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A MOMENTUM CONSTRUCTION FOR
CIRCLE-INVARIANT KÄHLER METRICS

ANDREW D. HWANG AND MICHAEL A. SINGER

Abstract. Examples of Kähler metrics of constant scalar curvature are rel-
atively scarce. Over the past two decades, several workers in geometry and
physics have used symmetry reduction to construct complete Kähler metrics
of constant scalar curvature by ODE methods. One fruitful idea—the “Calabi
ansatz”—is to begin with an Hermitian line bundle p : (L, h)→ (M, gM ) over
a Kähler manifold, and to search for Kähler forms ω = p∗ωM + ddcf(t) in
some disk subbundle, where t is the logarithm of the norm function and f is a
function of one variable.

Our main technical result (Theorem A) is the calculation of the scalar
curvature for an arbitrary Kähler metric g arising from the Calabi ansatz.
This suggests geometric hypotheses (which we call “σ-constancy”) to impose
upon the base metric gM and Hermitian structure h in order that the scalar
curvature of g be specified by solving an ODE. We show that σ-constancy is
“necessary and sufficient for the Calabi ansatz to work” in the following sense.
Under the assumption of σ-constancy, the disk bundle admits a one-parameter
family of complete Kähler metrics of constant scalar curvature that restrict to
gM on the zero section (Theorems B and D); an analogous result holds for
the punctured disk bundle (Theorem C). A simple criterion determines when
such a metric is Einstein. Conversely, in the absence of σ-constancy the Calabi
ansatz yields at most one metric of constant scalar curvature, in either the disk
bundle or the punctured disk bundle (Theorem E).

Many of the metrics constructed here seem to be new, including a complete,
negative Einstein-Kähler metric on the disk subbundle of a stable vector bundle
over a Riemann surface of genus at least two, and a complete, scalar-flat Kähler
metric on C2.

1. Introduction

The subject of this paper is the explicit construction of complete Kähler met-
rics with prescribed—usually constant—scalar curvature. The technique, here-
after referred to as the momentum construction, is a combination of two main
ideas. The first, which goes back at least to the work of Calabi [4], is that of
constructing Kähler forms from Kähler potentials that are essentially functions of
one real variable. The prototypical example is the ansatz ω =

√
−1∂∂̄f(t), where

t = (1/2) log(|z1|2 + · · · + |zn|2), the zj are standard complex coordinates on Cn,
and f is a smooth function of one real variable. As is well-known, if f(t) = t, then
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ω descends to the Fubini-Study metric on Pn−1, while if f(t) = et, ω extends to
the standard flat Kähler form on Cn.

The general setting for a construction of this type is the total space of an Her-
mitian holomorphic line bundle p : (L, h)→ (M,ωM ) over a Kähler manifold. Let
t be the logarithm of the fibrewise norm function defined by h and consider the
Calabi ansatz

ω = p∗ωM + 2
√
−1∂∂̄f(t),(1.1)

which associates a Kähler form to (suitably convex) functions of one real variable.
The second idea comes from symplectic geometry and involves a change of vari-

ables f(t) to ϕ(τ) closely related to the Legendre transform. For each f , (1.1) is
invariant under the circle-action that rotates the fibres of L. Let X be the generator
of this action, normalized so that exp(2πX) = 1. Denote by τ the corresponding
moment map determined (up to an additive constant) by

iXω = −dτ.(1.2)

(In fact τ = f ′(t), see Section 2.1.) When ω comes from the Calabi ansatz, the
function ‖X‖2ω is constant on the level sets of τ , so there is a function ϕ : I →
(0,∞)—to be called the momentum profile of ω—such that

ϕ(τ) = ‖X‖2ω.(1.3)

The crucial point is that ω can be reconstructed explicitly from its profile; indeed
t and τ are related by the Legendre transform, and the Legendre dual F of f
satisfies F ′′ = 1/ϕ.

The description of ω in terms of ϕ has many advantages. At one level, this is to
be expected: (1.3) shows that ϕ is a canonical geometric quantity, while f deter-
mines ω only through its second derivative. In particular, the only condition that is
needed for ϕ to determine a Kähler metric is that it be positive on (the interior of)
I, see (1.3). Positivity of (1.1), by contrast, corresponds to two conditions on the
derivatives of f . Further, the geometry of the metric—for example its complete-
ness or extendability properties near the fixed-point set of the S1-action—are easily
read off from the behaviour of ϕ near the endpoints of I. However, the decisive and
most remarkable advantage, as far as the problem of prescribed scalar curvature
is concerned, is that the scalar curvature of ω is given by a linear second-order
differential expression in ϕ(τ), in contrast to the fully nonlinear fourth-order func-
tion that arises in the f(t)-description. Consequently, the profiles that give rise to
metrics of constant scalar curvature are explicit rational functions of τ .

This paper is organized as follows. The remainder of the introduction summa-
rizes our main results. Section 2 gives a self-contained account of the momentum
construction and Section 3 applies the method to give general existence theorems for
complete Kähler metrics of constant scalar curvature. Section 4 is devoted mostly
to a discussion of the scope and limitations of the momentum construction, and
to examples of bundles to which the results of Section 3 apply. We also describe
some possible extensions of this work to metrics of finite fibre area, and give brief,
comparative accounts of prior work on the Calabi ansatz.
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Results about the momentum construction. In the rest of the paper, p :
(L, h) → (M,ωM ) is an Hermitian holomorphic line bundle, with curvature form
γ = −

√
−1∂∂̄ log h, over a Kähler manifold of complex dimension m. A compatible

momentum interval is an interval I ⊂ R, such that the closed (1, 1)-form ωM (τ) :=
ωM−τγ is positive for every τ ∈ I. The associated Kähler metric is denoted gM (τ).

Definition 1.1. Horizontal data {p : (L, h)→ (M, gM ), I} consists of an Hermit-
ian holomorphic line bundle over a Kähler manifold, together with a compatible
momentum interval. The whole assemblage is often denoted {p, I} for brevity. A
momentum profile is a function ϕ that is smooth on the closure of I and positive
on the interior of I.

The completion of a line bundle L is the P1 bundle L̂ = P(O⊕L), containing L as
a Zariski-open subset and obtained by adding a copy ofM ‘at∞.’ Let r : L̂→ [0,∞]
denote the continuous extension of the square of the Hermitian norm function. All
the metrics constructed in this paper live on subsets of L̂ obtained by restricting r
to an interval (or on manifolds obtained by partially collapsing the zero and/or
infinity sections).

Definition 1.2. Let J ⊂ [0,∞] be an open interval. The corresponding invariant
subbundle L′ ⊂ L̂ is the S1-invariant domain r−1(J).

Different choices of J yield six distinct complex-analytic fibre types: J = [0,∞]
(the projective line); J = [0,∞) (the complex line); J = (0,∞) (the punctured line);
J = [0, 1) (the disk); J = (0, 1) (the punctured disk); and J = (e−l, el) (annuli). In
the last three cases, homotheties have been used to reduce J to a standard form.
The invariant subbundles corresponding to the first five cases will be denoted L̂, L,
L×, ∆(L) and ∆×(L) respectively. Annulus-subbundles will not play a major role
in what follows.

Definition 1.3. Let L′ ⊂ L̂ be an invariant subbundle. A bundle-adapted metric
on L′ is a Kähler metric g whose Kähler form ω arises from the Calabi ansatz (1.1).

The heart of the momentum construction is the fact, implicitly due to Calabi
and Koiso-Sakane, that if horizontal data are given, then each momentum profile
determines a unique isometry class of bundle-adapted Kähler metric enjoying the
geometric properties of equations (1.1)–(1.3):

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2288 ANDREW D. HWANG AND MICHAEL A. SINGER

Proposition 1.4. Let horizontal data {p, I} and a momentum profile ϕ be given.
Then there exists an invariant subbundle L′ ⊂ L̂, unique up to homothety, and a
bundle-adapted Kähler metric gϕ on L′, unique up to isometry, with the following
properties:

(i): The Kähler form ωϕ of gϕ arises from the Calabi ansatz;
(ii): The image of the moment map τ is I;
(iii): If X generates the circle action, and is normalized so that exp(2πX) = Id,

then gϕ(X,X) = ϕ(τ).

