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Abstract: The cobalt–seleno-based coordination complex, [Co{(SePiPr2)2N}2], is reported with re-

spect to its catalytic activity in oxygen evolution and hydrogen evolution reactions (OER and HER,

respectively) in alkaline solutions. An overpotential of 320 and 630 mV was required to achieve

10 mA cm−2 for OER and HER, respectively. The overpotential for OER of this CoSe4-containing

complex is one of the lowest that has been observed until now for molecular cobalt(II) systems, under

the reported conditions. In addition, this cobalt–seleno-based complex exhibits a high mass activity

(14.15 A g−1) and a much higher turn-over frequency (TOF) value (0.032 s−1) at an overpotential of

300 mV. These observations confirm analogous ones already reported in the literature pertaining to

the potential of molecular cobalt–seleno systems as efficient OER electrocatalysts.

Keywords: cobalt complex; electrocatalysis; water splitting; hydrogen evolution; oxygen evolution

1. Introduction

Over the past few decades, research interest in materials design and synthesis, the
applications of which can be channeled towards sustainable energy generation and storage,
has increased tremendously, due to the continuing depletion of fossil fuels. Research
work on these materials has primarily focused on identifying earth-abundant non-precious
metal-based resources affording sustainable energy conversion from renewable sources
such as the sun, wind and water. Among these, water splitting capable of generating clean
hydrogen fuel on-demand has attracted considerable interest due to its wide range of ap-
plicability in various technologies including fuel cells, solar-to-fuel energy conversion, and
water electrolyzers [1,2]. Electrocatalytic water splitting comprises two primary reactions
occurring simultaneously: a hydrogen evolution reaction (HER) at the cathode, and an oxy-
gen evolution reaction (OER) at the anode. The latter reaction is an energy intensive process
involving multi-step proton-coupled electron transfer steps, and is thermodynamically less
favorable, making it a major barrier for the advancement of these technologies [3].

Owing to the slow kinetics of oxygen evolution reactions (OER), catalysts are typically
used to reduce the activation energy barrier as well as stabilize intermediate adsorption
on the catalyst surface. Among these, precious metal-based systems such as iridium and
ruthenium oxides are considered as state-of-the-art OER catalysts, while platinum-based
materials are best for HER, with only a moderate activity towards OER. The use of precious
metal based-oxides, however, is a severely limiting factor for widespread commercial
applications due to their high cost and scarcity [1]. Consequently, the search for robust and
efficient OER and HER catalysts based on abundant non-precious transition elements has
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attracted considerable attention. Numerous types of such catalysts have been investigated
with an aim to replace precious metal-based electrocatalysts without compromising either
catalytic efficiency or stability.

Among the transition metals, cobalt-based electrocatalysts have emerged as an at-
tractive class of non-precious metal-based catalysts for electrochemical water oxidation
reactions, due to their abundance, stability, and more importantly superior catalytic perfor-
mance [4]. Some of the most promising cobalt-based compounds identified as cost-effective
and efficient catalysts for OER and HER are oxides [5–7] and chalcogenides (CoxEy; E = S,
Se, Te) [8–12]. A lot of cobalt selenides of the generic formula CoxSey have been reported
to exhibit promising electrocatalytic activity for either HER or OER or both. Huge progress
has also been made in efforts to develop bifunctional cobalt selenide catalysts for the
overall water-splitting reaction. For instance, Masud et al. reported Co7Se8 nanostruc-
tured materials as a highly active and stable bifunctional electrocatalyst for both OER and
HER in strong alkaline medium [13]. Numerous other cobalt-based electrocatalysts have
also been explored; CoSe nanosheets [14], Co3Se4 nanowires on cobalt foam [15], CoSe2

nanosheets [16], and some nonstoichiometric cobalt selenides such as Co0.85Se [17] have
been reported as overall water-splitting electrocatalysts in alkaline media. Furthermore,
the Co0.85Se nanosheet network arrayed on a cobalt plate substrate was also reported for
HER in both basic and acidic media exhibiting an outstanding catalytic performance, due
to its inherent metallic character, giving it abundant surface active sites as well as higher
conductivity [18,19].

