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A MOMENT PROBLEM
AND A FAMILY OF INTEGRAL EVALUATIONS

JACOB S. CHRISTIANSEN AND MOURAD E. H. ISMAIL

This paper is dedicated to Olav Nj̊astad on the occasion of his seventieth birthday.

Abstract. We study the Al-Salam–Chihara polynomials when q > 1. Several
solutions of the associated moment problem are found, and the orthogonality
relations lead to explicit evaluations of several integrals. The polynomials are
shown to have raising and lowering operators and a second order operator
equation of Sturm-Liouville type whose eigenvalues are found explicitly. We

also derive new measures with respect to which the Ismail-Masson system
of rational functions is biorthogonal. An integral representation of the right
inverse of a divided difference operator is also obtained.

1. Introduction

In this work we shall follow the notation of Gasper and Rahman [10] or Andrews,
Askey, and Roy [3] for basic hypergeometric series and use the theory of the moment
problem as described in Akhiezer [1]. Other useful references are [19] and [21]. A
modern treatment is in the interesting article by Simon [20].

The best example of an indeterminate moment problem on the real line is the
moment problem studied by Ismail and Masson in [13]. The corresponding orthog-
onal polynomials, usually denoted hn(x|q), are called the q−1-Hermite polynomials
and satisfy the three-term recurrence relation

(1.1) 2xhn(x|q) = hn+1(x|q) + q−n (1 − qn)hn−1(x|q), n ≥ 0,

with initial conditions h−1 = 0 and h0 = 1.
Askey [2] was the first to give an explicit weight function for the polynomials

{hn(x|q)}. Using the Askey–Roy q-beta integral [5],∫ ∞

0

tc−1 (−at,−bq/t; q)∞
(−t,−q/t; q)∞

dt =

(
ab, qc, q1−c; q

)
∞

(q, aq−c, bqc; q)∞

π

sin πc
(1.2) (

c > 0, |a| < qc, |b| < q−c
)
,
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he proved that

(1.3)
∫ ∞

−∞

hm(sinh y|q)hn(sinh y|q)
(−qe2y,−qe−2y; q)∞

dy = log q−1(q; q)∞(q; q)nq−(n+1
2 )δm,n.

Whenever y occurs we shall always assume that

x = sinh y.

In 1994 Ismail and Masson [13] considered the q−1-Hermite polynomials in de-
tails. They established the generating function

(1.4)
∞∑

n=0

q(
n
2)

(q; q)n
hn(x|q)tn =

(
−tey, te−y; q

)
∞ , t ∈ C,

as well as the Poisson kernel
∞∑

n=0

q(
n
2)

(q; q)n
hn(x|q)hn (x′|q) tn(1.5)

=
(−tey+y′

,−te−y−y′
, tey−y′

, te−y+y′
; q)∞

(t2/q; q)∞
, |t| <

√
q.

Moreover they proved that

(1.6)
∫ ∞

−∞

4∏
j=1

(
−tje

y, tje
−y; q

)
∞ dψ(x) =

∏
1≤j<k≤4 (−tjtk/q; q)∞

(t1t2t3t4/q3; q)∞

whenever ψ is a solution to the moment problem. Since the integrand is the product
of four generating functions for {hn(x|q)}, the integral in (1.6) now plays the role
played by the Askey–Wilson integral in the study of the continuous q-Hermite
polynomials.

The Nevanlinna matrix was also computed in [13], and it is remarkable that all
the N -extremal solutions were found explicitly. They have the form

(1.7) νa =
1

(−a2,−q/a2, q; q)∞

∞∑
n=−∞

a4n
(
1 + a2q2n

)
qn(2n−1)εxn(a), q < a ≤ 1,

where

xn(a) =
1
2

(
1

aqn
− aqn

)
and εx denotes the measure having only a unit mass at the point x. In addition,
the absolutely continuous solutions with densities

(1.8) w(x; a) =
a

πi

(−aa,−q/aa, a/a, qa/a, q; q)∞
|(aey,−ae−y,−qey/a, qe−y/a; q)∞|2 , x = sinh y ∈ R,

were derived along with more complicated solutions. To begin with, the parameter
a in (1.8) belongs to the set

{reiθ | r > 0, 0 < θ < π/2} ∪ {reiθ | 0 < r ≤ 1, θ = π/2},
but since w(x; aq) = w(x; a), it suffices to consider

a ∈ {reiθ | q < r ≤ 1, 0 < θ ≤ π/2}.
We stress that no value of a gives the Askey weight function appearing in (1.3).
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In the Nevanlinna parametrization, which gives a one-to-one correspondence
between the set of Pick functions (including ∞) and the set of solutions to an inde-
terminate moment problem on the real line, the N -extremal solutions correspond
to the Pick function being a real constant (or ∞). When the Pick function is a
complex constant (in the open upper half-plane), the corresponding solutions are
known to be absolutely continuous; see [6] and [13]. The solutions in (1.8) are
exactly of that kind.

The continuous q-Hermite polynomials belong to the Askey-scheme as a special
case of the Askey–Wilson polynomials when all four parameters are zero; see [17].
Halfway between Askey–Wilson and continuous q-Hermite we find the Al-Salam–
Chihara polynomials with two free parameters. These polynomials are studied in [4]
and when q > 1, the associated moment problem is determinate or indeterminate
depending on the parameters. In the indeterminate case the Nevanlinna matrix was
computed in [9] but no explicit solutions were derived. In this paper we restrict
ourselves to the symmetric case of the Al-Salam–Chihara polynomials when q > 1.
The analysis in the symmetric case simplifies a great deal, and a simple weight
function for the polynomials can be found directly from the Nevanlinna matrix.

The paper is organized as follows. In Section 2 we present the Al-Salam–Chihara
polynomials and consider the symmetric case when q > 1. For convenience, we set
p = 1/q and besides p there is only one parameter left. This parameter will be
called β, and we point out how two special values, namely β = 0 and β = 1/p, lead
to the polynomials {hn(x|q)}. In Section 3 we give an explicit expression for the
Nevanlinna matrix based on the results in [9]. On one hand the Nevanlinna matrix
remains too complicated to give us the N -extremal solutions, as will be explained
in Section 4. On the other hand, the Nevanlinna matrix is simple enough to lead
to an explicit weight function, the function v(x; β) in (5.1), and the corresponding
orthogonality relation is given in Section 5. In the same section we derive a new
family of absolutely continuous solutions to the q−1-Hermite moment problem.

When x ∈ R, we use the parameterization x = sinh y. When f is a function
defined on R, one can think of f(x) as a function of ey. We denote by f̆ the
function

f̆(ey) = f(x),

and the divided difference operator Dq given by

(1.9) (Dqf)(x) =
f̆(q1/2ey) − f̆(q−1/2ey)
(q1/2 − q−1/2) cosh y

was introduced by Ismail in [11]. Note that if we set e(x) = x, then the denominator
can also be written as

ĕ(q1/2ey) − ĕ(q−1/2ey).

It was proved in [11] that Dq is a lowering operator for the q−1-Hermite polynomials.
We find a family of weight functions that lead to the same raising and lowering

operators for the polynomials {hn(x|q)}. Combining the lowering and raising op-
erators one can obtain a q-Sturm–Liouville equation from which the orthogonality
follows using Ismail’s q-analogue of integration by parts [11]. Besides the Askey
weight function (in (1.3)), the family also contains the special case β = 1/p of the
weight function v(x; β).
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In Section 6 we construct a family of discrete solutions from the weight function
v(x; β). These solutions are not N -extremal, though they are supported on the
same p-quadratic grid as the N -extremal solutions to the q−1-Hermite moment
problem. A possible way to verify this is through the Poisson kernel which we shall
derive from a bilinear generating function established in Section 7.

One way of reaching the Al-Salam–Chihara polynomials when q > 1 is to start
out with the q−1-Hermite polynomials and use a simple procedure of attaching
generating functions to measures. This procedure is explained in [7], and the next
step takes us to the biorthogonal rational functions with four parameters studied
by Ismail and Masson in [13]. In Section 8 we show how solutions to the moment
problem lead to biorthogonality relations for the rational functions when certain
restrictions on the last two parameters are fulfilled.