It is natural to ask how the geometric properties, especially completeness and
the scalar curvature σϕ of gϕ, are encoded by ϕ. As will be seen in Section 2.2
below, completeness of gϕ is encoded by the boundary behaviour of ϕ, in fact by
the 2-jet at the endpoints of I. Our main technical result is that in momentum
coordinates, the scalar curvature is linear in ϕ:

Theorem A. Let horizontal data be given. For each τ ∈ I, let σM (τ) denote the
scalar curvature of gM (τ), and define Q : I ×M → R by Q(τ) = ωM (τ)m/ωmM .
Then the scalar curvature of gϕ is given by

σϕ = σM (τ) − 1
2Q

∂2

∂τ2
(Qϕ)(τ).(1.4)

To interpret (1.4), regard the S1-invariant function σϕ on L′ as a function on
I ×M by factoring through the S1-action.

The improvement of Theorem A over earlier results is that no curvature hypothe-
ses are imposed on the horizontal data. Of course, it is too much to expect that
for arbitrary horizontal data, σϕ can be made constant by an appropriate choice of
profile (a single function of one variable). Natural sufficient curvature hypotheses
are to assume the two terms in (1.4) separately depend only on τ for every profile:

Definition 1.5. Horizontal data are said to be σ-constant if
(i): The curvature endomorphism B = ω−1

M γ has constant eigenvalues on M ;
(ii): The metric gM (τ) has constant scalar curvature for each τ ∈ I.

The simplest examples of σ-constant horizontal data are pluricanonical bundles
over Einstein-Kähler manifolds. More generally, if gM has constant scalar curvature,
and γ(L, h) is a multiple of ωM , then the data p : (L, h)→ (M,ωM ) are σ-constant.
More specific examples appear in Section 4.

The conclusion of Theorem A is due to Guan [10] and Hwang [12] under stronger
curvature hypotheses (“ρ-constancy,” see Section 4.5). The corresponding state-
ment for σ-constant data is used repeatedly in the sequel:

Corollary A.1. Assume the horizontal data {p : L→M, I} are σ-constant. Then
σM (τ) = P/2Q, where Q is as in Theorem A, P is a polynomial in τ , and for each
momentum profile ϕ,

σϕ =
1

2Q

(
P − (Qϕ)′′

)
(τ).(1.5)

Metrics of constant scalar curvature on line bundles. The next two theorems
demonstrate “sufficiency” of σ-constancy in the Calabi ansatz, for the disk bundle
and punctured disk bundle respectively. In each statement, we write “γ ≺ 0” to
indicate that the curvature form γ is non-positive, but not identically zero, see
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Remark 1.6 below. The resulting metrics have fibres of infinite area; systematic
treatment of metrics of finite fibre area is outside the scope of this paper, though
some aspects are discussed in Section 4.

Theorem B. Let I = [0,∞), and let {p, I} be σ-constant horizontal data with
γ ≺ 0, and with gM complete. Then there exists a real number c0 with the fol-
lowing property: For every c < c0, and for at most finitely many c > c0, the disk
bundle ∆(L) carries a complete Kähler metric gc, of scalar curvature c, whose re-
striction to the zero section is gM . When c = c0, the analogous conclusion holds,
but the metric lives on the total space of L. For c ≤ 0, the metric gc is Einstein if
and only if c

m+1ωM = ρM + γ.

An analogue of Theorem B holds for punctured disk bundles. Of course, the met-
rics are not obtained from the metrics in Theorem B by restriction, since removing
the zero section leaves an incomplete metric.

Theorem C. Let I = (0,∞), and let {p, I} be σ-constant horizontal data with
γ ≺ 0, and with gM complete. Then there exists a real number c×0 with the following
property: For every c < c×0 , and for at most finitely many c > c×0 , ∆×(L) carries
a complete Kähler metric g×c , of scalar curvature c, whose symplectic reduction at
τ = 1 is gM − γ. When c = c×0 , the analogous conclusion holds, but the metric
lives on the total space of L×. For c < 0, the metric gc is Einstein if and only if
c

m+1ωM = ρM .

Remark 1.6. The area form of the fibre pushes forward under τ to 2π times
Lebesgue measure on I; thus an end of the fibre has infinite area if and only if
the corresponding end of I is unbounded. When the fibre area is infinite, the
momentum interval I restricts the curvature form γ (since the “horizontal form”
ωM (τ) = ωM − τ γ is required to be positive for all τ ∈ I). In particular, the condi-
tion (0,∞) ⊂ I implies the curvature γ is non-positive. There are dual statements
with γ ≥ 0 and (−∞, 0) ⊂ I, but these yield no new isometry classes of metric, see
Lemma 4.1 below (where the assumption inf I = 0 is also justified). We exclude the
case of a flat line bundle (γ = 0) since this leads only to local product metrics.

Remark 1.7. The constants c0 and c×0 are roots of polynomials in one variable and
can be estimated in terms of the horizontal data. In good cases they can be found
exactly. In particular, if γ is negative-definite then c0 = 0 and one has the pleasant
conclusion that for every c < 0, ∆(L) admits a complete Kähler metric with scalar
curvature c, while L admits a complete scalar-flat Kähler metric.

Theorem B contains many previously-known results (see Section 4), but even
when M is a complex curve, an interesting new result is obtained:

Corollary B.1. Let M = C, ωM =
√
−1
2 dz ∧ dz̄ the standard flat Kähler form,

(L, h)→M the trivial line bundle equipped with an Hermitian metric of curvature
γ = −2πk ωM , (k a positive constant). Then the total space of L—biholomorphic to
C2—admits a complete, scalar-flat Kähler metric that is not Ricci-flat, and whose
fibre metric is asymptotically cylindrical.

The importance of this example is that scalar-flat Kähler metrics on complex
surfaces are anti-self-dual (in the sense of 4-dimensional conformal geometry), and
are thus of independent interest.
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The following Einstein-Kähler metrics arising from Theorem B are due to Cal-
abi [4] when the base is Einstein-Kähler (that is, when n = 1 in Corollary B.2
below). Moreover, non-homothetic metrics are obtained in Corollary B.2 by scaling
the ωMi separately. In Corollary B.3, further metrics arise by tensoring with a flat
line bundle when the base is not simply-connected.

Corollary B.2. For 1 ≤ i ≤ n, let pi : Ki → Mi be the canonical bundle of a
compact Einstein-Kähler manifold of positive curvature. Then there is a complete,
Ricci-flat Kähler metric on the total space of

⊗
i p
∗
iKi.

Corollary B.3. For 1 ≤ i ≤ n, let pi : Ki → Mi be a compact Einstein-Kähler
manifold of positive curvature. Then for all ` > 1, there is a complete Einstein-
Kähler metric of negative curvature on the disk subbundle of (

⊗
i p
∗
iKi)

`. If Mi

are complete, negative Einstein-Kähler manifolds, then the disk subbundle in
(
⊗

i p
∗
iK
−1
i )` admits a complete, negative Einstein-Kähler metric.

Theorem C yields some new Einstein-Kähler metrics on punctured disk bundles.
The fibre metric has one end of finite area and one end of infinite area.

Corollary C.1. Let p : L → (M, gM ) be a holomorphic line bundle over a com-
plete, negative Einstein-Kähler manifold, and assume c1(L) ∈ H1,1(M,Z) is repre-
sented by a form γ whose eigenvalues with respect to ωM are constant on M . Then
∆×(L) admits a complete, negative Einstein-Kähler metric.

Metrics of constant scalar curvature on vector bundles. The Calabi ansatz
applies, in modified form, to vector bundles E → D of rank n > 1; Calabi’s
construction of a complete, Ricci-flat metric on the cotangent bundle of a compact,
rank-one Hermitian symmetric space [4] is the prototypical example. In seeking
generalizations of this example, one adopts the following strategy. Take M = P(E),
L = τE the tautological line bundle over P(E). Since the total space of L is the
blow-up along the zero-section of E, a metric on E is the same thing as a suitably
degenerate metric on τE . The momentum construction is easily modified to produce
such partially degenerate metrics on L:

Theorem D. Let (E, h) → (D, gD) be an Hermitian holomorphic vector bundle
of rank n over a complete Kähler manifold of dimension d, and let p : (τE , h) →
M = P(E) be the tautological bundle with the induced Hermitian structure. Let
γ denote the curvature form of (τE , h). Assume ωM (τ) := ωD − τγ is a Kähler
form on M for all τ > 0, and that p : (τE , h) →

(
M, gM (τ0)

)
is σ-constant for

some τ0 > 0. Then there is a c0 such that for every c < c0, and for at most finitely
many c > c0, the momentum construction determines a complete Kähler metric
with scalar curvature c on the disk subbundle ∆ ⊂ E. When c ≤ 0, this metric is
Einstein if and only if c

n+dωD = ρM +nγ. Furthermore, there is a complete Kähler
metric on E with scalar curvature c0.