In this family of electrocatalysts, it has been observed that the catalytic activity in-
creases with decreasing electronegativity of the lattice anion. This has been confirmed
in many transition metal chalcogenides as OER catalysts whereby changing the anion
from O down to Te in the chalcogen group led to significant improvement of the intrinsic
catalytic properties in nickel-based chalcogenides [20,21]. Changing the anion leads to
decrease in electronegativity in the following order: O (3.44) > S (2.58) > Se (2.55) > Te (2.1),
which subsequently leads to increase in the covalency of the metal–chalcogen (M–E) bonds
down the chalcogens group, i.e., M–O bonds being less covalent than M–Se or M–Te. This
increased covalency assists in local electrochemical oxidation–reduction of the transition
metal center by reducing their redox potential as well as by altering the electron density in
the catalytically active transition metal site. Increased covalency in the chalcogenides also
leads to alteration of the electronic band structure and proper alignment of the valence and
conduction band edges with the water oxidation/reduction levels, respectively, leading to
more facile charge transfer at the electrocatalyst–electrolyte interface which subsequently
reduces the overpotential required for the electrochemical conversion [22,23]. Similar
effects have also been observed by doping in transition metal sites which also redistributes
electron density around the catalytically active site [24].

Until now, the most common cobalt–seleno-based electrocatalysts reported are from
different types of nanostructured materials and solids with infinite Co–Se bonds through-
out the lattice. Although some of them have shown both efficient catalytic activity for OER
and great stability [13,15], there are still some concerns about their stability in alkaline
media. For instance, it has been suspected that in alkaline medium these transition metal
chalcogenides hydrolyze to form surface oxide layers which act as the actual electrocatalyst
in such cases. However, another opposing view is that the transition metal chalcogenides
are only partially hydrolyzed, resulting in mixed anionic surface compositions. Several
research groups are trying to accurately identify the active surface composition of these
transition metal chalcogenide-based electrocatalysts. In that respect, studies of molecular
complexes in which the core of the complex represents a structural motif of the metal–
chalcogenide solid can shed more light on the effect of anion coordination on the catalytic
activity as well as stability of this motif under alkaline conditions. The electronic structure
of these molecular complexes can be finely tuned by modifying the electronic and steric
properties of the ligands employed in the synthesis. Moreover, the molecular complexes can
be very stable, diverse and can exhibit coordination expansion due to ligation of the solvent
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or other molecules [25–29], which is very useful for the catalytic pathway typically initiated
by hydroxide coordination to the catalytically active transition metal site. These properties
are of especially great interest for electrochemical H2 and O2 generation. Therefore, in-
vestigating the intrinsic catalytic activity of transition metal complexes with limited or no
propensity to form surface metal oxides, as well as understanding the inherent activity of
the core structural motif is of paramount interest. Numerous molecular cobalt complexes
based on different types of ligand designs have been reported as electrocatalysts [30–39].
For instance, pentadentate N-heterocyclic coordinated cobalt complexes exhibit HER activ-
ity in water [30]. In addition, a cobalt–polypyridyl complex bearing pendant bases and
redox-active ligands, combining stability and appropriate redox potential, has also been
reported for good electrocatalytic activity in HERs [36].

Cobalt-based coordination complexes have previously been studied for OER catalytic
activity [37], in instances where the catalysts are immobilized onto the electrode as com-
posite or onto the surface [38]. However, cobalt coordination complexes with seleno-based
ligands have not yet been investigated for OER catalytic activity. Such complexes contain-
ing the CoSe4 core that is commonly found in cobalt selenide phases will be very useful in
understanding the electrocatalytic activity as a function of anion coordination (composition
and geometry). This will also aid in gaining an insight into the electrocatalysis pathways
and the reasons for significantly enhanced activity of the metal chalcogenides for OER and
HER. Herein, we report the bifunctional electrocatalytic activity of a seleno-based Co(II)
bis(diselenoimidodiphosphinato) complex, [Co{(SePiPr2)2N}2], which shows significantly
enhanced efficiency for OER and moderate HER, in alkaline medium. A very low onset po-
tential of 1.44 V for O2 evolution as well as an overpotential of 320 mV at 10 mA cm−2 were
recorded. The onset potential for H2 evolution is comparable to that of other non-platinum
based HER electrocatalysts.