In Section 9 we obtain a p-Sturm–Liouville equation from lowering and raising
operators. The weight function v(x; β) appears in the raising operator, but the
p-Sturm–Liouville equation can be written in a form independent of v(x; β). We
use this form to derive a system of n nonlinear equations satisfied by the zeros
of the polynomials. This is a typical example of Bethe Ansatz equations; see the
Bethe Ansatz for the XXZ model in [18] and [12]. In Section 10 we consider the
divided difference operator Dq as a bounded operator on the L2-spaces of the N -
extremal solutions. The right inverse D−1

q is identified as an integral operator, and
we find the kernel explicitly. This is the q > 1 version of a result in [8]. The kernel
for the inverse of the Askey-Wilson operator over the L2-space weighted by the
Askey-Wilson weight function is in [14].

2. The Al-Salam–Chihara polynomials

The Al-Salam–Chihara polynomials Qn(x) := Qn(x; a, b|q) are generated by the
three-term recurrence relation

2xQn(x) = Qn+1(x) + (a + b)qnQn(x) + (1 − qn)
(
1 − abqn−1

)
Qn−1(x), n ≥ 0,

with initial conditions Q−1 = 0 and Q0 = 1; see for example [17]. They are
orthogonal with respect to a positive measure (with bounded support) on R if
a + b ∈ R, ab < 1 and 0 < q < 1. In the case q > 1, the polynomials are orthogonal
on the imaginary axis (for suitable values of a and b), so we replace x by ix in order
to obtain orthogonality on the real line. Indeed, with p = 1/q, the polynomials

(2.1) Q̃n(x) =
inp(n

2)

(p; p)n
Qn(ix/2; a, b|p)

satisfy the three-term recurrence relation(
1 − pn+1

)
Q̃n+1(x) = (−i(a + b) − xpn) Q̃n(x) −

(
−ab + pn−1

)
Q̃n−1(x)

and are therefore orthogonal with respect to a positive measure on R when a + b ∈
iR, ab ≤ 0 and 0 < p < 1. The polynomials in (2.1) are a special case of the
polynomials vn(x) studied in [4] and [9]. The parametrization, however, is slightly
different, and we have to identify a and b from [4] and [9] with −i(a + b) and −ab,
respectively. The parameter c is set to be −1 here.

In this paper we will study the special situation where a = −b =
√

β for some
β ≥ 0. The motivation is simply to obtain symmetry. It is convenient to replace x
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by −2x, so our starting point is the polynomials Qn(x; β) generated by the three-
term recurrence relation

(2.2) 2xpnQn(x; β) =
(
1 − pn+1

)
Qn+1(x; β) +

(
β + pn−1

)
Qn−1(x; β), n ≥ 0,

with initial conditions Q−1 = 0 and Q0 = 1. In accordance with [7] (set t1 = −t2 =
iq
√

β and replace q by p), the polynomials Qn(x; β) are explicitly given by

Qn(x; β) =

(
−ie−y/

√
β; p

)
n

(p; p)n

(
i
√

β
)n

2φ1

(
p−n,−iey/

√
β

i
√

βey/pn−1

∣∣∣∣ p,−ip
√

βey

)
=

(−1/β; p)n

(p; p)n

(
i
√

β
)n n∑

k=0

(−1)k

[
n

k

]
p

(
ie−y/

√
β,−iey/

√
β; p

)
k

(−1/β; p)k
,

where x = sinh y. Since the polynomials

hn(x; β) =
(p; p)n

p(n
2)

Qn(x; β)

satisfy the three-term recurrence relation

2xhn(x; β) = hn+1(x; β) +
(
p−2n+1β + p−n

)
(1 − pn)hn−1(x; β),

we immediately see that the special case β = 0 of our polynomials is {hn(x|p)}.
Furthermore, we observe that the special case β = 1/p corresponds to the polyno-
mials

{
hn(x|p2)

}
. Throughout the paper we shall always try to have these special

cases in mind. Certainly, this will throw more light on the q−1-Hermite polynomials
as well.

3. The Nevanlinna matrix

According to Theorem 3.2 in [4], the moment problem associated with the poly-
nomials Qn(x; β) is indeterminate for β ≥ 0. The entire functions from the Nevan-
linna matrix were computed in [9]. The first step in the computation was to estab-
lish the generating functions

(3.1)
∞∑

n=0

Qn(x; β)tn =
(te−y,−tey; p)∞

(−t2β; p2)∞
, |t| < 1/

√
β,

and
∞∑

n=0

Q∗
n(x; β)tn =

2pt

1 + t2β
3φ2

(
te−y,−tey, p

ipt
√

β,−ipt
√

β

∣∣∣∣ p, p

)
(3.2)

= 2t

∞∑
n=0

(te−y,−tey; p)n

(−t2β; p2)n+1

pn+1, |t| < 1/
√

β,

where Q∗
n(x; β) denotes the numerator polynomials, that is, the polynomials gen-

erated by the three-term recurrence relation (2.2) with initial conditions Q∗
0 = 0

and Q∗
1 = 2p/(1 − p). Darboux’s method was then applied to find the asymptotic

behavior of Qn and Q∗
n as n → ∞. In our case, the expressions for the functions
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A, B, C, and D reduce to

A(x; β) = − 2√
β

(p; p)∞
(−1/β; p)∞

S(0)S(x) sin (η(x) − η(0)) ,

B(x; β) = − (p; p)∞
(−1/β; p)∞

S(0)R(x) cos (ζ(x) − η(0)) ,

C(x; β) =
(p; p)∞

(−1/β; p)∞
R(0)S(x) cos (η(x) − ζ(0)) ,

D(x; β) = −
√

β

2
(p; p)∞

(−1/β; p)∞
R(0)R(x) sin (ζ(x) − ζ(0)) ,

where

R(x)eiζ(x) =

(
ie−y/

√
β,−iey/

√
β; p

)
∞

(p2; p2)∞
and

S(x)eiη(x) = 2φ1

(
ie−y/

√
β,−iey/

√
β

−p

∣∣∣∣ p, p

)
=

∞∑
n=0

(
ie−y/

√
β,−iey/

√
β; p

)
n

(p2; p2)n
pn

for x ∈ R. It is assumed that ζ(x), η(x) ∈ R and R(x), S(x) > 0. In particular, we
have

R(0) =
(−1/β; p2)∞

(p2; p2)∞
, S(0) =

∞∑
n=0

(
−1/β; p2

)
n

(p2; p2)n

pn =

(
−p/β; p2

)
∞

(p; p2)∞

and

ζ(0) = η(0) = 0.

So the expressions reduce further to the more convenient forms

A(x; β) = − 2√
β

(p2; p2)∞
(−1/β; p2)∞

S(x) sin(η(x)),

B(x; β) = − (p2; p2)∞
(−1/β; p2)∞

R(x) cos(ζ(x)),

C(x; β) =
(p; p2)∞

(−p/β; p2)∞
S(x) cos(η(x)),

D(x; β) = −
√

β

2
(p; p2)∞

(−p/β; p2)∞
R(x) sin(ζ(x)),

for x ∈ R. Hence, the Stieltjes transform of the solution µϕ corresponding to the
Pick function ϕ in the Nevanlinna parametrization is given by∫

R

1
t − x

dµϕ(t)(3.3)

=
S(x)
R(x)

4
(
−p/β, p2; p2

)
∞ sin(η(x))ϕ(x) + 2

√
β

(
−1/β, p; p2

)
∞ cos(η(x))

β (−1/β, p; p2)∞ sin(ζ(x)) − 2
√

β (−p/β, p2; p2)∞ cos(ζ(x))ϕ(x)
.
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4. N-extremal solutions

In the search for the N -extremal solutions µ
(β)
t , t ∈ R∪ {∞}, it is convenient to

write the parameter t as

t =
D(u; β)
B(u; β)

for u belonging to, say, the interval (−x1, x1], where x1 is the smallest positive zero
of B. With this parametrization, the Stieltjes transform in (3.3) takes the form∫

R

1
t − x

dν(β)
u (t) =

2√
β

S(x)
R(x)

sin(η(x)) sin(ζ(u)) + cos(η(x)) cos(ζ(u))
sin(ζ(x)) cos(ζ(u)) + cos(ζ(x)) sin(ζ(u))

=
2√
β

S(x)
R(x)

cos (η(x) − ζ(u))
sin (ζ(x) + ζ(u))

so the N -extremal solution ν
(β)
u is supported on the set of real x’s for which

ζ(x) − ζ(u) ∈ πZ.

In other words, if we set u = sinh v, then x = sinh y belongs to the support of ν
(β)
u

if and only if (
ie−y/

√
β,−ie−v/

√
β,−iey/

√
β, iev/

√
β; p

)
∞

∈ R.