Unfortunately, σ-constancy of the data τE → P(E) is a strong assumption. It
is not even sufficient for E to be a homogeneous vector bundle, as the example
E = O ⊕ O(k) → P1 (k < 0) shows. In this case P(E) is a Hirzebruch surface,
which does not admit a Kähler metric of constant scalar curvature, so condition (ii)
in the definition of σ-constancy is never satisfied.

Each of the next three corollaries contains tractable hypotheses that guarantee
the applicability of Theorem D. In Corollary D.1, it is assumed that both E and
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P(E) are homogeneous. The pseudoconvexity hypothesis guarantees a metric of
non-positive curvature on the tautological bundle. The hypotheses of Corollary D.2
imply that P(E) is a product and that τE is a tensor product of line bundles pulled
back from the factors. Corollary D.3, which rests on the result of Narasimhan-
Seshadri to the effect that a stable bundle over a curve is projectively flat, gives
families of examples depending on continuous parameters in the event that the base
of E is one-dimensional. As above, the restriction of the advertised metric to the
zero section is the base metric gD. In particular, varying the scalar curvature does
not vary the metric through homotheties.

Corollary D.1. Let E → D be a homogeneous vector bundle of rank n > 1 over
a compact, homogeneous Kählerian manifold. Assume further that the projective
bundle M = P(E) is homogeneous, and that the zero section of E has a pseudocon-
vex tubular neighborhood. Endow the base with a homogeneous Kähler metric gD,
and the bundle with a homogeneous Hermitian metric h. Then for every c < 0,
there is a complete Kähler metric gc of scalar curvature c on the disk bundle ∆,
and there is a complete, scalar-flat metric on the total space of E.

Corollary D.2. Let (D, gD) be complete, and suppose that (Λ, h) → (D, gD) is
σ-constant, with curvature γ < 0. Then the total space of E = Λ ⊗ Cn = Λ⊕n

admits a complete, scalar-flat metric, and for every c < 0, the disk bundle ∆ (taken
with respect to the natural Hermitian structure) admits a complete Kähler metric
of scalar curvature c.

Corollary D.3. Let p : E → C be a stable vector bundle of rank n and degree k ≤ 0
over a compact Riemann surface C, of genus g ≥ 2 and endowed with the unit-
area metric of constant Gaussian curvature. Then the total space of E admits a
complete, scalar-flat Kähler metric, and there exists an Hermitian structure h such
that for every c < 0, the disk subbundle of (E, h) carries a complete Kähler metric
of scalar curvature c. Finally, the metric in this family that has scalar curvature
c = 2π(n+ 1)(2− 2g + k) < 0 is Einstein-Kähler.

Limitations of the Calabi ansatz. If horizontal data are σ-constant, then by (i)
of Definition 1.5, Q(τ) is constant for all τ ∈ I, so the second term in (1.4) depends
only on τ for every profile ϕ, while (ii) says exactly that σM (τ) is constant for all
τ . Conversely, it is not difficult to show that if, for every ϕ, σϕ depends only upon
τ then the horizontal data are σ-constant. We believe the same conclusion follows
merely if there exists a profile inducing a metric of constant scalar curvature, but
are at present able to prove only a partial result in this direction:

Theorem E. Let {p, I} be horizontal data with I = [0, ε) for some ε > 0, and
assume there exist real-analytic functions σ1 and σ2 on I, and distinct profiles
ϕ1 and ϕ2, with ϕ1(0) = ϕ2(0) and inducing metrics of scalar curvature σ1(τ) and
σ2(τ), respectively. Then the horizontal data are σ-constant.

Theorem E is proved by considering the difference ϕ1 − ϕ2, and is of course
purely local. A simple but suggestive corollary is that on horizontal data that are
not σ-constant, there is at most one metric of constant scalar curvature arising from
the Calabi ansatz. In the statement below, it is not necessary to assume c1 6= c2; if
c1 = c2, then ϕ1 and ϕ2 are distinct if and only if ϕ′1(0) 6= ϕ′2(0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2292 ANDREW D. HWANG AND MICHAEL A. SINGER

Corollary E.1. Let {p, I} be horizontal data as above, and assume there exist
distinct profiles ϕ1 and ϕ2, equal at 0 and inducing metrics of scalar curvature
c1 and c2, respectively. Then the horizontal data are σ-constant.

There does not seem to be an easy way to prove σ-constancy by assuming exis-
tence of one profile, without additional hypotheses. Further partial results and a
conjectural strengthening of Theorem E are described in Section 4.

2. Bundle-Adapted Metrics

This section sketches the main points in the momentum construction. The details
are straightforward calculations; a few simple but helpful observations—as well as
information on notational conventions—are included for readers who wish to apply
this machinery in other situations.

2.1. The Momentum Construction. Terminology is as in Definitions 1.1–1.3.
The following notational conventions are used systematically: A Kähler metric is
denoted g. Its Kähler form, Ricci form, scalar curvature, and Laplace operator
(acting on functions) are denoted ω, ρ, σ, and � respectively. Subscripts are used
descriptively when several metrics are under consideration.

Fix b ≤ ∞. Let I ⊂ R be an interval with interior (0, b), and pick τ0 ∈ (0, b).
For each profile ϕ, define

t1 = lim
τ→0+

∫ τ

τ0

dx

ϕ(x)
, t2 = lim

τ→b−

∫ τ

τ0

dx

ϕ(x)
,(2.1)

noting that −∞ ≤ t1 < t2 ≤ ∞. Introduce functions µ, s, and f of t by

t =
∫ µ(t)

τ0

dx

ϕ(x)
, s(t) =

∫ µ(t)

τ0

dx√
ϕ(x)

, f(t) =
∫ µ(t)

τ0

xdx

ϕ(x)
.(2.2)

Then the equations

µ′ = ϕ ◦ µ, s′ =
√
ϕ ◦ µ, f ′ = µ(2.3)

hold on (t1, t2).
Suppose now that {p : (L, h)→ (M, gM ), I} are horizontal data, and let t : L× →

R be the logarithm of the norm function. The functions µ, s, and f of (2.2) induce
respective functions τ := µ(t), s(t), and f(t) on L′ = {z ∈ L× : t1 < t(z) < t2},
and determine a closed (1, 1)-form

ωϕ = p∗ωM + ddcf(t)

= p∗ωM + 2
√
−1∂∂̄f(t).

(2.4)

It transpires that the closed (1, 1)-form ωϕ is positive. The associated bundle-
adapted metric is denoted gϕ, and the mapping ϕ 7−→ ωϕ is called the momentum
construction.

The fibre metric. If z0 is a linear coordinate on a fibre of L then the restriction
of gϕ to the fibre is given by

gfibre = ϕ(τ)
∣∣∣∣dz0

z0

∣∣∣∣2 .(2.5)

Thus ϕ(τ) is interpreted as the conformal factor relating gfibre to the flat metric
on the cylinder. The function s of (2.2) is the geodesic distance for gfibre, while
2π
(
µ(b)− µ(a)

)
is the area of the subset of the fibre given by a ≤ t ≤ b.
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Figure 2.1. Relation between maps in the momentum construction

Figure 2.2. Symplectic reduction of gϕ

S1-invariant functions on L. Fix a bundle-adapted metric on L′. The functions
t and τ = µ(t) have the same level sets on L′, but while t depends only on the
Hermitian structure of L, τ depends on the profile as well. By a customary abuse of
notation, t and τ are regarded as variables in the intervals (t1, t2) and I, respectively.

Define π : L′ → I×M by π = (τ, p). Each fibre of π is an orbit of the S1-action,
so circle-invariant tensors on L′ may be identified with tensors on I ×M ; this will
henceforth be done freely, with pullback π∗ suppressed. These identifications are
diagrammed in Figure 2.1; the vertical maps on the right are projections. The
functions µ, s, and f of equation (2.2) are defined on (t1, t2), while ϕ and other
functions of geometric interest are defined on I.

Two instances of identification by π deserve immediate mention. First, the Euler
vector field −JX on L′ pushes forward to ϕ(τ) ∂

∂τ on I ×M , as in equation (2.18)
below. The second example arises from the 1-parameter family ωM − τ γ of Kähler
forms on M , regarded as a (1, 1)-form ωM (τ) on I ×M , see Figure 2.2. The family
of Ricci forms ρM (τ), and scalar curvature functions σM (τ), are similarly regarded
as living on I ×M . These tensors depend only on the horizontal data. If a profile
is specified in addition, then there is a map π : L′ → I ×M as above, and each of
these tensors is identified with an S1-invariant tensor on L′.