2. Results

The structural and magnetic properties of [Co{(SePiPr2)2N}2] (referred to as CoSe4

hereafter) have already been reported [39,40]. The crystal structure of CoSe4 shows a first
coordination sphere consisting of a Co(II) center tetrahedrally coordinated to four Se atoms
stemming from two [SePiPr2)2N]− chelating ligands, as shown in Figure 1a. This complex
is structurally similar to the Ni(II) tetrahedral NiSe4-containing analogue [41–44]. The com-
plex was further investigated by Raman spectroscopy (Figure 1b) whereby the characteristic
peaks observed at 174 and 188 cm−1 could be associated to CoSe2-like vibrations, while
that at 143 and 233 cm−1 could be attributed to the trigonal-Se0 mode; furthermore, the
two peaks at around 444 and 468 cm−1 could be associated with the cubic CoSe2-like phase
mode [45,46], indicating the presence of Co–Se in the CoSe4 complex. The CoSe4 complex
was also characterized through X-ray photoelectron spectroscopy (XPS) which showed
Co 2p3/2 and 2p1/2 peaks at 781.2 and 796.3 eV, respectively, characteristic of Co(II), while
the Se 3d peaks were observed at 55.1 eV corresponding to Se2− (Figure 1b,c) [47]. The
satellites peaks each found at the higher energy end of the Co 2p signals, are attributed to
the contribution from antibonding orbital [48].

In order to evaluate the electocatalytic actvity of CoSe4 for water splitting, the drop-
casting approach was used to prepare the working electrodes. Specifically, the as-prepared
CoSe4 powder was dispersed in isopropyl alcohol (IPA) under ultrasonication without
changing its intrinsic properties, and the film was fabricated by gradually dropping the
catalyst ink (20 µL) onto Au-coated glass as the conductive substrate over a well-defined
geometric area. An amount of 0.1% Nafion was dropped on the top of the coating to form a
covering layer as illustrated in Figure 2. This method has been widely used in our previous
studies for preparing electrode material from powder catalyst samples [44]. Electrodes
were also prepared with glassy carbon (GC) substrates. The electrocatalytic activity of
CoSe4 was compared with RuO2 electrodes prepared on Au-coated glass and GC following
the above procedure.
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Figure 1. (a) The molecular structure of the [Co{(SePiPr2)2N}2] complex (CoSe4 catalyst), showing

the tetrahedral cobalt–seleno-coordination. Color coding: Co (dark blue), Se (magenta), P (brown),

N (light blue), C (gray). (b) Raman spectra of the complex measured before and after OER catalytic

activity. (c) Co 2p XPS peaks. (d) Se 3d XPS peaks.

Figure 2. Scheme for electrode preparation.

The OER catalytic process was studied by linear sweep voltammetry (LSV) measure-
ments conducted in N2-saturated 1 M KOH, at a scan rate of 10 mV s−1. Figure 3a shows
the LSV plots of electrochemical oxygen evolution at CoSe4@Au, CoSe4@GC (GC: glassy
carbon), RuO2@Au and RuO2@GC electrodes. CoSe4 loaded on Au-glass and GC elec-
trodes showed high activity for OER with the exchange current density corresponding to
O2 evolution showing a sharp and slow increase for Au and GC, respectively. Among these
CoSe4@Au-glass showed lower onset potential for OER implying that using the Au-coated
glass as primary electrode for the CoSe4 catalyst, the latter shows higher activity toward
OER compared to a GC electrode. The typical performance parameters including onset
and overpotentials for the CoSe4@Au-glass catalyst evaluated in this work are listed in
Table 1 below.
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Figure 3. (a) LSV plots of OER for the CoSe4 catalyst measured in N2-saturated 1.0 M KOH solution

at a scan rate of 10 mV s−1. Dashed black line shows the current density of 10 mA cm−2. (b) Tafel

plots of catalysts. (c) EIS spectra measured at 1.56 V vs. RHE in N2-saturated 1.0 M KOH solution over

the frequency range of 1 MHz to 1 Hz. Inset shows the equivalent circuit where Rs is the electrolyte

resistance and Rct is the charge transfer resistance at the catalyst–electrolyte interface. (d) Stability

study of CoSe4 catalyst under continuous O2 evolution for 12 h at 1.53 V. Inset shows the LSV plots

of the CoSe4 catalyst in N2 saturated 1.0 M KOH before (blue) and after (red) chronoamperometry

for 12 h.

Table 1. Electrochemical parameters of the catalysts measured in 1 M NaOH.