However, it seems impossible to solve the above equations explicitly except for the
trivial solution x = u. In the special case u = 0, for instance, we have to know
exactly when (

ie−y/
√

β,−iey/
√

β; p
)
∞

∈ R

and even for β = 1, this comes to find the values of t ∈ iR+ for which

Im ((t, 1/t; p)∞) = 0.

5. Absolutely continuous solutions

For one particular Pick function we are able to find the corresponding solution
explicitly. Observe that

R2(x) =

(
−e2y/β,−e−2y/β; p2

)
∞

(p2; p2)2∞
so that B2 and D2 can be written as

B2(x; β) =
1

(−1/β; p2)2∞

(
−e2y/β,−e−2y/β; p2

)
∞ cos2(ζ(x))

and

D2(x; β) =
β

4

(
p; p2

)2

∞
(−p/β, p2; p2)2∞

(
−e2y/β,−e−2y/β; p2

)
∞ sin2(ζ(x)).

For the particular choice

γ =
√

β

2

(
−1/β, p; p2

)
∞

(−p/β, p2; p2)∞
,

the absolutely continuous solution µiγ with density

γ/π

D2(x; β) + γ2B2(x; β)
, x ∈ R,
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has the form dµiγ = v(x; β) dx, where

(5.1) v(x; β) =
(p2; p2)∞
(p; p2)∞

(−1/β; p)∞
π
√

β

2
(−e2y/β,−e−2y/β; p2)∞

,

x = sinh y ∈ R. We state this result as a theorem.

Theorem 5.1. The polynomials Qn(x; β) are orthogonal with respect to the weight
function

1
(−e2y/β,−e−2y/β; p2)∞

, x = sinh y ∈ R,

and the orthogonality relation is

2
∫

R

Qn(sinh y; β)Qm(sinh y; β)
(−e2y/β,−e−2y/β; p2)∞

cosh y dy

=
π
√

β

(−1/β; p)∞
(p; p2)∞
(p2; p2)∞

βn(−1/β; p)n

pn(p; p)n
δn,m.

Proof. We only have to check that the orthogonality relation is correct. It follows
from the three-term recurrence relation (2.2) that the polynomials

(5.2) Pn(x; β) =

√
pn(p; p)n

βn(−1/β; p)n
Qn(x; β)

are orthonormal. As a matter of fact, they satisfy the three-term recurrence relation

xPn(x; β) =

√
(1 − pn+1) (β + pn)

2pn+1/2
Pn+1(x; β) +

√
(1 − pn) (β + pn−1)

2pn−1/2
Pn−1(x; β)

with initial conditions

P0(x; β) = 1 and P1(x; β) =
2x

√
p√

(1 − p)(1 + β)
.

Therefore, we have the orthogonality relation∫
R

Pn(x; β)Pm(x; β)v(x; β) dx = δnm

or, equivalently,∫
R

Qn(x; β)Qm(x; β)v(x; β) dx =
βn(−1/β; p)n

pn(p; p)n
δnm,

and the result follows immediately. �

The special case β = 1/p of (5.1) leads directly to an absolutely continuous
solution to the q−1-Hermite moment problem. Replace p2 by q to obtain the density

(5.3) w(x) = q1/4 1
π

(q; q)∞
(
√

q; q)2∞

2(
−√

qe2y,−√
qe−2y; q

)
∞

, x = sinh y.

Moreover, if we set β = cp2n for fixed c ∈ (0, 1] and let n → ∞, we obtain the
densities

(5.4) wc(x) =
1

π
√

c

(
q2; q2

)
∞

(q; q2)∞

2(−1/c,−cq; q)∞
(−e2y/c,−ce2yq2,−e−2y/c,−ce−2yq2; q2)∞
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after replacing p by q. To see this, note that

1√
cp2n

(−1/cp2n; p)∞
(−e2y/cp2n,−e−2y/cp2n; p2)∞

=
1√
c

(−1/c; p)∞
(−e2y/c,−e−2y/c; p2)∞

(
−1/cp2n; p

)
2n

pn (−e2y/cp2n,−e−2y/cp2n; p2)n

=
1√
c

(−1/c; p)∞
(−e2y/c,−e−2y/c; p2)∞

(−cp; p)2n

(−ce2yp2,−ce−2yp2; p2)n

→ 1√
c

(−1/c,−cp; p)∞
(−e2y/c,−e−2y/c,−ce2yp2,−ce−2yp2; p2)∞

as n → ∞. By construction, we have wcq2(x) = wc(x) (or wcq(x) = wc/q(x)) and
since

a(−1/a,−aq; q)∞ = (−a,−q/a; q)∞ for a �= 0,

we also have w1/c(x) = wc(x). Therefore, it suffices to consider the case q ≤ c ≤ 1.
Note that wc(x) reduces to w(x) when c =

√
q (or 1/

√
q).

The probability densities wc(x) are not new solutions. They are special cases of
the densities w(x; a) in (1.8). Set a = iq1/4 to obtain the density w(x) and note
that the densities wc(x) exactly correspond to w(x; a) when a = iγ with q < γ ≤ 1.

The orthogonality relation in (1.3) contains the probability density

(5.5) w̃(x) =
1

log q−1(q; q)∞
2ey

(−e2y,−qe−2y; q)∞
, x = sinh y,

and the similarity to w(x) in (5.3) is striking. It turns out that

(5.6) hn+1(x|q) = − 1 − q

2q1+n/2f(x)
Dq (f(x)hn(x|q)) , n ≥ 0,

for f = w as well as f = w̃; cf. Theorem 5.2 below. So both w(x) and w̃(x) give
rise to a raising operator for the q−1-Hermite polynomials. With respect to the
inner product

〈f, g〉 =
∫

R

f(x)g(x)
dx√

1 + x2

on L2
(
R, 1/

√
1 + x2

)
, the following rule for integration by parts applies

(5.7) 〈Dqf, g〉 = −
〈
f,

√
1 + x2 Dq

(
g(x)/

√
1 + x2

)〉
;

see [11] for details. Combining the raising operator in (5.6) with the lowering
operator

(5.8) Dqhn(x|q) = 2q(1−n)/2 1 − qn

1 − q
hn−1(x|q), n ≥ 0,

which can be obtained from the generating function in (1.4), we are led to the
q-Sturm–Liouville equation

(5.9) Dq (f(x)Dqhn(x|q)) + 4q
1 − qn

(1 − q)2
f(x)hn(x|q) = 0, n ≥ 0.

Again, f = w or f = w̃. The eigenvalues 4q(1 − qn)/(1 − q)2 are distinct and
positive. This indicates that the operator T defined by

Tφ(x) = − 1
f(x)

Dq (f(x)Dqφ(x))
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is positive on the weighted Hilbert space L2(R, f(x)). Indeed this follows from
(5.7).

The fact that the q−1-Hermite polynomials are orthogonal with respect to w̃(x)
and w(x) can now be obtained from (5.9) just by using integration by parts as
described in (5.7). For more details, the reader is referred to the proof of Theorem
2.4 in [11].

We shall now describe a more general set up.

Theorem 5.2. Let fc denote the function given by

fc(x) =
ey(2c−1)

(−q1−ce2y,−qce−2y; q)∞
, x = sinh y ∈ R.

For each c ∈ R, we have the following raising operator for the q−1-Hermite polyno-
mials

hn+1(x|q) = − 1 − q

2q1+n/2fc(x)
Dq (fc(x)hn(x|q)) , n ≥ 0.

Proof. We have to prove that (5.6) remains valid when f is replaced by fc. This is
more or less a repetition of the proof of Theorem 2.1 in [11]. From the generating
function in (1.4) a straightforward computation gives

1
fc(x)

∞∑
n=0

q(
n
2)

(q; q)n
tnDq (fc(x)hn(x|q))

=
2q3/2

t(1 − q)
{(

−tey√q, te−y√q; q
)
∞ −

(
−tey/

√
q, te−y/

√
q; q

)
∞

}
or

1
fc(x)

∞∑
n=0

q(
n
2)

(q; q)n
tn+1Dq (fc(x)hn(x|q))

=
2q3/2

1 − q

∞∑
n=0

q(
n
2)

(q; q)n
hn(x|q)tn

(
qn/2 − q−n/2

)
= −2q3/2

1 − q

∞∑
n=1

qn2/2−n

(q; q)n−1
hn(x|q)tn

= − 2q

1 − q

∞∑
n=0

qn2/2

(q; q)n
hn+1(x|q)tn+1.