The Laplacian, Ricci and scalar curvature. It is often preferable to work with
endomorphisms rather than (1, 1)-forms.
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Definition 2.1. The curvature endomorphism B is ω−1
M γ, the symmetric endomor-

phism of T 1,0M obtained by raising the second index of γ. Similarly the Ricci en-
domorphism % of T 1,0M is defined by raising the second index of the Ricci form ρM .

Put

Q(τ) =
ωM (τ)m

ωmM
= det(I− τB),(2.6)

R(τ) = trωM (τ) ρM = tr
[
(I− τB)−1%

]
,(2.7)

P (τ) = 2QR(τ).

Note that P and Q are smooth functions on I ×M , with polynomial dependence
upon τ , while R may be thought of as a rational function on I, with coefficients
depending smoothly on z in M . The notation reflects the fact that when the
horizontal data are σ-constant, these functions depend only on τ , i.e. are constant
on M for every τ ∈ I.

On a Kähler manifold, if gī are the components of the metric in local holomor-
phic coordinates, then the Ricci form is given locally by ρ = −

√
−1∂∂̄ logV , where

V = det(gī). For a bundle-adapted metric, there is a choice of coordinates such
that the quantities Vϕ and VM satisfy

Vϕ = (ϕQ)(τ)VM .(2.8)

The Ricci form of ωϕ is therefore given by

ρϕ = p∗ρM −
√
−1∂∂̄ logϕQ(τ),(2.9)

and the scalar curvature is found by taking the trace:

σϕ = R(τ)−�ϕ logϕQ(τ),(2.10)

�ϕ being the ∂̄-Laplacian of ωϕ. This Laplacian has a reasonably pleasant expres-
sion in terms of �ωM (τ); for each smooth function ψ on I ×M ,

�ϕψ = �ωM (τ)ψ(τ, ·) +
1

2Q
∂

∂τ

[
ϕQ(τ)

∂ψ

∂τ

]
.(2.11)

Applying this to the function ψ = log(ϕQ) and combining with (2.10) yields

σϕ = R(τ) −�ωM (τ) logQ(τ) − 1
2Q

∂2

∂τ2

(
ϕQ
)
(τ),(2.12)

since �ωM (τ) logϕQ(τ) = �ωM (τ) logQ(τ), ϕ being independent of z ∈ M . The
first two terms together make up the scalar curvature σM (τ) of ωM (τ), so

σϕ = σM (τ)− 1
2Q

∂2

∂τ2

(
ϕQ
)
(τ).(2.13)

If the data are σ-constant, (2.9) and (2.12) simplify as follows:

ρϕ = p∗ρM +
1

2Q
(ϕQ)′(τ) p∗γ − 1

2ϕ

[
1
Q

(ϕQ)′
]′

(τ) dτ ∧ dcτ,(2.14)

σϕ = R(τ)− 1
2Q

∂2

∂τ2

(
ϕQ
)
(τ).(2.15)
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These, together with the expression

ωϕ = p∗ωM − τ p∗γ +
1
ϕ
dτ ∧ dcτ,(2.16)

are the main formulae that will be needed in Section 3 in the construction of metrics
with prescribed scalar curvature by ODE methods.

Conventions and calculations. The wedge product is normalized so that interior
multiplication is a (graded) derivation: If V is a vector and ξ and η are 1-forms,
then iV (ξ ∧ η) = 〈V, ξ〉η− 〈V, η〉ξ. Extensive use will be made of the real operators
d = ∂ + ∂̄ and dc =

√
−1(∂̄ − ∂), and of the useful formulae

ddc u = 2
√
−1∂∂̄u, du ∧ dcu = 2

√
−1∂u ∧ ∂̄u,

that hold for every smooth function u. Finally if g has components (gī) in local
holomorphic coordinates (zi), then ω =

√
−1
2 gīdz

i ∧ dz̄j .
Most of the calculations described in the previous section are best performed in

a line bundle chart, namely, a local coordinate system z0, z1, . . . , zm for L in which
z0 = ρeiθ is a fibre coordinate and z = (z1, . . . , zm) are (pullbacks of) coordinates
on M . In such a chart, there is a smooth, positive function h : V → R such that
r = z0z̄0 h(z); under change of chart, the local function h is multiplied by the norm
squared of a non-vanishing local holomorphic function in V . In a line bundle chart,
the Euler vector field is given by

Υ = z0 ∂

∂z0
=

1
2

(
ρ
∂

∂ρ
−
√
−1

∂

∂θ

)
,

while twice the imaginary and real parts are described variously as

X = −2 Im Υ =
√
−1(Υ −Υ) =

∂

∂θ
,

H = −JX = 2 Re Υ = (Υ + Υ) = ρ
∂

∂ρ
.

In particular this gives a local formula for the normalized generator X of the S1

action on L. It is sometimes convenient to use the fibre coordinate w0 = log z0 =:
ζ + iθ, in which case Υ = ∂/∂w0.

The level sets of r are real hypersurfaces in L, and their tangent spaces are the
horizontal spaces of the Hermitian connection Θ = ∂ log r = 2∂t of (L, h). For
each point x of M , there exists a line bundle chart (z0, z) such that zα(x) = 0 for
1 ≤ α ≤ m and ∂αr = 0 on the fibre Lx. Such a coordinate system is said to be
adapted to (L, h) at x ∈M . In adapted coordinates at x, the connection form Θ is
equal to dw0 = dz0/z0 along the fibre Lx.

The curvature form γ of an Hermitian line bundle satisfies

−ddct = −
√
−1∂∂̄ log r = p∗γ.

Combining this with the chain rule gives the simple but important formula

ddcu(t) = u′′(t) dt ∧ dct− u′(t) p∗γ(2.17)

when u is a smooth function of one variable. This is often used in the form

ddcψ(τ) = −
(
ϕψ′

)
(τ) p∗γ +

1
ϕ

(
ϕψ′

)′(τ) dτ ∧ dcτ,(2.18)

which follows from (2.17) and the first of (2.3).
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Referring to the momentum construction, especially formulae (2.1)–(2.4), it must
be shown that gϕ is a Kähler metric (namely that ωϕ > 0), and that the moment
map is given by τ . Expanding ddcf using (2.18) gives (2.16):

ωϕ = p∗ωM − τ p∗γ + ϕdt ∧ dct

= p∗ωM − τ p∗γ +
1
ϕ
dτ ∧ dcτ.

Since ωM − τγ and ϕ are both positive on I by hypothesis, it follows that ωϕ is
positive. Now

iX(dt) = 0 = iX
(
ωM (τ)

)
,

so iXωϕ = −ϕdt ∧ iX(dct) = −ϕdt from the formula

dct =
√
−1
2

(
dz̄0

z̄0
− dz0

z0

)
+

1
2
dc log h

in a line bundle chart. But ϕdt = dτ by (2.3), so τ is a choice of moment map.
Changing τ0 adds a constant to t (and changes L′ by a homothety), but does not
change the isometry class of ωϕ.

In adapted coordinates,

ωϕ =
√
−1
2

(
ϕ(τ)
2z0z̄0

dz0 ∧ dz̄0 +
[
gM (τ)

]
αβ̄
dzα ∧ dz̄β

)
(2.19)

along a fibre. In terms of globally defined functions, the metric splits along a fibre
into

ωfibre + ωhoriz = ds ∧ dcs+ ωM (τ).(2.20)

The expression (2.5) for the fibre metric follows at once, as does the fact that s is
the geodesic distance in the fibre.

The Ricci form. Equations (2.8)–(2.16) giving the volume and Ricci forms, Lapla-
cian on functions, and scalar curvature, follow from repeated application of (2.18)
and (2.3). From (2.19), the volume form is

ωm+1
ϕ

(m+ 1)!
=
(
ϕQ
)
(τ) det

[
(gM )αβ̄

] 1
z0z̄0

(√−1
2

)m+1 m∏
i=0

dzi ∧ dz̄i,(2.21)

from which (2.8) follows immediately.
Denote by dM and dcM the d and dc-operators on M ; it is necessary here to

distinguish them from the corresponding operators on the total space of L, which
we continue to denote by d and dc. For each smooth function u on I ×M ,

ddcu = dMd
c
Mu−

[
ϕ
∂u

∂τ

]
γ +

1
ϕ

∂

∂τ

[
ϕ
∂u

∂τ

]
dτ ∧ dcτ + cross-terms.