OER HER

Catalyst
Onset

Potential
(V) 1

η to 10 mA
cm−2

(V) 1

Tafel Slope
(mV dec−1)

Mass Activity
at 320 mV

(A g−1)

TOF
at 320 mV

(s−1)

Onset
Potential

(V) 1

η to 10 mA
cm−2

(V) 1

CoSe4@Au 1.44 0.32 61.6 14.15 0.032 0.52 0.63
RuO2@Au

2 1.51 0.38 117.2 - - - -

Pt - - - - - 0.00 0.05

1 Potential vs. RHE, 2 electrodeposited.

The onset potentials for CoSe4@Au-glass and RuO2@Au-glass were 1.44 and 1.51 vs.
reversible hydrogen electrode (RHE), respectively, as shown in Figure 3a. The overpotential
required to achieve current density of 10 mA cm−2 (considering the electrode geomet-
ric area) for CoSe4@Au-glass and RuO2@Au-glass were 320 and 380 mV, respectively
(Figures 3a and 4). This indicates the superiority in catalytic activity of CoSe4 compared to
state-of-the-art (RuO2) OER electrocatalyst (Figure 4). Furthermore, Tafel slopes obtained
from Tafel plots (η vs. log j) applying Equation (2), were used to investigate OER kinet-
ics of the CoSe4@Au-glass and RuO2@Au-glass electrodes, as shown in Figure 3b. Tafel
slopes of 61.6 and 117.2 mV dec−1 were obtained for CoSe4@Au-glass and RuO2@Au-glass,
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respectively. The smaller Tafel slope shown by CoSe4-modified electrodes compared to
RuO2 further confirms faster kinetics for OER and consequently better electrocatalytic
efficiency of CoSe4. The Tafel slope for CoSe4 is also comparable to reported values for
other transition-metal–chalcogenide-based catalysts [14,24]. The CoSe4@Au-glass was also
analyzed through electroimpedance spectroscopy (EIS) to estimate the charge transfer
resistance (RCT) at the catalyst–electrolyte interface. The EIS spectra shown in Figure 3c
could be fitted to an equivalent circuit and the RCT was estimated to be approximately
180 ohm. The low value of RCT indicates faster charge-transfer at the catalyst interface.

Figure 4. Comparison of achieved overpotentials at 10 mA cm−2 for CoSe4 compared with RuO2.

In addition, the mass activity and turn-over frequency (TOF) of the CoSe4@Au catalyst
was calculated at an η value of 0.320 V (Table 1). The mass activity was estimated to
be 14.15 A g−1, indicating better performance than some of the state of the art OER
electrocatalysts, such as IrOx and RuOx [49]. The OER TOF at an overpotential of 320 mV
for the CoSe4@Au-glass catalyst was estimated to be 0.032 s−1, under the assumption that
all metal ions in the catalysts are catalytically active (Equation (3)). However, since not
each and every metal atom is expected to be involved in the reaction, the actual TOF could
be evidently underestimated. However, the calculated TOF for CoSe4@Au-glass is still
important (Table 1), and is comparable or higher than that of other cobalt-based catalysts
previously reported under similar conditions [50,51]. The stability of the CoSe4@Au-glass
electrode under long-term electrolysis in alkaline medium was also investigated using the
chronoamperometric technique by which the current density was measured at a constant
applied potential of 1.53 V vs. RHE for prolonged period of time, as shown in Figure 3c. The
stable current density over 12 h of continuous oxygen evolution indicates high functional
durability exhibited by the CoSe4@Au-glass catalyst for OER in 1 M KOH. The LSV plots
after 12 h of chronoamperometry (inset of Figure 3c) show no noticeable difference with the
pristine catalyst, except for the small peak at 1.03 V (RHE) indicating the partial oxidation of
Co(II) to Co(III) [52]. Interestingly, the LSV plots confirmed that there was no degradation
of catalyst performance for OER under conditions of continuous O2 evolution for an
extended period of time. The stability of the CoSe4 catalyst was also confirmed with XPS
measured after 12 h chronoamperometry measurement as shown in Figure 5. The XPS
spectra showed the presence of Co 2p and Se 3d peaks with similar peak positions. The
comparison of XPS spectra before and after OER activity showed no noticeable change as
shown in Figure 5 confirming that the CoSe4 complex was indeed stable.
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Figure 5. Comparison of XPS peaks of Co 2p and Se 3d before and after OER activity confirming the

stability of the CoSe4 catalyst.