Equating the coefficients of tn+1 now leads to the desired raising operator. �

Corollary 5.3. The absolutely continuous measure with density

vc(x) = qc(1−c) sin πc

π

(q; q)∞
(qc, q1−c; q)∞

2ey(2c−1)

(−q1−ce2y,−qce−2y; q)∞
, x = sinh y,

is solution to the q−1-Hermite moment problem.

Proof. Since vc satisfies the q-Sturm–Liouville equation (5.9), it is only left to verify
that ∫

R

vc(x)dx = 1.
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By the Askey–Roy q-beta integral (1.2), we have∫
R

2ey(2c−1)

(−q1−ce2y,−qce−2y; q)∞
dx =

∫
R

e2yc + e2y(c−1)

(−q1−ce2y,−qce−2y; q)∞
dy

=
1
2

∫ ∞

0

tc−1 + tc−2

(−q1−ct,−qc/t; q)∞
dt

= qc(c−1) π

sin πc

(
qc, q1−c; q

)
∞

(q; q)∞
because the integral∫ ∞

0

tc−2

(−q1−ct,−qc/t; q)∞
dt =

∫ ∞

0

s−c

(−q1−c/s,−qcs; q)∞
ds

is symmetric in c and 1−c. So vc is indeed the density of a probability measure. �
Since vc+1 = vc, it suffices to consider vc for 0 < c ≤ 1. Besides the special cases

c = 1 and c = 1/2, which lead to w̃(x) and w(x), the family of solutions presented
in Corollary 5.3 are new. We note that the integral in (1.6) takes the form∫

R

e2cy + e2(c−1)y

(−q1−ce2y,−qce−2y; q)∞

4∏
j=1

(
−tje

y, tje
−y; q

)
∞ dy(5.10)

= qc(c−1) π

sin πc

(
qc, q1−c; q

)
∞

(q; q)∞

∏
1≤j<k≤4 (−tjtk/q; q)∞

(t1t2t3t4/q3; q)∞
when dψ = vc(x)dx.

It is known that the Pick function being equal to the constant

i

√
c

2

(
−1/c,−cq2, q; q2

)
∞

(−q/c,−cq, q2; q2)∞
in the open upper half-plane corresponds to the solution with density (5.4) in the
Nevanlinna parametrization. Therefore, the Pick function corresponding to the
density w(x) equals the constant

i
3

2
√

2

(
−2q2,−q2/2, q; q2

)
∞

(−2q,−q/2, q2; q2)∞
in the open upper half-plane. It seems to be hard to determine the Pick functions
corresponding to solutions from Corollary 5.3 when c �= 1/2.

6. Discrete solutions

Recall from the proof of Theorem 5.1 that the orthogonality relation has the
form ∫

R

Qn(x; β)Qm(x; β)v(x; β)dx =
βn(−1/β; p)n

pn(p; p)n
δn,m.

According to Proposition 1.1 in [7] and the q-binomial theorem [10, II. 3], we thus
have ∫

R

∞∑
n=0

Qn(x; β)tn1
∞∑

m=0

Qm(x; β)tm2 v(x; β) dx =
∞∑

n=0

(−1/β; p)n

(p; p)n
(t1t2β/p)n(6.1)

=
(−t1t2/p; p)∞
(t1t2β/p; p)∞

,
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whenever |t1|, |t2| <
√

p/β. In view of (3.1) and since the right-hand side of (6.1)
only depends on t1t2, a positive measure µ is solution to the moment problem if
and only if ∫

R

(
t1e

−y,−t1e
y, t2e

−y,−t2e
y; p

)
∞ dµ(x)

=
(−t1t2/p; p)∞
(t1t2β/p; p)∞

(
−t21β,−t22β; p2

)
∞ , |t1t2β/p| < 1.

(6.2)

For a > 0 consider the discrete measure λ
(β)
a supported on {xn(a) | n ∈ Z} and

defined by

λ(β)
a ({xn(a)}) =

√
1 + x2

n(a)
L(a)

ṽ(xn(a); β), n ∈ Z,

where

xn(a) := xn(a; p) =
1
2

(
1

apn
− apn

)
, n ∈ Z,

ṽ(x; β) =
1

(−e2y/β,−e−2y/β; p2)∞
, x = sinh y ∈ R,

and L(a) is a certain constant so that λ
(β)
a becomes a probability measure. As we

shall see below, these measures turn out to be discrete solutions to the moment
problem. It is remarkable that they are constructed in the same way as one can
obtain the N -extremal solutions to the q−1-Hermite moment problem from the
weight function in (1.3) or any other function from Theorem 5.2.

Direct computations lead to∫
R

(
t1e

−y,−t1e
y, t2e

−y,−t2e
y; p

)
∞ dλ(β)

a (x)

=
1

L(a)

∞∑
n=−∞

1
2

(
1

apn
+ apn

)
(t1apn,−t1/apn, t2apn,−t2/apn; p)∞

(−1/a2p2nβ,−a2p2n/β; p2)∞

=
1

2L(a)
(t1a,−t1/a, t2a,−t2/a; p)∞

(−1/a2β,−a2/β; p2)∞

×
∞∑

n=−∞

(
1 + a2p2n

) (
−a2/β; p2

)
n

(−1/a2p2nβ; p2)n

(−t1/apn,−t2/apn; p)n

(t1a, t2a; p)n

1
apn

and due to Bailey’s 6ψ6 sum [10, II. 33], we have

∞∑
n=−∞

(1 + a2p2n)

(
−a2/β; p2

)
n

(−1/a2p2nβ; p2)n

(−t1/apn,−t2/apn; p)n

(t1a, t2a; p)n

1
apn

=
1 + a2

a

∞∑
n=−∞

(
−a2p2,−a2/β; p2

)
n

(−a2,−a2p2β; p2)n

(−ap/t1,−ap/t2; p)n

(t1a, t2a; p)n

(t1t2β/p)n

=
1 + a2

a

(
−a2p,−p/a2,−pβ,−t1t2/p, p; p

)
∞

(t1a,−t1/a, t2a,−t2/a, t1t2β/p; p)∞

(
−t21β,−t22β; p2

)
∞

(−a2p2β,−p2β/a2; p2)∞
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for |t1t2β/p| < 1. Consequently,∫
R

(
t1e

−y,−t1e
y, t2e

−y,−t2e
y; p

)
∞ dλ(β)

a (x)

=
1 + a2

2aL(a)

(
−a2p,−p/a2,−pβ, p; p

)
∞

(−a2/β,−1/a2β,−a2p2β,−p2β/a2; p2)∞

× (−t1t2/β; p)∞
(t1t2β/p; p)∞

(
−t21β,−t22β; p2

)
∞

and with

L(a) =
1 + a2

2a

(
−a2p,−p/a2,−pβ, p; p

)
∞

(−a2/β,−1/a2β,−a2p2β,−p2β/a2; p2)∞
,

the following result is obtained.

Theorem 6.1. The discrete measures

λ(β)
a =

(
−a2p2β,−p2β/a2; p2

)
∞

(−a2,−p/a2,−pβ, p; p)∞

∞∑
n=−∞

(
−a2/β; p2

)
n

(−a2p2β; p2)n

a2nβn
(
1 + a2p2n

)
pn2

εxn(a)

are solutions to the moment problem.

Since λ
(β)
ap = λ

(β)
a , it suffices to consider p < a ≤ 1. In the special case β = 0,

the measures in Theorem 6.1 reduce to

(6.3) νa =
1

(−a2,−q/a2, q; q)∞

∞∑
n=−∞

a4n
(
1 + a2q2n

)
qn(2n−1)εxn(a;q)

if we replace p by q. That is, we obtain the N -extremal solutions to the q−1-
Hermite moment problem. So for a moment one may believe that the solutions
λ

(β)
a are N -extremal. However, the special case β = 1/p reads

(6.4) ν̃a =
1

2 (−a2,−p2/a2, p2; p2)∞

∞∑
n=−∞

a2n
(
1 + a2p2n

)
pn2−nεxn(a;p)

and since
∞∑

n=−∞
a2n

(
1+a2p2n

)
pn2−nεxn(a;p) =

∞∑
n=−∞

a4n
(
1+a2p4n

)
p4n2−2nεxn(a;p2)

+
∞∑

n=−∞
a4n+2

(
1 + a2p4n+2

)
p4n2+2nεxn(ap;p2),

we see after replacing p2 with q that

ν̃a =
1
2

(
νa + νa

√
q

)
,

where νa is defined in (6.3) (or (1.7)). It is plausible that the supports of the
N -extremal solutions in some way should depend on β.
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7. A bilinear generating function

In this section we shall derive a bilinear generating function for the polynomials
Qn(x; β). In particular, an expression for the Poisson kernel will be obtained. We
follow more or less the same procedure as Ismail and Stanton in [15] and [16]. Unless
otherwise stated, it is assumed that β > 0.