(The cross-terms take the form ∂̄τ ∧ ∂M (∂u/∂τ) + complex conjugate.) In order
to take the trace with respect to ωϕ, either work locally or multiply by ωmϕ . For
the latter,

ωmϕ = ωM (τ)m +mωM (τ)m−1 · 1
ϕ
dτ ∧ dcτ.
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Wedging with ddcu, the cross-terms drop out, so upon division by ωm+1
ϕ ,

�ϕu = �ωM (τ)u(τ, ·) +
1
2

(
∂

∂τ

[
ϕ
∂u

∂τ

]
−
(
trωM(τ) γ

)
ϕ
∂u

∂τ

)
.

The right-hand side of this is simplified by the following observation: If the eigenval-
ues of B at z ∈M are denoted βν(z), for ν = 1, . . . ,m, then Q(τ) =

∏
ν

[
1−τ βν(z)

]
,

so

trωM (τ) γ = tr
[
(I− τB)−1B

]
=

m∑
ν=1

βν(z)
1− τ βν(z)

= − ∂

∂τ
(logQ).(2.22)

Equations (2.11) and (2.12) follow immediately, while (2.13) follows from the
observation

�ωM (τ) logϕQ = �ωM (τ)(logϕ+ logQ) = �ωM (τ) logQ

(ϕ being pulled back by the first projection I ×M → I) and the formulae

−
√
−1∂M ∂̄M logQ = ρωM (τ) − ρM ,(2.23)

−�ωM (τ) logQ = trωM (τ)

(
ρωM (τ) − ρM

)
= σM (τ)−R(τ).(2.24)

2.2. Completeness and Extendability of Fibre Metrics. In this section, com-
pleteness criteria for the metric gϕ are given in terms of the boundary behaviour
of ϕ. Because each fibre is totally geodesic by Proposition 2.2 below, gϕ is complete
if and only if
• The metric gM (τ) is complete for every τ ∈ I, and
• The fibre metric gfibre is complete.

The first condition is assumed in our existence theorems, and the second condition
is characterized in elementary terms by Proposition 2.3 below.

Total geodesy of fibres. Let g be a bundle-adapted metric on an invariant sub-
bundle L′. It is well-known that the fibres of L′ are totally geodesic with respect
to g. Nonetheless, we reproduce a proof here as an excuse to calculate the Levi-
Civita connection of g.

Proposition 2.2. Let gϕ be a bundle-adapted metric on L′ ⊂ L. Then each fibre
of L′ is totally geodesic with respect to gϕ.

Proof. It suffices to calculate the Levi-Civita connection D of gϕ and show that
D∂0∂0 is tangent to the fibre. Let (z0, z) be a line bundle chart, w0 = log z0, and
let ∂α denote partial differentiation. Recall that the connection form of (L, h) is
equal to Θ = ∂ log r. With respect to the coordinates (w0, z), the vector-valued
(1, 0)-form Θ is given by the column

[Θi]
t = [1 Θα]t, Θα = h−1∂αh,

and ∂̄(Θα dz
α) = p∗γ. The components of gϕ are given by the Hermitian (1 +m)×

(1 +m) block matrix

G =
[
g00̄ g0β̄

gα0̄ gαβ̄

]
= 2ϕ(τ)

 1
[
Θβ̄

]t[
Θα

] [
Θα

][
Θβ̄

]t
+

0 0

0
[
gM (τ)

]
αβ̄

 .
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The inverse matrix G−1 is found by (block) row-reduction to be

1
2ϕ(τ)

1 0

0 0

+

[Θβ̄

]t [
gM (τ)

]β̄α [Θα

]
−
[
Θβ̄

]t [
gM (τ)

]β̄α
−
[
gM (τ)

]β̄α [Θα

] [
gM (τ)

]β̄α
 .

The Levi-Civita connection form of g is represented in a line bundle chart by the
matrix-valued (1, 0)-form G−1∂G. A short calculation shows that in adapted coor-
dinates,

G−1∂G =

 (1/2)ϕ′(τ)∂t ∂
[
Θβ̄

]t
ϕ(τ)

[
gM (τ)

]β̄α
∂
[
Θα

] [
gM (τ)

]β̄ν[
gM (τ)

]
αβ̄

(2.25)

along the fibre. Evaluating on the tangent vector ∂0 = ∂/∂w0 at a point of the
fibre gives the representation (with respect to the frame {∂i}ni=0) of the covariant
derivative D∂0 in the fibre direction. The first column is

[
(1/2)ϕ′(τ) 0 · · · 0

]t,
implying the covariant derivative D∂0∂0 is tangent to the fibre, so the fibre is totally
geodesic.

Completeness of the fibre metric. By equation (2.2), which determines the
geodesic distance function s(t) : L× → R in terms of the profile, a simple com-
pleteness criterion is easily deduced by expanding the profile as a series near an
endpoint of I. Completeness is guaranteed by divergence of the s integral, though
divergence at a finite endpoint (corresponding to an end of finite area in the fibre)
is not necessary since the fibre metric may extend smoothly to the origin (or to the
point at infinity). For simplicity, Proposition 2.3 is stated for profiles asymptotic
to an integer power of τ at the endpoint(s) of I (or as τ → ∞). This is no loss
for present purposes, since the profiles of greatest interest are rational functions,
which arise when g has constant scalar curvature (or is formally extremal).

Proposition 2.3. Let ϕ : I → R be a profile that has a zero or pole (of integer
order) at each endpoint of I. Then the associated fibre metric is complete if and
only if one of the following conditions holds at each endpoint of I:
• Finite Endpoint(s)

(i): The profile ϕ vanishes to first order, and |ϕ′| = 2 at the endpoint; or
(ii): The profile vanishes to order at least two.

• Infinite Endpoint(s)
(iii): The profile grows at most quadratically: There is a K such that ϕ(τ) ≤
Kτ2 for |τ | � 0.

Proof. Most of these conclusions are immediate from (2.2) upon expansion of the
profile as a series. The one point requiring a small amount of work is to determine
what happens when the profile vanishes to order one at a finite endpoint of I.

In a line bundle chart, r = h |z0|2, and by (2.5) the fibre metric is

gfibre = ϕ(τ)
∣∣∣∣dz0

z0

∣∣∣∣2 =
[
ϕ(τ)
r

]
h
∣∣dz0

∣∣2.
Since the horizontal part is smooth, gϕ is smooth at r = 0 if and only if ϕ(τ)/r
has a finite, positive limit as τ → 0. (This limit makes sense, for (2.2) gives t and
hence r as a function of τ .) Using (2.2) to find t, with ϕ(τ) = a1τ + O(τ2), gives
log τ = constant + a1t+ · · · , or τ = a ra1/2 + · · · for some a > 0. Thus ϕ(τ)/r has
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a finite, positive limit as r → 0 if and only if a1 = 2, or equivalently ϕ(0) = 0 and
ϕ′(0) = 2. A similar argument takes care of a finite upper endpoint.

Geometry of fibre metrics. This section is intended provide a pleasant digres-
sion by linking the geometry of fibre metrics (given by momentum profiles) with
familiar S1-invariant metrics, both abstractly and as surfaces of revolution in R3.
The results are summarized in Table 2.1, which shows clearly how much simpler
these metrics look in ‘momentum coordinates’ than in the standard complex coor-
dinate z. Verification of the entries in Table 2.1 requires only repeated application
of (2.2). We include this table mainly for pedagogical reasons: to indicate concretely
how the geometry of the fibre metric is related to the profile, and to emphasize that
the image I of the moment map τ is essentially independent from the image of the
function r = |z|2 = e2t.

In (vi) the annulus is determined, up to conformal equivalence, by the ratio of
the inner and outer radii and hence by cα. In examples (i)–(iii), with ϕ′(0) = 2,
metrics with conical singularity at the origin arise by changing the coefficient of τ .

To compare these metrics with surfaces of revolution in R3, let ξ be a positive
function. Upon revolution about the y-axis, the area and length elements satisfy

dτ = ξ(y)
√

1 + ξ′(y)2 dy, ds =
√

1 + ξ′(y)2 dy.

The profile gives the length squared of
∂

∂θ
, namely ϕ(τ) = ξ(y)2. Thus

ϕ′(τ) =
2ξ′(y)√

1 + ξ′(y)2
, or ξ′(y) =

ϕ′(τ)√
4− ϕ′(τ)2

,

which implies |ϕ′(τ)| ≤ 2, with equality if and only if |ξ′(y)| =∞: The fibre metric
embeds as a surface of revolution if and only if the profile is not too steep. This
confirms the well-known facts that a portion of the cusp (iv)—corresponding to
the momentum sub-interval (0, 1/c2)—embeds as a surface of revolution in R3 (the
pseudosphere), while no invariant domain of the Poincaré disc (iii) embeds in this
way.