This efficient OER electrocatalytic activity observed for the CoSe4 catalyst is a sig-
nificant step in an effort to understand the inherent OER catalytic performance of tran-
sition metal selenides. It is understood that the stability of the ME4 center (M = metal,
E = chalcogen) increases with decreasing electronegativity of the chalcogen atom, E [22].
The OER catalytic process is expected to be initiated by coordination of the OH− group to
the catalytically active Co(II) center. Tetrahedral Co(II) complexes containing chalcogenated
imidodiphosphinato ligands have the tendency to increase their coordination number from
four to six in the presence of coordinated solvents such as DMF, [29]. Consequently, the cat-
alytic process may be initiated by OH− coordination to the metal center without cleavage of
the Co–Se bonds through coordination expansion, where the Co(II) center is concomitantly
oxidized to Co(III) in order to accommodate the extra anionic charge. This proposition
is also supported by the Tafel slope, which shows a value less than 120 for the CoSe4

catalyst (Table 1). The lower Tafel slope suggests that the rate-determining step in the cat-
alytic process corresponds to subsequent electron transfer steps from the catalyst’s surface
to the electrolyte, rather than the initial OH− coordination to Co(II). Even though there
are very scant reports on the proposed mechanisms specific to tetrahedral cobalt-based
complexes [53,54], a mechanism proposed for similar transition metal-based complexes
has been reported [55]. Hence, it can be postulated that the tetrahedral CoSe4-containing
complex is further coordinated to one OH−/H2O group leading to the formation of a
square pyramidal transition state, which can then react further to form an O–O linkage,
and a subsequent removal of O2 (Figure 6). The Co site undergoes a reversible change in
oxidation states from +2 to +3 and +4 following adsorption of the anionic intermediates
and formation of the transition states. The observation of Co oxidation peak in the LSV
(Figure 3c inset) supports the formation of higher oxidation states of Co during the cat-
alytic cycles providing some support to this proposed mechanism. However, it must be
mentioned here that this proposed mechanism is based on the general scheme of multi-
step proton coupled electron transfer mechanism for OER that has been observed and
reported for other electrocatalytic systems [53,54]. To decipher the actual mechanism, one
needs to identify the transition states through in situ spectroscopy and other techniques.
However, based on characterization of the catalyst after OER activity, it can be clearly seen
that the CoSe4 catalytic core remains intact and maintains its Co-Se bonds and, therefore,
even though the catalytic reaction is initiated by coordination of OH− to the Co(II) center,
the complex is not converted into any form of oxide/hydroxide. This confirms that the
CoSe4 core is indeed stable for OER and hence the mechanism proceeds via formation of
a mixed anionic (hydroxo)chalcogenide coordination. This mechanistic scheme could be
extrapolated to the cobalt–selenide-based extended solids that have been reported as active
electrocatalysts for OER.
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Figure 6. Schematic illustration of the proposed OER mechanism on the CoSe4 complex through a

vacant metal coordination site for OER showing the formation of a five-coordinated square pyra-

midal transition state following the catalyst’s activation through -OH− coordination to Co(II) and

subsequent steps of OER.

The electrocatalytic HER performance of the CoSe4 catalyst and that of the state-of-the-
art Pt catalyst were also studied and compared under similar conditions (in N2-saturated
1 M KOH). In order to avoid any form of catalytic activity interference, the HER activity
of CoSe4 was evaluated using GC as the counter electrode instead of Pt, since Pt could
undergo anodic dissolution and redeposit onto the cathode, which would affect the activity.
The LSV (Figure 7) obtained with CoSe4@Au-glass as cathode confirmed that it is active
for HER and showed an onset potential of 0.52 V, which was higher than that with a Pt
cathode. The cathodic current increased rapidly under more negative potentials. The
overpotential for CoSe4@Au at a current density of 10 mA cm−2 was 0.63 V, which is also
far from that with a Pt cathode. This shows that CoSe4 is moderately active for HER. The
catalytic activity can be possibly improved by intermixing the electrocatalyst with other
conducting additives such as activated carbon, graphene or carbon nanotubes as has been
reported earlier for other catalysts [56–58].
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Figure 7. Polarization curves for HER with the CoSe4 catalyst in N2-saturated 1.0 M KOH solution

at a scan rate of 10 mV s−1.

3. Materials and Methods

3.1. Synthesis of bis(diselenoimidodiphosphinato) Cobalt(II) Complex [Co{(SePiPr2)2N}2]

The synthesis of the (SePiPr2)2NH ligand [59] and the [Co{(SePiPr2)2N}2] complex [39]
was carried out following previously reported procedures.