Lemma 7.1. The polynomials Qn(x; β) have the p-integral representation

(−1)npn (p; p)n

(−1/β; p)n
Qn(x; β) =

(
−e2y/β,−e−2y/β; p2

)
∞

2ip
√

β(−1/β; p)∞

(
p; p2

)
∞

(p2; p2)∞

× 1
1 − p

∫ ip
√

β

−ip
√

β

tn
(
it/

√
β,−it/

√
β; p

)
∞

(tey/pβ,−te−y/pβ; p)∞
dpt.

Proof. By definition of the p-integral, we have

1
1 − p

∫ ip
√

β

−ip
√

β

tn
(
it/

√
β,−it/

√
β; p

)
∞

(tey/pβ,−te−y/pβ; p)∞
dpt

=
(
ip

√
β
)n+1 ∞∑

k=0

(
−pk+1, pk+1; p

)
∞(

ipkey/
√

β,−ipke−y/
√

β; p
)
∞

(
pn+1

)k

−
(
−ip

√
β
)n+1 ∞∑

k=0

(
pk+1,−pk+1; p

)
∞(

−ipkey/
√

β, ipke−y/
√

β; p
)
∞

(
pn+1

)k

=
(
ip

√
β
)n+1

{ (
p2; p2

)
∞(

iey/
√

β,−ie−y/
√

β; p
)
∞

2φ1

(
iey/

√
β,−ie−y/

√
β

−p

∣∣∣∣ p, pn+1

)
+ (−1)n

(
p2; p2

)
∞(

−iey/
√

β, ie−y/
√

β; p
)
∞

2φ1

(
−iey/

√
β, ie−y/

√
β

−p

∣∣∣∣ p, pn+1

) }

= (−1)n

(
ip
√

β
)n+1 (

p2; p2
)
∞(

−iey/
√

β, ie−y/
√

β; p
)
∞

{
2φ1

(
ie−y/

√
β,−iey/

√
β

−p

∣∣∣∣ p, pn+1

)
+ (−1)n

(
−iey/

√
β, ie−y/

√
β; p

)
∞(

iey/
√

β,−ie−y/
√

β; p
)
∞

2φ1

(
−ie−y/

√
β, iey/

√
β

−p

∣∣∣∣ p, pn+1

) }
.

According to [10, III. 31], the combination of 2φ1’s in the bracket reduces to

(−pn/β,−1; p)∞(
−ipne−y/

√
β,−ipey

√
β; p

)
∞

2φ1

(
ipey

√
β,−p1−nβ

ieyp1−n
√

β

∣∣∣∣ p, iey/
√

β

)
=

2(−1/β,−p; p)∞(
−ie−y/

√
β,−ipey

√
β; p

)
∞

(
−ie−y/

√
β; p

)
n

(−1/β; p)n

×2φ1

(
ipey

√
β,−p1−nβ

ieyp1−n
√

β

∣∣∣∣ p, iey/
√

β

)
,

and by Heine’s transformation formula [10, III. 3], the above 2φ1 can be written as(
−ipey

√
β; p

)
∞(

iey/
√

β; p
)
∞

2φ1

(
p−n,−iey/

√
β

ieyp1−n
√

β

∣∣∣∣ p,−ipey
√

β

)
.

Recalling the explicit form of the polynomials Qn(x; β), the representation follows
easily. �
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Theorem 7.2. For |z| < 1, the polynomials Qn(x; β) satisfy the bilinear generating
function

∞∑
n=0

(p; p)n

(−1/β; p)n
Qn(x; β)Qn (x′; β) (z/β)n

=
(−iey/

√
β, ie−y/

√
β, izey′

/
√

β,−ize−y′
/
√

β; p)∞
2(−1/β; p)∞

×
(
p; p2

)
∞

(z2; p2)∞
4φ3

(
iey/

√
β,−ie−y/

√
β, z,−z

izey′/
√

β,−ize−y′/
√

β,−p

∣∣∣∣ p, p

)
+ a similar term with y replaced by −y and y′ replaced by −y′.

Proof. By the previous lemma, we have

∞∑
n=0

(p; p)n

(−1/β; p)n
Qn(x; β)Qn (x′; β) (z/β)n

=

(
−e2y/β,−e−2y/β; p2

)
∞

2ip
√

β(−1/β; p)∞

(
p; p2

)
∞

(p2; p2)∞

∞∑
n=0

Qn (x′; β) (−z/pβ)n

× 1
1 − p

∫ ip
√

β

−ip
√

β

tn
(
it/

√
β,−it/

√
β; p

)
∞

(tey/pβ,−te−y/pβ; p)∞
dpt.

Interchanging the order of summation and integration, the above sum reduces to

1
1 − p

∫ ip
√

β

−ip
√

β

(
it/

√
β,−it/

√
β; p

)
∞

(tey/pβ,−te−y/pβ; p)∞

∞∑
n=0

Qn (x′; β) (−zt/pβ)ndpt

=
1

1 − p

∫ ip
√

β

−ip
√

β

(
it/

√
β,−it/

√
β, ztey′

/pβ,−zte−y′
/pβ; p

)
∞(

tey/pβ,−te−y/pβ, izt/p
√

β,−izt/p
√

β; p
)
∞

dpt

for |zt/p| <
√

β. Here the p-integral can be written as

ip
√

β

∞∑
n=0

(−pn+1, pn+1, izpney′
/
√

β,−izpne−y′
/
√

β; p)∞(
ipney/

√
β,−ipne−y/

√
β,−zpn, zpn; p

)
∞

pn

+ip
√

β
∞∑

n=0

(pn+1,−pn+1,−izpney′
/
√

β, izpne−y′
/
√

β; p)∞(
−ipney/

√
β, ipne−y/

√
β, zpn,−zpn; p

)
∞

pn

= ip
√

β

(
p2; p2

)
∞

(z2; p2)∞

(izey′
/
√

β,−ize−y′
/
√

β; p)∞(
iey/

√
β,−ie−y/

√
β; p

)
∞

×4φ3

(
iey/

√
β,−ie−y/

√
β, z,−z

izey′/
√

β,−ize−y′/
√

β,−p

∣∣∣∣ p, p

)
+ a similar term with y replaced by −y and y′ replaced by −y′,

and the theorem is proved. �
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Corollary 7.3. For |z| < 1/p, the Poisson kernel is given by
∞∑

n=0

Pn(x; β)Pn (x′; β) zn =
(−iey/

√
β, ie−y/

√
β, izpey′

/
√

β,−izpe−y′
/
√

β; p)∞
2(−1/β; p)∞

× (p; p2)∞
(z2p2; p2)∞

4φ3

(
iey/

√
β,−ie−y/

√
β, zp,−zp

izpey′/
√

β,−izpe−y′/
√

β,−p

∣∣∣∣ p, p

)
+ a similar term with y and y′ replaced by −y and −y′.

In particular, we have
∞∑

n=0

P 2
n(x; β) =

(−e2y/β,−e−2y/β; p2)∞
(−1/β; p)∞

(p; p2)∞
(p2; p2)∞

×
∞∑

n=0

1 + p2n/β

(1 + p2ne2y/β)(1 + p2ne−2y/β)
pn.

Proof. The first part follows immediately from (5.2). With z = 1 and x′ = x, the
Poisson kernel reduces to

(−e2y/β,−e−2y/β; p2)∞
2(−1/β; p)∞

(p; p2)∞
(p2; p2)∞

×
∞∑

n=0

{
pn

(1 − ipney/
√

β)(1 + ipne−y/
√

β)
+

pn

(1 + ipney/
√

β)(1 − ipne−y/
√

β)

}

=
(−e2y/β,−e−2y/β; p2)∞

(−1/β; p)∞
(p; p2)∞
(p2; p2)∞

∞∑
n=0

1 + p2n/β

(1 + p2ne2y/β)(1 + p2ne−2y/β)
pn,

and this proves the second part. �

With an explicit expression for the Poisson kernel at hand one should be able to
explain that the discrete solutions λ

(β)
a in Theorem 6.1 are not N -extremal. Recall

that the masses of the N -extremal solutions are given by the function

ρ(x; β) =

( ∞∑
n=0

P 2
n(x; β)

)−1

, x ∈ R.