It is also worth noting that intuition deriving from surfaces of revolution can be
misleading. Taking I = [0,∞) and ϕ(τ) = 2τ + τ3 gives an incomplete metric of
infinite area on the disk!

3. Constant Scalar Curvature

Metrics of Infinite Volume

This section is devoted to the proofs of Theorems B, C, and D. Section 3.1 deals
with Theorems B and C, while Section 3.2 with Theorem D. The proofs are sepa-
rated in this way because of the behaviour of the family of Kähler forms ωM (τ) =
ωM − τγ; in Theorems B and C, ωM (0) is non-degenerate, whereas in Theorem D
the family {ωM (τ)} drops rank at τ = 0, leading to a metric on a partial blow-down
of L.

3.1. Metrics on Line Bundles. Let {p : (L, h) → (M,ωM ), I} be σ-constant
horizontal data with γ ≺ 0, and with I = [0,∞) or (0,∞). In particular, ωM (τ) is
a Kähler form on M for all τ ≥ 0, and the metric gM (τ) is complete since gM is
assumed to be complete and −τγ is positive semidefinite for τ ∈ I. As in Section 2,
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define functions Q, R : I → R by

Q(τ) = det(1− τB), R(τ) = tr
(
(1− τB)−1%

)
.

Because the data are σ-constant, Q(τ) is the (constant) scale factor for the volume
form of ωM (τ) relative to ωM and is a polynomial in τ with only negative roots,
while R(τ) = σM (τ) is the scalar curvature of gM (τ) and is a rational function
that is bounded below on I. Indeed, R has an asymptotic value R(∞) as τ → ∞,
which may be interpreted as the trace of % restricted to the 0-eigenbundle of B. By
Corollary A.1, the scalar curvature of ωϕ is

σϕ = R(τ)− (1/2Q)
(
ϕQ
)′′(τ).(3.1)

Now let σ be a function on I. The problem of prescribing the scalar curvature of
ωϕ is given by the equation σ = σϕ, which has the solution(

ϕQ
)
(τ) =

(
ϕQ
)
(0) +

(
ϕQ
)′(0)τ + 2

∫ τ

0

(τ − x)
(
R(x)− σ(x)

)
Q(x) dx(3.2)

in terms of the initial data ϕ(0) and ϕ′(0). The momentum construction yields a
metric of infinite fibre area if and only if ϕ is positive on (0,∞). This metric is
complete if ϕ grows at most quadratically at ∞ and satisfies the boundary condi-
tions given in Proposition 2.3: ϕ(0) = 0, and either ϕ′(0) = 2 or ϕ′(0) = 0. The
first case is the one needed for Theorem B, the second for Theorem C. These will
now be considered in turn.

Proof of Theorem B. Setting σ = c (constant) and using the initial conditions
ϕ(0) = 0, ϕ′(0) = 2 in (3.2) gives

ϕ(τ) =
2

Q(τ)

(
τ +

∫ τ

0

(τ − x)
(
R(x)− c

)
Q(x) dx

)
.(3.3)

The notation ϕc(τ) or ϕ(τ, c) will be used when the dependence of the profile on c
is being emphasized. Define the set C ⊂ R of “allowable scalar curvatures” by

C = {c ∈ R | ϕc(τ) > 0 for all τ > 0}.
In words, C is the set of c for which equation (3.3) defines a momentum profile on I.

Lemma 3.1. There is a c0 ∈ R such that either C = (−∞, c0) or C = (−∞, c0].

Proof. The function R is bounded below on I, so the integrand in (3.3) is positive
for c � 0, implying ϕc > 0 on (0,∞) for c � 0. In particular, C is non-empty. If
τ > 0, then

∂ϕ

∂c
(τ, c) = − 2

Q(τ)

∫ τ

0

(τ − x)Q(x) dx < 0,

so ϕ(τ, c) is strictly decreasing with respect to c. Consequently, if c ∈ C and c′ < c,
then c′ ∈ C. Finally, C is bounded above since by (3.3), ϕc is not everywhere
positive for c > R(∞). In summary, C is a half-line, unbounded below. Set c0 =
supC ≤ R(∞).

Since the initial condition ensures that ϕc is positive for sufficiently small positive
τ , the momentum construction yields a metric which for notational convenience will
be denoted gc.

Lemma 3.2. If c < c0 then gc is a complete metric on ∆(L), and gc0 is a complete
metric on L.
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Proof. By Proposition 2.3, completeness of the metric is equivalent to ‘at most
quadratic’ growth of ϕc at∞, provided the profile is positive on (0,∞). To establish
the growth condition, it is easiest to write R − c as a constant plus a rational
function R0 vanishing at ∞:

R(τ)−R(∞) =: R0(τ), c−R(∞) =: c̃,

so R(τ)− c = R0(τ) − c̃. Define polynomials

P1(τ) = τ +
∫ τ

0

(τ − x)R0(x)Q(x) dx, P2(τ) =
∫ τ

0

(τ − x)Q(x) dx;

Because R0 vanishes at ∞, degP1 ≤ 1 + degQ, and degP2 = 2 + degQ. From
(3.3),

ϕ(τ, c) =
2

Q(τ)
(
P1(τ) − c̃P2(τ)

)
,(3.4)

so if c̃ = 0, then ϕc(τ) ≤ Kτ as τ → ∞, while ϕc(τ) ∼ Kτ2 if c̃ < 0, namely
if c < R(∞). Since c0 ≤ R(∞), it follows that each profile ϕc with c < c0 gives
rise to a complete fibre metric, hence to a complete metric gc. Because ϕc grows
quadratically, the t integral converges as τ → ∞, so up to homothety gc lives on
the unit disk bundle ∆(L).

It remains to investigate the borderline case. First observe that every profile ϕc
with c < c0 is bounded away from zero except near τ = 0 (since ϕ′c(0) = 2, and ϕc
is positive on (0,∞) and has infinite limit as τ →∞). By the proof of Lemma 3.1,
ϕ(τ, c) is decreasing in c. Since c0 is the supremum of c for which ϕc is positive
on (0,∞), it follows that ϕc0 is non-negative on I by continuity of ϕ(τ, c) in c. The
borderline profile is not identically zero, since ϕ′c0(0) = 2.

Two possibilities occur: ϕc0 has a positive zero, or is positive on (0,∞). In the
first case let b be the first positive zero of ϕc0 . Then ϕ′c0(b) = 0 as well, for ϕc0 is
real-analytic and non-negative. Since ϕc0 vanishes to order at least two, the t and
s integrals diverge, so the associated metric lives on the total space of L and is
complete, but has finite-area fibres.

Consider now the second possibility, ϕc0 > 0 on (0,∞). We claim in this case
that c0 = R(∞) (i.e. c̃ = 0). For if not, the borderline profile is positive and
grows quadratically, hence is bounded away from zero except near τ = 0; a glance
at (3.4) shows c̃ may be increased slightly, preserving positivity of the profile, but
this contradicts the definition of c0. Hence ϕc0(τ) = (P1/Q)(τ) ≤ Kτ and again
gc0 lives on L.

The dichotomy at c = c0 is summarized as follows:
1. ϕc0 has a positive zero in I and yields a metric with fibrewise finite area, see

Figure 3.2.
2. ϕc0 is positive on (0,∞) and yields a complete metric of infinite fibre area,

see Figure 3.1.
As shown above, the second alternative implies c0 = R(∞) (so c0 < R(∞) implies
the first alternative, see Figure 3.2), but this is the only general conclusion that
can be drawn. Further, it is not necessarily true that c0 = 0 (since generally
R(∞) 6= 0, for example); this issue is addressed in detail below. However, if γ < 0,
or if the construction yields a metric that is Einstein, then the borderline metric is
scalar-flat, while the others have negative curvature.
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Figure 3.1. The rational function corresponding to the tautolog-
ical bundle OP1(−1). Here C = (−∞, 0].

Figure 3.2. The rational function corresponding to a bundle of
degree −1 over a curve of genus 2.

The borderline constant c0 has an alternative interpretation. Consider the equa-
tion ϕ(τ, c) = 0. From (3.4), this level set is the graph of the rational function
C : I → R defined by

C(τ) = R(∞) +
P1(τ)
P2(τ)

.