3.2. Electrochemical Measurements

In order to study the OER and HER catalytic activity, the CoSe4 catalyst was mixed
with nafion and drop-cast onto different electrodes. All the electrochemical measurements
were investigated using an electrochemical workstation (IvumStat potentiostat) in a stan-
dard three-electrode cell, with N2-saturated 1 M KOH as the electrolyte solution. For all
measurements, Ag/AgCl was used as reference electrode, while GC and Pt mesh served as
counter electrodes for HER and OER, respectively. Catalyst loaded on Au or GC served
as the working electrode. The LSVs were performed at a scanning rate of 10 mV s−1

while the electrode was rotating at 1000 rpm. In order to reduce uncompensated solution
resistance, all activity data were iR corrected, which was measured through electrochemical
impedance studies.

The reference electrode was calibrated by measuring open circuit potential (OCP,
−0.199 V) at Pt wire in pure H2-saturated 1.0 M H2SO4 solution. Potentials measured vs.
Ag/AgCl electrode were converted to values vs. RHE on the basis of Nernst’s equation
(Equation (1)):

ERHE = EAg/AgCl + 0.059pH + E0
Ag/AgCl (1)

where ERHE is the converted potential vs. RHE, EAg/AgCl is the experimentally measured

potential against the Ag/AgCl reference electrode, and E0
Ag/AgCl is the standard potential

of Ag/AgCl at 25 ◦C (0.199 V).

3.3. Tafel Plots

The Tafel slope was calculated by applying Equation (2):

η = a + (2.3RT/αnF) log(j) (2)

where η is the overpotential, j is the current density, and the other symbols have their usual
meanings. The Tafel equation as shown Equation (2) is a fundamental equation which is
acquired from the kinetically control region of OER/HER and relates the overpotential η

with the current density j where the Tafel slope is given by 2.3RT/αnF.

3.4. Turnover Frequency (TOF)

The TOF value was calculated by Equation (3):

TOF = I/(4 × F × M) (3)
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where I is the current in Ampere, F is the Faraday constant and M is the number of moles
of the active catalyst.

3.5. Electrode Preparation

Au-coated glass and GC used as substrates were purchased from Deposition Research
Lab Incorporated (DRLI), Lebanon Missouri and Fuel Cells Etc, Texas, respectively. All
solutions were prepared using deionized (DI) water. All substrates were cleaned by
isopropanol and eventually rinsed with deionized water to ensure a clean surface. Catalyst
ink was prepared by dispersing 10.0 mg of the catalyst in 1.0 mL isopropyl alcohol (IPA)
and ultrasonicated for 30 min. Au-coated glass substrate were covered with a Teflon tape,
leaving an exposed geometric area of 0.283 cm2 and GC (geometric area: 0.196 cm2) served
as the working electrodes. A quantity of 20 µL of the ink was pipetted out on the top of the
Au or GC substrates. The catalyst layer was dried at room temperature. Then, an aliquot of
Nafion solution (10 µL of 1 mg/mL solution in 50% IPA in water) was applied onto the
catalyst layer. The Nafion-coated working electrode was dried at room temperature and
finally heated at 130 ◦C in an oven for 30 min in air.

3.6. Electrodeposition of RuO2

Electrodeposition of RuO2 on Au-coated glass and GC substrate were carried out
from a mixture of RuCl3 (0.452 g) and KCl (2.952 g) in 40 mL of 0.01 M HCl using cyclic
voltammetry from 0.015 to 0.915 V (vs. Ag|AgCl) for 100 cycles at a scan rate of 50 mV s−1.
This was then heated in ambient air for 3 h at 200 ◦C.

4. Conclusions

A cobalt–seleno-complex, [Co{(SePiPr2)2N}2], was reported as a bifunctional catalyst
for OER and HER in alkaline medium. This complex bearing a catalytically active CoSe4

first coordination sphere shows high inherent catalytic activity for OER as evidenced by
the low overpotential and Tafel slope. This observed activity can be attributed to the higher
covalency of the metal–chalcogen bond in CoSe4 relative to cobalt oxides, which explains
the observed enhancement in catalytic efficiency. The CoSe4 complex demonstrated good
OER activity in 1.0 M KOH with an overpotential of 320 mV at 10 mA cm−2. Even though
the activity for HER in alkaline medium demonstrated by the complex was low, modifying
the ligands with either electron density donating or withdrawing groups [59,60] may
improve HER activity. The superior catalytic activity shown by CoSe4 for OER, as well as
its remarkable stability, indicates its promising potential as a noble-metal-free catalyst for
OER in water splitting. Further work on the ligand modification and elucidation of the
mechanism and kinetics involved, as well as photoelectrocatalytic water splitting using this
type of MSe4-containing catalysts in the presence of photosensitizers is under investigation.
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