When x = 0, the value is

ρ(0; β) =
(p2; p2)∞
(p; p2)∞

(−p/β; p2)∞
(−1/β; p2)∞

( ∞∑
n=0

pn

1 + p2n/β

)−1

,

and hence
1

ρ(0; β)
+

1
ρ(0; 1/β)

=
(p; p2)∞
(p2; p2)∞

(
(−1/β; p2)∞
(−p/β; p2)∞

∞∑
n=0

pn

1 + p2n/β
+

(−β; p2)∞
(−pβ; p2)∞

∞∑
n=0

pn

1 + p2nβ

)
.

By Ramanujan’s 1ψ1 sum [10, II. 29], we have

(7.1)
∞∑

n=−∞

(−1/β; p2)n

(−p2/β; p2)n
pn =

(p2; p2)2∞
(p; p2)2∞

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞
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and thus

(−p/β; p2)∞
(−p2/β; p2)∞

1
ρ(0; β)

+
(−pβ; p2)∞
(−p2β; p2)∞

1
ρ(0; 1/β)

(7.2)

=
(p; p2)∞
(p2; p2)∞

(
1 +

(p2; p2)2∞
(p; p2)2∞

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

)
=

(p; p2)∞
(p2; p2)∞

+
(p2; p2)∞
(p; p2)∞

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

.

On the other hand,

λ
(β)
1 ({0}) =

(p; p2)∞
(p2; p2)∞

(−p2β; p2)∞
(−pβ; p2)∞

so that

(−p/β; p2)∞
(−p2/β; p2)∞

1

λ
(β)
1 ({0})

+
(−pβ; p2)∞
(−p2β; p2)∞

1

λ
(1/β)
1 ({0})

(7.3)

= 2
(p2; p2)∞
(p; p2)∞

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

.

Since
∞∑

n=−∞

(−1/β; p2)n

(−p2/β; p2)n
pn > 1,

we get from (7.1) that

(−p/β,−pβ; p2)∞
(−p2/β,−p2β; p2)∞

>
(p; p2)2∞
(p2; p2)2∞

and as a consequence, the expression in (7.2) is < the expression in (7.3). So for
each β > 0, we either have

ρ(0; β) > λ
(β)
1 ({0})

or
ρ(0; 1/β) > λ

(1/β)
1 ({0}).

In particular, this means that ρ(0; 1) > λ
(1)
1 ({0}) and at least when β = 1, the

solution λ
(β)
1 is not N -extremal.

8. Some biorthogonal rational functions

In [7] Berg and Ismail have shown how to systematically build the classical q-
orthogonal polynomials from the q-Hermite polynomials using a simple procedure
of attaching generating functions to measures. As an example, the attachment
procedure for the q−1-Hermite polynomials leads to the polynomials

(8.1) un(x; t1, t2) =
(−qe−y/t2; q)n

(q; q)n
(−t2/q)n

2φ1

(
q−n, qey/t1
−t2ey/qn

∣∣∣∣ q,−t1e
y

)
which are special cases of the Al-Salam–Chihara polynomials vn(x) (corresponding
to q > 1) from [4]. If we set t1 = −t2 = iq

√
β for some β ≥ 0 and replace q by p,

the polynomials in (8.1) reduce to Qn(x; β). At the second stage, the attachment
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procedure is applied to {un} and leads to the biorthogonal rational functions

(8.2) ϕn(x; t1, t2, t3, t4) = 4φ3

(
q−n,−t1t2q

n−2,−t1t3/q,−t1t4/q

−t1ey, t1e−y, t1t2t3t4/q3

∣∣∣∣ q, q

)
studied by Ismail and Masson in [13].

It is known that the rational functions ϕn(x; t1, t2, t3, t4) are biorthogonal with
respect to any measure µ of the form

(8.3) dµ(x) =
4∏

j=1

(tje−y,−tje
y; q)∞dψ(x),

where ψ is a solution to the q−1-Hermite moment problem. In this section we show
how solutions to the moment problem associated with the polynomials Qn(x; β) lead
to biorthogonality relations for the special case t3 = −t4 = iq

√
β of the rational

functions in (8.2).

Theorem 8.1. Suppose that ν is a positive measure such that∫
R

Qn(x; β)Qm(x; β)dν(x) =
βn(−1/β; p)n

pn(p; p)n
δn,m.

Then the rational functions

ϕn(x; t1, t2, β) = 4φ3

(
p−n, it1

√
β,−it1

√
β,−t1t2p

n−2

−t1ey, t1e−y, t1t2β/p

∣∣∣∣ p, p

)
are biorthogonal with respect to the measure µ given by

dµ(x) =
2∏

j=1

(tje−y,−tje
y; q)∞dν(x),

and the biorthogonality relation is∫
R

ϕn(x; t1, t2, β)ϕm(x; t2, t1, β)dµ(x) =
1 + t1t2p

n−2

1 + t1t2p2n−2

(−1/β, p; p)n(t1t2β/p)n

(t1t2β/p; p)n

× (−t1t2p
n−1; p)∞(−t21β,−t22β; p2)∞

(t1t2β/p; p)∞
δn,m.

Proof. To show the biorthogonality, it is sufficient to prove that∫
R

ϕn(x; t1, t2, β)
(t2e−y,−t2ey; p)m

dµ(x) = 0 for 0 ≤ m < n.

According to (6.2), we have∫
R

(t1pke−y,−t1p
key, t2p

me−y,−t2p
mey; p)∞dν(x)

=
(−t1t2p

k+m−1; p)∞
(t1t2βpk+m−1; p)∞

(−t21βp2k,−t22βp2m; p2)∞
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and thus∫
R

ϕn(x; t1, t2, β)
(t2e−y,−t2ey; p)m

dµ(x) =
n∑

k=0

(p−n, it1
√

β,−it1
√

β,−t1t2p
n−2; p)k

(t1t2β/p, p; p)k
pk

×
∫

R

(t1pke−y,−t1p
key, t2p

me−y,−t2p
mey; p)∞dν(x)

=
(−t1t2p

m−1; p)∞
(t1t2βpm−1; p)∞

(−t21β,−t22βp2m; p2)∞

×
n∑

k=0

(p−n,−t1t2p
n−2, t1t2βpm−1; p)k

(t1t2β/p,−t1t2pm−1, p; p)k
pk.

By the q-Saalschütz sum [10, II. 12], the above sum is equal to

(pm−n+1,−1/β; p)n

(−t1t2pm−1, p2−n/t1t2β; p)n

and
(pm−n+1; p)n = 0 for 0 ≤ m < n.

The case m = n reads∫
R

ϕn(x; t1, t2, β)
(t2e−y,−t2ey; p)n

dµ(x) =
(p,−1/β; p)n

(−t1t2pn−1, p2−n/t1t2β; p)n

× (−t1t2p
n−1; p)∞

(t1t2βpn−1; p)∞
(−t21β,−t22βp2n; p2)∞,

and the biorthogonality relation is established after multiplication by

(p−n, it2
√

β,−it2
√

β,−t1t2p
n−2; p)n

(t1t2β/p, p; p)n
pn.

�

The special cases dν = v(x; β)dx and ν = λ
(β)
a are not leading to new measures

of biorthogonality for the rational functions ϕn(x; t1, t2, t3, t4). In the first case, µ
is of the form (8.3) with dψ = wβ(x)dx, see (5.4), and in the second case, a more
general result without the restrictions on t3 and t4 is contained in Theorem 4.2 in
[13].

9. A p-Sturm–Liouville equation

The main result in this section is the p-Sturm–Liouville equation in Theorem 9.3.
As an application, we give an easy proof of the fact that the polynomials Qn(x; β)
are orthogonal with respect to the weight function

ṽ(x; β) =
1

(−e2y/β,−e−2y/β; p2)∞
, x = sinh y ∈ R,

and the discrete measures

λ̃(β)
a =

∞∑
n=−∞

ṽ(xn(a); β)
√

1 + x2
n(a) εxn(a),

where
xn(a) =

1
2

( 1
apn

− apn
)
.
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But we also use the p-Sturm–Liouville equation to derive a Bethe Ansatz-type
relation satisfied by the zeros of Qn(x; β).

The first step is to establish a lowering operator.

Lemma 9.1. A lowering operator for Qn(x; β) is given by

(9.1) DpQn+1(x; β) =
2pn/2

1 − p
Qn(x; β/p), n ≥ 0.

Proof. Apply Dp to both sides of the generating function in (3.1) to get
∞∑

n=0

DpQn+1(x; β)tn+1 =
2

1 − p

∞∑
n=0

Qn(x; β/p)pn/2tn+1.