The degree of P1 is less than the degree of P2, so C(τ) → R(∞) as τ → ∞.
Furthermore, P1 vanishes to order one and P2 vanishes to order two at τ = 0, so
C(τ) → +∞ as τ → 0+. Hence the function C is bounded below on (0,∞), and
it follows immediately from the definition that c0 = inf{C(τ) | τ ∈ (0,∞)}, see
Figures 3.1 (where c0 = 0 is an allowable scalar curvature) and 3.2 (where c0 < 0 is
not an allowable scalar curvature).

If c > c0, then ϕc is not non-negative on (0,∞), so there is a first positive root b,
and the fibre metric has finite area. Three possibilities occur:
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1. ϕ′c(b) = 0, and the fibre metric is complete, with a cusp end at τ = b;
2. ϕ′c(b) = −2, and the metric extends smoothly to the P1-bundle L̂ (but note

Remark 3.5 below);
3. ϕ′c(b) 6= 0, −2, so the metric is incomplete and has no smooth extension.

Lemma 3.3. There are at most finitely many c > c0 for which the profile ϕc
satisfies one of the first two conditions.

Proof. By (3.4), ϕ(τ, c) = 0 if and only if c̃ = P1(τ)/P2(τ). Substitution shows
that if ϕ(τ, c) = 0, then

∂ϕ

∂τ
(τ, c) = 2

P1(τ)
Q(τ)

(
log

P1

P2

)′
(τ).

This is a non-constant rational function, which takes the values 0 and −2 for at
most finitely many values of τ . Consequently, there are at most finitely many pairs
(τ, c) satisfying

ϕ(τ, c) = 0 and
∂ϕ

∂τ
(τ, c) = 0 or − 2.

In any event, a value c > c0 does not give rise to a metric with infinite volume.

The final task is to determine when a metric just constructed is Einstein. Equa-
tion (2.16) expresses the Kähler form of gϕ in terms of ϕ and the horizontal data,
while (2.14) similarly expresses the Ricci form. Setting ρϕ = λωϕ gives

−
( 1

2Q
(ϕQ)′

)′
= λ and ρM +

1
2Q
(
ϕQ
)′(τ) γ = λ(ωM − τγ).

Integrating the first and using the initial conditions ϕ(0) = 0, ϕ′(0) = 2,

1
2Q

(ϕQ)′(τ) = 1− λτ.(3.5)

Substituting this back into the second equation,

ρM + γ = λωM .

Assume from now on that λ ≤ 0, see Remark 3.5 below. Integrating (3.5), again
using ϕ(0) = 0, gives

ϕ(τ) =
2

Q(τ)

∫ τ

0

(1 − λx)Q(x) dx,(3.6)

which is clearly positive for all τ > 0. Completeness follows since ϕ grows linearly (if
λ = 0) or quadratically (if λ < 0), and the scalar curvature is λ(m+1). Conversely,
a bundle-adapted metric arising in this way is Einstein:

Lemma 3.4. If the horizontal data are σ-constant and satisfy ρM + γ = λωM for
some λ ≤ 0, then the bundle-adapted metric with c = λ(m+ 1) is Einstein-Kähler.

Proof. Write ρM = λωM−γ = λ(ωM−τγ)−(1−λτ)γ. Taking the trace with respect
to ωM (τ), using the definition of R and recalling that trωM(τ) γ = − ∂

∂τ (logQ) by
equation (2.22) immediately implies

R(τ) = λm+ (1− λτ)
Q′(τ)
Q(τ)

.
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If c = λ(m+ 1), then(
R(τ)− c

)
Q(τ) = Q′(τ) − λ

(
Q(τ) + τQ′(τ)

)
=

d

dτ

(
(1− λτ)Q(τ)

)
.

Integrating twice, using ϕ(0) = 0 and ϕ′(0) = 2, proves the profile (3.6) coincides
with the profile (3.3).

This completes the proof of Theorem B.

Remark 3.5. When the Einstein constant λ is positive, every completion of L× is
compact by Myer’s Theorem, so there is a non-vacuous boundary condition imposed
on (3.5), namely that ϕ′(b) = −2 when ϕ(b) = 0. Koiso and Sakane have shown
this is equivalent to vanishing of the Futaki invariant of the compactification. This
boundary condition is never satisfied if the curvature form γ is negative semi-definite
unless γ = 0. To see this, observe that ϕ(b) = 0 if and only if∫ b

0

(1− λx)Q(x) dx = 0,

in which case a short calculation shows that ϕ′(b) = −2 if and only if bλ = 2.
Substituting back into (3.6),

ϕ(τ) =
2

Q(τ)

∫ τ

0

(
1− 2

b
x
)
Q(x) dx

= − 4
bQ(τ)

∫ τ−(b/2)

−b/2
xQ
(
x+ (b/2)

)
dx,

and this is not zero when τ = b because Q is positive and increasing on the interval
[0,∞) unless γ = 0. It is possible for the boundary conditions to be satisfied
if γ > 0; for example, Pm+1 is a smooth compactification of the total space of
OPm(1).

Proof of Theorem C. The proof of Theorem C differs from the proof of The-
orem B in the initial conditions, and consequently in the choice of momentum
interval; ϕ′(0) = 0 rather than ϕ′(0) = 2, so I = (0,∞) rather than [0,∞). The
details are almost exactly parallel: The profile of equation (3.3) is replaced by

ϕ(τ) =
2

Q(τ)

∫ τ

0

(τ − x)
(
R(x)− c

)
Q(x) dx,(3.7)

which is positive for τ > 0 if c � 0. An interval C×, with supremum equal to c×0 ,
is defined as before. The proof that the metrics are complete and live on ∆×(L) if
c < c×0 is entirely analogous to the proof of Lemma 3.2. If R(τ) is non-constant,
then the borderline profile is not identically zero, and induces a metric on L×.

Exactly as before, the metric is Einstein if and only if

ρM = λωM and
1

2Q
(ϕQ)′(τ) = −λτ,

so

ϕ(τ) = − 2λ
Q(τ)

∫ τ

0

xQ(x) dx.
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This function ϕ is positive on (0,∞) if and only if λ < 0. Conversely, if ρM = λωM
and c = λ(m + 1) for some λ < 0, then an argument analogous to the proof of
Lemma 3.4 shows that (

R(τ)− c
)
Q(τ) = 2λ

d

dτ

(
−τQ(τ)

)
,

so the associated metric is Einstein.
One significant difference between Theorems B and C appears when R is con-

stant. In the event gM is Ricci-flat (so R ≡ 0) there is no profile satisfying the
boundary conditions ϕ(0) = ϕ′(0) = 0 that induces a scalar-flat metric. In fact,
the equation for scalar-flatness is (ϕQ)′′ = 0, while the initial conditions imply
(ϕQ)(0) = (ϕQ)′(0) = 0, so ϕ ≡ 0. Even by relaxing the initial conditions, the only
scalar-flat metrics that arise are uninteresting. To wit, the equation (ϕQ)′′ = 0
leads to the candidate profile ϕ(τ) = (a0 + a1τ)/Q(τ). This function induces a
complete metric only if it is everywhere positive (and perhaps has a removable dis-
continuity), but in this event the momentum interval is all of R. The requirement
that ωM − τγ be a Kähler form for all τ ∈ R forces γ = 0, so Q ≡ 1 and the profile
reduces to a positive constant. The induced metric is a local product of gM and a
flat cylinder of radius equal to the value of the profile.

Bounds on c0. To facilitate the proof of Lemma 3.3, a rational function C was
introduced whose infimum over I is equal to c0. Since C has an explicit expression
in terms of the curvature of the horizontal data, c0 can in principle be estimated
in terms of the curvature. A crude estimate comes from the following simple ob-
servations. If R(τ)− c ≥ 0 for all τ ≥ 0, then the profile (3.3) is positive for τ > 0,
while if R(∞)− c < 0, then the profile is not always positive. Thus

inf
τ≥0

R(τ) ≤ c0 ≤ R(∞).(3.8)

To estimate the lower bound, pick a point z of M and choose an orthonormal
basis of T 1,0

z M relative to which B is diagonal. Denote by βν the eigenvalues of B,
indexed so that β1 ≤ · · · ≤ βj < 0 = βj+1 = · · · = βm, and let %ν be the diagonal
elements of % in the basis. Then

R(τ) =
%1

1− β1τ
+ · · ·+ %j

1− βjτ
+ %j+1 + · · ·+ %m.

