuria is related to MetS, as 

acknowledged by the WHO and consistent with previous 

reports relating hypertension and elevated proteinuria 

Fig. 2 Probability distribution of the MetS models. A–C Receiving Operating Characteristic (ROC) curves for the three definitions under 
consideration: WHO, EGIR and AACE (A), NCEP:ATPIII and Harmonized (B), and IDF (C). D–F Smoothed histograms (kernel density based) showing 
the probability distributions of the MetS model applied to the full cohort for the three definitions under consideration: WHO, EGIR, and AACE 
(D), NCEP:ATPIII and Harmonized (E), and IDF (F). Red and green colours indicate that the sample has/doesn’t have MetS according to the given 
definition, as indicated
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[40]. Yet, at worst (i.e., in condition 1111), only 10% of the 

samples show microalbuminuria, showing it to be only a 

secondary risk factor in the aetiology of MetS.

For the OSARTEN II and OBENUTIC cohorts, the esti-

mated glomerular filtration rate (E-GFR) was determined 

from the available serum creatinine concentrations using 

the Chronic Kidney Disease Epidemiology Collaboration 

equation [41]. �e values were sorted according to the 

G1-G5 scale (Additional file 1: Figure S5): most individu-

als (75%) fall in G1 category (normal or high GRF), 24.8% 

fall in G2 category (mildly decreased) and a residual per-

centage of individuals fall in G3a or G3b categories. None 

of the subjects have severely decreased GFR (G4) neither 

show kidney failure (G5). �ese results indicate that the 

observed metabolic changes are not biased by impaired 

renal function.

Metabolic relationship between NAFLD and MetS

We have also investigated the putative relationship 

between MetS and NAFLD, the latter without dis-

criminating between non-alcoholic fatty liver (NAFL) 

and NASH. Most of the RF defining MetS contribute 

to NAFLD progression and whether NAFLD is indeed 

the hepatic manifestation of NASH, as previously sug-

gested [10], remains an open question. We analysed a 

cohort of 234 urines from patients with NAFLD, diag-

nosed and staged by liver biopsy, the reference method 

for the characterization of the disease [42]. Based on the 

WHO, EGIR and AACE criteria, samples were classi-

fied in two subcohorts: NAFLD with MetS and NAFLD 

without MetS. We then used our metabolic model to 

predict the probability of MetS for the two subcohorts. 

Figure 3B shows the pertaining probability distributions 

for the general population (apparently healthy, 0000), the 

NAFLD without or with MetS subcohorts and the MetS 

population (with unknown status about NAFLD). As 

expected, the NAFLD without MetS subcohort indeed 

shows a low probability for having MetS on average, with 

a very similar distribution to the general population (also 

without MetS), implying that the NAFLD associated 

metabotype differs from the one for MetS. �is result is 

consistent with the lack of association between transami-

nase levels and MetS patients [24]. In contrast, the 

NAFLD with MetS subcohort shows a complex probabil-

ity distribution, highlighting the fact that a simultaneous 

presence of NAFLD and MetS confounds the metabolic 

definition for the syndrome, suggesting a partial overlap 

of associated metabotypes in line with their common risk 

factors. Taken together, our results suggest that MetS and 

NAFLD may be comorbidities with distinct metabolic 

profiles, albeit with some overlapping features.

Discussion
Our goal was to investigate the molecular signature of 

MetS in a large European cohort having a wide-range 

of MetS-related phenotypes. In here, we provide an 

unprecedented study using NMR spectroscopy and over 

a very large cohort of urine samples, specifically designed 

to populate all the possible intermediate conditions 

between healthy volunteers and MetS patients, the lat-

ter being characterized by the accumulation of RF and 

not biased by any specific definition of the syndrome. 

Remarkably, we always found a smooth but monotonic 

Fig. 3 The effect of senior and NASH populations in MetS. A 
Probability distributions of suffering MetS calculated from the 
metabolic model for: general population (individuals with 0000, 
green), senior population with no risk factors (light green), senior 
population with 1RF (orange); population with MetS (blue). B 
Probability distributions of suffering MetS calculated from the 
metabolic model for: general population (individuals with 0000, 
green), MetS population (according to WHO definition, purple), NASH 
without MetS (orange), and NASH with MetS (blue)
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metabolic variation for a specific set of metabolites (Fig. 4 

and Table 3), well-reflecting the progressive deterioration 

of the metabolism due to the accumulation of RF towards 

MetS. Any case, not all these factors contribute equally 

to MetS progression, providing a molecular signature of 

the syndrome, as highlighted by the risk factors enclosed 

in the orange ellipse in Fig. 1C. �is molecular definition 

of MetS (conditions 1001, 1011, 1101 and 1111) may be 

of particular interest in the discrimination of conditions 

that are in the interface between healthy individuals and 

MetS patients.