Equating the coefficients of tn+1 now leads to (9.1). �
The next step is to find an appropriate raising operator.

Lemma 9.2. A raising operator for Qn(x; β) is given by

(9.2)
1

ṽ(x; βp)
Dp

(
ṽ(x; β)Qn−1(x; β)

)
=

2(pn/2 − p−n/2)
β(1 − p)

Qn(x; βp), n ≥ 1.

Proof. A direct computation using the generating function in (3.1) shows that
∞∑

n=1

Dp

(
ṽ(x; β)Qn−1(x; β)

)
tn−1

=
2

β(1 − p)
ṽ(x; βp)

∞∑
n=1

Qn(x; βp)(pn/2 − p−n/2)tn−1,

and (9.2) follows by equating the coefficients of tn−1. �
Combining the lowering and raising operators in Lemma 9.1 and Lemma 9.2, we

get the following result.

Theorem 9.3. The polynomials Qn(x; β) satisfy the p-Sturm–Liouville equation

(9.3) Dp

(
ṽ(x; β/p)DpQn(x; β)

)
+

4
√

p(1 − pn)
β(1 − p)2

ṽ(x; β)Qn(x; β) = 0, n ≥ 0.

An alternative proof of the first statement in Theorem 5.1 now goes as follows.
Set

(9.4) hn = −
4
√

p

β

1 − pn

(1 − p)2
,

and note that this sequence is strictly decreasing in n. According to (9.3), we have

(hn − hm)
∫

R

Qn(x; β)Qm(x; β)ṽ(x; β)dx

=
∫

R

Dp

(
ṽ(x; β/p)DpQn(x; β)

)
Qm(x; β)dx

−
∫

R

Dp

(
ṽ(x; β/p)DpQm(x; β)

)
Qn(x; β)dx

=
〈
Dp

(
ṽ(x; β/p)DpQn(x; β)

)
,
√

1 + x2Qm(x; β)
〉

−
〈
Dp

(
ṽ(x; β/p)DpQm(x; β)

)
,
√

1 + x2Qn(x; β)
〉
,
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and using integration by parts as described in (5.7), this expression reduces to

−
〈
ṽ(x; β/p)DpQn(x; β),

√
1 + x2DpQm(x; β)

〉
+

〈
ṽ(x; β/p)DpQm(x; β),

√
1 + x2DpQn(x; β)

〉
=

∫
R

DpQn(x; β)DpQm(x; β)ṽ(x; β/p)dx

−
∫

R

DpQm(x; β)DpQn(x; β)ṽ(x; β/p)dx = 0.

Since hn �= hm for n �= m, it is proved that Qn(x; β) are orthogonal with respect
to ṽ(x; β).

Let Za denote the set {xk(a) | k ∈ Z}. Since Zap = Za, we only consider the
case p < a ≤ 1. With respect to the inner product

〈f, g〉a =
∞∑

k=−∞
f
(
xk(a)

)
g
(
xk(a)

)√
1 + x2

k(a)

on �2(Za,
√

1 + x2), integration by parts can be carried out by following the rule:

〈Dpf, g〉a = −〈f,Dpg〉a√p .

Hence, the p-Sturm–Liouville equation (9.3) leads to

(hn − hm)
∞∑

k=−∞
Qn(xk(a); β)Qm(xk(a); β)ṽ(xk(a); β)

√
1 + x2

k(a)

=
〈
Dp

(
ṽ(x; β/p)DpQn(x; β)

)
, Qm(x; β)

〉
a

−
〈
Dp

(
ṽ(x; β/p)DpQm(x; β)

)
, Qn(x; β)

〉
a

= −
〈
ṽ(x; β/p)DpQn(x; β),DpQm(x; β)

〉
a
√

p

+
〈
ṽ(x; β/p)DpQm(x; β),DpQn(x; β)

〉
a
√

p
= 0,

and we have proved that Qn(x; β) are orthogonal with respect to λ̃
(β)
a . Exactly the

same method can be used to prove that the polynomials hn(x|q) are orthogonal
with respect to the discrete measures in (1.7).

The essence of Theorem 9.3 is the fact that the polynomials Qn(x; β) are eigen-
functions of the operator T defined to act on functions in L2(R, v(x; β)) by

T f(x) = − 1
ṽ(x; β)

Dp

(
ṽ(x; β/p)Dpf(x)

)
.
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The corresponding eigenvalues are given in (9.4). The operator T is clearly positive
since

(T f(x), f(x))v = −
∫

R

Dp

(
ṽ(x; β/p)Dpf(x)

)
f(x)dx

= −
〈
Dp

(
ṽ(x; β/p)Dpf(x)

)
,
√

1 + x2f(x)
〉

=
〈
ṽ(x; β/p)Dpf(x),

√
1 + x2Dpf(x)

〉
=

∫
R

|Dpf(x)|2ṽ(x; β/p)dx ≥ 0.

However, the polynomials Qn(x; β) are not dense in L2(R, v(x; β)) because the
absolutely continuous solution with density v(x; β) is not N -extremal. Therefore,
we do not have an explicit orthonormal basis for the Hilbert space L2(R, v(x; β)).

The average operator Ap is defined to act on functions on R by

Apf(x) =
1
2

(
f̆(p1/2ey) + f̆(p−1/2ey)

)
,

where again f̆(ey) = f(x). The reason for introducing Ap is to obtain the p-Leibniz
rule

Dpfg = DpfApg + ApfDpg,

which follows from the fact that

(a + b)(c − d) + (a − b)(c + d) = 2(ac − bd) for a, b, c, d ∈ R.

It is straightforward to see that

Dpṽ(x; β) = − 4x

β
√

p(1 − p)
ṽ(x; pβ)

and

Apṽ(x; β) =
(2x2 + 1

pβ
+ 1

)
ṽ(x; pβ),

so the p-Sturm–Liouville equation (9.3) can be written as

(9.5) (2x2 +1+β)D2
pQn(x; β)−

4x
√

p

1 − p
ApDpQn(x; β)+

4
√

p(1 − pn)
(1 − p)2

Qn(x; β) = 0.

Note that the weight function ṽ(x; β) has disappeared completely and, as such,
(9.5) is more general than (9.3).

We are now in a position to derive Bethe Ansatz equations satisfied by the zeros
of Qn(x; β); cf. [18].

Theorem 9.4. Let x1 = sinh y1, . . . , xn = sinh yn denote the n simple zeros of
Qn(x; β). If we set p = e2η and β = e2γ , then the following n equations are
satisfied:

n∏
i=1
i �=j

sinh
(yj−yi

2 + η
)
cosh

( yj+yi

2 + η
)

sinh
(yj−yi

2 − η
)
cosh

( yj+yi

2 − η
) = e−2yj

cosh(yj + γ)
cosh(yj − γ)

, j = 1, . . . , n.

Proof. Let cn denote the leading coefficient of Qn(x; β) and define

f(x) :=
1
cn

Qn(x; β) =
n∏

i=1

(x − xi).
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A tiresome computation shows that

D2
pf(x)|x=xj

=
2(√

p − 1/
√

p
)2

(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj

√
p − e−yj /

√
p

+
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj /

√
p − e−yj

√
p

)
2

eyj + e−yj

and similarly

ApDpf(x)|x=xj

=
1

√
p − 1/

√
p

(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj

√
p − e−yj /

√
p

−
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj /

√
p − e−yj

√
p

)
.

According to (9.5), we thus have

(2x2
j + 1 + β)

2(√
p − 1/

√
p
)2

×
(∏

i

( eyj p−e−yj /p
2 − xi

)
eyj

√
p − e−yj /

√
p

+
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj /

√
p − e−yj

√
p

)
2

eyj + e−yj

=
4xj

√
p

1 − p

1
√

p − 1/
√

p

(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj

√
p − e−yj /

√
p

−
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj /

√
p − e−yj

√
p

)
or (e2yj + e−2yj

2
+ β

)(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj

√
p − e−yj /

√
p

+
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj /

√
p − e−yj

√
p

)

=
e2yj − e−2yj

2

(∏
i

( eyj p−e−yj /p
2 − xi

)
eyj

√
p − e−yj /

√
p

−
∏

i

( eyj /p−e−yj p
2 − xi

)
eyj /

√
p − e−yj

√
p

)
.

Hence,

(e2yj + β)
(
eyj /

√
p + e−yj

√
p
) n∏

i=1

(eyj p − e−yj /p

2
− xi

)
= −(e−2yj + β)

(
eyj

√
p + e−yj /

√
p
) n∏

i=1

(eyj /p − e−yj p

2
− xi

)
,

that is,
n∏

i=1

(
eyj p − e−yj /p

)
/2 − xi(

eyj /p − e−yj p
)
/2 − xi

= −
(e−2yj + β)

(
eyj

√
p + e−yj /

√
p
)

(e2yj + β)
(
eyj /

√
p + e−yj

√
p
) .

With p = e2η and β = e2γ , the above expression can be written as
n∏

i=1

sinh
(yj−yi

2 + η
)
cosh

(yj+yi

2 + η
)

sinh
(yj−yi

2 − η
)
cosh

(yj+yi

2 − η
) = −e−2yj

cosh(yj + γ) cosh(yj + η)
cosh(yj − γ) cosh(yj − η)

,

and the theorem is proved once we remove the factor corresponding to i = j. �

For more information about the connection between q-Sturm–Liouville problems
and Bethe Ansatz equations, the reader is referred to [12].
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10. A right inverse to the divided difference operator Dp

In Section 5 and Section 9 we have seen that the divided difference operator Dq

(or Dp) is a lowering operator for the polynomials hn(x|q) and Qn(x; β). In this
section we establish a right inverse D−1

q (or D−1
p ) on appropriate L2-spaces.

For an indeterminate moment problem on the real line it is well known that the
polynomials are dense in L2(R, µ) if and only if the measure µ is N -extremal. So
in the case of the q−1-Hermite moment problem, the polynomials

Pn(x) =
qn(n+1)/4√

(q; q)n

hn(x|q)

form an orthonormal basis for L2(R, νa) exactly when νa has the form (1.7) (which
we shall assume). Any function f ∈ L2(R, νa) can thus be written as

(10.1) f(x) ∼
∞∑

n=0

fnPn(x)

for some sequence (fn) ∈ �2 and since

DqPn(x) = − 2
√

1 − qn

√
q − 1/

√
q
Pn−1(x),

we see that

Dqf(x) ∼ −2
√

q − 1/
√

q

∞∑
n=0

fn+1

√
1 − qn+1Pn(x).

In other words, we can think of Dq as a bounded operator on L2(R, νa). It is readily
seen that Dq is onto, for if g ∈ L2(R, νa) has the form

(10.2) g(x) ∼
∞∑

n=0

gnPn(x),

then Dqf(x) = g(x) with f as in (10.1) and

fn = −
√

q − 1/
√

q

2
gn−1√
1 − qn

.

But Dq is clearly not one-to-one. So we can only have hope of finding a right inverse
to Dq, that is, an operator D−1

q on L2(R, νa) so that

DqD−1
q = I.

It is straightforward how to define D−1
q . With g as in (10.2), the operator D−1

q is
given by

D−1
q g(x) ∼−

√
q − 1/

√
q

2

∞∑
n=1

gn−1√
1 − qn

Pn(x)

= −
√

q − 1/
√

q

2

∞∑
n=1

∫
R

g(x′)Pn−1(x′)dνa(x′)
√

1 − qn
Pn(x)

= −
√

q − 1/
√

q

2

∫
R

g(x′)
∞∑

n=1

Pn−1(x′)Pn(x)√
1 − qn

dνa(x′),
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and this means that D−1
q is an integral operator with kernel

(10.3) K(x, x′) =
∞∑

n=1

Pn(x)Pn−1(x′)√
1 − qn

=
∞∑

n=1

qn2/2

(q; q)n
hn(x|q)hn−1(x′|q).

Since
(
Pn(x)

)
∈ �2 for all x ∈ C, the kernel in (10.3) is convergent in L2(R, νa) as

a function of x′. The change of summation and integration can therefore easily be
justified.

Theorem 10.1. The kernel in (10.3) is explicitly given by

∞∑
n=1

qn2/2

(q; q)n
hn(x|q)hn−1(x′|q)

=
2(−√

qey+y′
,−√

qe−y−y′
,
√

qey−y′
,
√

qe−y+y′
; q)∞

(q; q)∞

×
∞∑

n=0

(q; q)2n(sinh y − qn+1/2 sinh y′)qn+1/2

(−√
qey+y′ ,−√

qe−y−y′ ,
√

qey−y′ ,
√

qe−y+y′ ; q)n+1
.

Proof. The idea of the proof is to apply Dq with respect to x′ to the Poisson kernel.
Applying Dq (wrt. x′) to the left-hand side in (1.5) leads to

−2
√

q − 1/
√

q

∞∑
n=1

qn2/2−n

(q; q)n−1
hn(x|q)hn−1(x′|q)tn

or

−2
√

q − 1/
√

q

{
H(x, x′; t/q) − H(x, x′; t)

}
if we set

H(x, x′; t) =
∞∑

n=1

qn2/2

(q; q)n
hn(x|q)hn−1(x′|q)tn.

Applying Dq (wrt. x′) to the right-hand side gives, after some computations,

−2
√

q − 1/
√

q

2t
√

q

(
sinh y − t

√
q

sinh y′
)

×
(−t

√
qey+y′

,−t
√

qe−y−y′
, t
√

qey−y′
, t
√

qe−y+y′
; q)∞

(t2/q; q)∞
.

In other words,

H(x, x′; t/q) − H(x, x′; t)

=
2t
√

q

(
sinh y − t

√
q

sinh y′
) (−t

√
qey+y′

,−t
√

qe−y−y′
, t
√

qey−y′
, t
√

qe−y+y′
; q)∞

(t2/q; q)∞
,
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and since H(x, x′; 0) = 0, we have

H(x, x′; t) =
∞∑

n=1

{
H(x, x′; tqn−1) − H(x, x′; tqn)

}
= 2

∞∑
n=1

(sinh y − tqn−1/2 sinh y′)tqn−1/2

× (−tqn+1/2ey+y′
,−tqn+1/2e−y−y′

, tqn+1/2ey−y′
, tqn+1/2e−y+y′

; q)∞
(t2q2n−1; q)∞

=
2(−t

√
qey+y′

,−t
√

qe−y−y′
, t
√

qey−y′
, t
√

qe−y+y′
; q)∞

(t2q; q)∞

×
∞∑

n=1

(t2q; q)2n−2(sinh y − tqn−1/2 sinh y′)tqn−1/2

(−t
√

qey+y′ ,−t
√

qe−y−y′ , t
√

qey−y′ , t
√

qe−y+y′ ; q)n
.

It is only left to set t = 1 and shift the summation. �

For the moment problem associated with the polynomials Qn(x; β), the situation
is almost the same. However, since

DpPn(x; β) =
2
√

p

1 − p

√
1 − pn

β + 1
Pn−1(x; β/p),

the operator Dp maps L2(R, ν
(β)
a ) into L2(R, ν

(β/p)
a ), and the right inverse D−1

p is

defined on L2(R, ν
(β/p)
a ) as the integral operator with kernel

(10.4) K(x, x′; β) =
∞∑

n=1

Pn(x; β)Pn−1(x′; β/p)√
1 − pn

.

Theorem 10.2. The kernel in (10.4) is explicitly given by
∞∑

n=1

Pn(x; β)Pn−1(x′; β/p)√
1 − pn

= −
i
√

p

2
(−iey/

√
β, ie−y/

√
β, i

√
pey′

/
√

β,−i
√

pe−y′
/
√

β)∞
(−p/β; p)∞

√
1 + 1/β

(p; p2)∞
(p2; p2)∞

×
∞∑

n=0

(p2; p2)n

(i
√

pey′/
√

β,−i
√

pe−y′/
√

β)n
pn

n∑
k=0

(iey/
√

β,−ie−y/
√

β; p)k

(p2; p2)k
pk

+ a similar term with y replaced by −y and y′ replaced by −y′.

Proof. The same procedure as in the proof of Theorem 10.1 can be carried out.
The details are left to the reader. �

If we compare Dq (or Dp) with differentiation d/dx, it is remarkable that Dq

is bounded on L2(R, νa) whereas d/dx is unbounded. Also, the Askey–Wilson
operator is known to be unbounded on the L2-space weighted by the weight function
for the Askey–Wilson polynomials.

Since Dq is a q-analogue of differentiation, we can think of D−1
q as a q-analogue

of integration. Thus, for f ∈ L2(R, νa) we have the following q-analogue of the
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definite integral:∫ b

a

f(x)d̆qx = −
√

q − 1/
√

q

2

∫
R

f(x)
(
K(b, x) − K(a, x)

)
dνa(x),

where the kernel K is computed in Theorem 10.1.
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