Our molecular signature of MetS considers the prob-

lems with the metabolism of the glucose as a compul-

sory risk factor for MetS, in line with WHO definition. 

�ey include insulin resistance and are related with the 

pre-diabetic and diabetic state. �ese problems are well-

reflected in our analysis by the high levels of glucose 

found. Other related metabolites include p-cresol sulfate, 

a uremic toxin that originates from tyrosine metabolism 

by intestinal microbes, also associated with insulin resist-

ance [28], and 4-HPPA is also involved in this pathway. 

Finally, maltitol is a polyol used as a sugar derivative rec-

ommended in individuals at risk of T2D [43].

We also found hypertension a compulsory risk fac-

tor of MetS. Consistently, almost 80% of the patients 

affected by MetS present elevated blood pressure [44]. 

Lowered histidine and imidazole levels could be linked 

to an impairment in the concentration of the endogenous 

ligands of the imidazoline and α2-adrenogenic receptor, 

ultimately associated to hypertension episodes [29, 30]. 

In turn, dyslypidemia, directly reflected in the elevated 

levels of lipids in urine [24, 25] and obesity, monitored 

by abnormal levels of TMAO, trigonelline and salicyluric 

acid, contribute to MetS but they would not constitute 

essential risk factors according to our molecular signa-

ture of MetS.

Fig. 4 A molecular signature for MetS. All the risk factors that contribute to MetS have at least one metabolite in urine that is altered and 
contributes to the MetS metabotype. Such characteristic metabotype has been used to create a metabolic model to predict the probability 
of suffering MetS from the NMR analysis of a urine sample. Red and blue arrows correspond to up- and down-regulated metabolites in urine 
respectively. Created with BioRender.com
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�e large number of samples in our study allowed to 

derive consistent metabolic models for discriminating 

MetS, adapted to the current existing definitions, and 

based only on a straightforward urine analysis by 1H 

NMR spectroscopy (with no need of adding characteris-

tics from the individual). �e target setting for our mod-

els was to compare our molecular definition of MetS with 

the current diagnostics for the syndrome (Table 1), add-

ing a molecular dimension to its definition. All existing 

definitions, based on slightly differing sets of risk factors, 

agree well with our derived metabolic profile, with high 

AUROC values for discrimination ranging between 0.85 

and 0.92, performing better than a previously reported 

model [45]. Here, the WHO, EGIR, and AACE defini-

tions including diabetes as a compulsory risk factor for 

MetS condition agree best with our predictions from 

urine metabotyping, presumably owing to the important 

weight of urinary glucose in the metabolic model. Actu-

ally, the AUROC values would raise up to 0.86–0.92 if 

hyperglycemia is defined as glucose higher than 110 mg/

dL (instead of 100  mg/dL, Additional file  1: Figure S6). 

Finally, our results also show a significant propensity for 

albuminuria in individuals with MetS, again in agreement 

with the WHO definition.

Finally, we also compared our urinary metabolic model 

for MetS, obtained from a vast and well-balanced sample 

cohort with the vast majority of them showing normal 

transaminase values, with an independent subcohort of 

NAFLD patients diagnosed by biopsy. While the results 

show a certain overlap of metabolic profiles between 

MetS and NAFLD, in agreement with their shared symp-

tomatology, our MetS model can distinguish exclusive 

NAFLD condition without MetS comorbidity (Fig. 3B).

Limitations of the study

�e study is under the assumption that urine is sensitive 

to all the factors that contribute to MetS. Specifically, 

obesity and dyslipidemia induced lower changes, that 

could also be related to their intrinsic metabolic vari-

ability. Even though we found metabolites associated to 

all the risk factors in MetS, the inclusion of metabolomic 

information from other matrices (i. e. serum) is desirable.

Conclusions
In summary, we have demonstrated that NMR-based 

metabolomics of urine samples can identify individuals 

with MetS condition. �e relevant metabolites for dis-

crimination are associated with all contributing risk fac-

tors, thus providing a holistic molecular signature for the 

metabolic syndrome. �ese results may improve clinical 

decision making and potentially guide early intervention 

in this important syndrome.
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