Since the coefficients of R(τ) are by hypothesis independent of z, certain combina-
tions of the %ν are independent of z. Indeed suppose that among the βν the distinct
real numbers occurring are b1 < · · · < b`−1 < b` = 0 with multiplicities k1, . . . , k`,
and let

r1 = %1 + · · ·+ %k1 ,

r2 = %k1+1 + · · ·+ %k1+k2 , . . . ,

r` = %k`+1 + · · ·+ %m.

Then r` = R(∞) and

R(τ) =
∑̀
i=1

ri
1− biτ

= R(∞) +
`−1∑
i=1

ri
1− biτ

.
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Considering each fraction separately, R(τ) ≥ R(∞) +
∑̀
i=1

min(0, ri), so that

R(∞) +
∑̀
i=1

min(0, ri) ≤ c0 ≤ R(∞).

Although crude, this is sometimes sufficient to determine c0 exactly. For example,
if ρM is positive semi-definite, then all ri ≥ 0 and c0 = r` = R(∞) ≥ 0. If in
addition γ is negative-definite, then c0 = 0. In either case, the total space of L
admits a complete, scalar-flat Kähler metric.

In the setting of Theorem C, there is the additional inequality c×0 ≤ R(0),
necessitated by positivity of the profile (3.7) near τ = 0. If the base metric has
non-positive Ricci tensor, then R is monotone increasing and c×0 = R(0) =

∑
ν

%ν .

3.2. Metrics on Vector Bundles. Let p : (E, h) → (D, gD) be an Hermitian
holomorphic vector bundle of rank n > 1 over a Kähler manifold of dimension d.
There is a smooth, globally defined norm squared function r, just as for line bundles,
and the Calabi ansatz has an obvious formulation in this situation, namely to
consider closed (1, 1)-forms

ω = p∗ωD +
√
−1∂∂̄F (r) = p∗ωD + 2

√
−1∂∂̄f(t).(3.9)

The machinery of Theorem A is easily modified to treat this case. Complex-
analytically, the idea is to blow up the zero section of E and pull the form (3.9)
back to the total space of the blow-up. The original horizontal data pull back to
“partially degenerate” horizontal data since ωD has rank d as an Hermitian form
while the exceptional divisor has dimension d + n − 1. To avoid problems caused
by this degeneracy, the form ωD − γ on P(E×) is used as a background metric.
The following discussion elaborates on the technicalities necessary to make this idea
work.

The tautological bundle, and blowing up. The complement of the zero sec-
tion of E is denoted by E×, and is regarded either as a complex manifold or as a
“punctured Cn-bundle” over D. There is a free C×-action on E× by scalar multi-
plication, whose quotient is the projectivization of E, denoted P(E). The complex
manifold M = P(E) is the total space of a Pn−1-bundle π : M → D. The pullback
of E to M is the fibre product

π∗E =
{

(ζ, v) ∈M × E | π(ζ) = p(v)
}

= M ×D E(3.10)

endowed with the projection onto the first factor, and the tautological bundle τE is
the line subbundle of π∗E →M whose fibre at a point ζ = (z, [v]) ∈ P(E) = M is
the line through v ∈ Ez . Two important observations are:

1. The fibre of π over z ∈ D is the (n− 1)-dimensional projective space P(E×z ),
and the restriction of τE to a fibre P(E×z ) is O(−1). The total space of the
latter may be regarded as the blow-up of Cn at the origin.

2. Projection to the second factor in (3.10) induces a biholomorphism τ×E ' E×,
and coincides with the map π : M → D along the zero section of τE .

The total space of τE is obtained from the total space of E by blowing up the zero
section. This is a direct generalization of blowing up a point, and indeed may be
regarded as a family of blow-ups of Cn, parametrized by points of D.
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By abuse of notation, the projection τE → M is denoted by p. These spaces
and bundles are organized as follows, with superscripts denoting ranks of bundles
or dimensions of spaces:

π∗E ⊃ τE −→ Eny yp yp
P(E) = Mm π−→ Dd

Of course, n+ d = m+ 1 since E× ' τ×E . Via this identification, L = τE acquires
an Hermitian structure, also denoted h, from the Hermitian structure of E, and
as before γ = γ1(L, h) denotes the curvature form. The norm squared function
r : E× → (0,∞) may be regarded as a function on L, and p∗γ = −

√
−1∂∂̄ log r

as closed (1, 1)-forms on the total space of L. Calabi [4] calls γ the “bi-Hermitian
curvature form” of (E, h). The preceding discussion makes it clear geometrically
that the auxiliary bundle L arises naturally in the Calabi ansatz on vector bundles.
Despite the fact that the complex manifolds L× and E× are biholomorphic, it is best
to regard them as differential-geometrically distinct; the bundle E× is completed
by adding a copy of D (the level set {r = 0} ⊂ E), while L× is completed by
adding a copy of M (the level set {r = 0} ⊂ L). Lemma 3.7 below illustrates the
importance of this distinction.

Degeneracy in the Calabi ansatz. Let p : (E, h) → (D, gD) be an Hermitian
holomorphic vector bundle of rank n over a Kähler manifold. The closed (1, 1)-form
π∗ωD may be denoted by ωD for brevity, as in equation (3.11) below. Associated to
a profile ϕ are functions µ and f as in Section 2. Upon blowing up the zero section
of E, the closed (1, 1)-form ω = p∗ωD + 2

√
−1∂∂̄f(t) is immediately written, using

results of Section 2, as

ω = ϕ(τ)(dt ∧ dct) + p∗ωD − τp∗γ.(3.11)

The form π∗ωD on M is degenerate along the fibres of π : M → D, while under
the hypotheses of Theorem D the form π∗ωD − γ is a Kähler form on M , and (by
Lemma 3.6 below) the horizontal data p : (τE , h)→ (M,ωM ) are σ-constant. The
vector bundle data p : (E, h)→ (D,ωD) are said to be σ-constant in this situation.
Before defining the analogues of the functions Q and R for vector bundle data, it
is reassuring to verify that the choice of background metric in the family ωM (τ) is
immaterial in the following sense.

Lemma 3.6. If ωM (τ) is a Kähler form for every τ > 0, and if p : (L, h) →(
M,ωM (τ0)

)
is σ-constant for some τ0 > 0, then p : (L, h) →

(
M,ωM (τ)

)
is

σ-constant for every τ > 0.

Proof. Fix τ0 > 0, and regard ωM (τ0) as a background metric, so that all index
raising and lowering is done with respect to this metric. Let B denote the curvature
endomorphism of (L, h); by assumption, the eigenvalues βν are constant on M , and
the trace of the Ricci form ρM (τ0) with respect to the Kähler form ωM (τ) is constant
for all τ > 0. Consider the family A(τ) of endomorphisms associated to the closed
(1, 1)-forms ωM (τ). Then A(τ0) is the identity, and A′(τ) = −B, so

A(τ) = I− (τ − τ0)B for τ ≥ 0.

The eigenvalues of B are β1, . . . , βd, and −1/τ0 (the latter of multiplicity n − 1).
Thus A(τ) has constant eigenvalues for each τ ≥ 0, A(0) = I + τ0B has rank d, and
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the endomorphisms A(τ) have the same eigenbundles. Set

Q(τ, τ0) = detA(τ) =
τn−1

τn−1
0

d∏
ν=1

(
1− (τ − τ0)βν

)
,

so that for each τ0 > 0, Q is a constant-coefficient polynomial with a zero of
order (n−1) at τ = 0. Then Q(τ, τ0) is the ratio of the volume forms of ωM (τ) and
ωM (τ0), and is constant on M for each fixed τ > 0, so the Ricci forms ρM (τ) and
ρM (τ0) coincide. Consequently, if the trace of the Ricci form ρM (τ0) with respect
to ωM (τ) is constant for all τ > 0, then the same is true of the Ricci form ρM (τ1)
for every τ1 > 0.

Suppose p : (E, h)→ (D,ωD) are σ-constant data, and set ωM (τ) = π∗ωD − τγ.
The background metric on M is taken to be ωM := ωM (1), in contrast to the
notation used for line bundles. As noted in the proof of Lemma 3.6, the Ricci
forms ρM (τ) do not depend on τ , and are denoted simply by ρM . By contrast, the
Ricci endomorphisms, defined by %M (τ) := ωM (τ)−1ρM , do depend on τ , though by
hypothesis they all have constant trace. More is true: For each τ > 0, the vertical
tangent bundle of M (namely, kerπ∗) is an eigenbundle of %M (τ) with eigenvalue n
(of multiplicity n − 1). To see this, observe that the global inner product 〈ρM , γ〉
is constant on M since 〈ρM , ωM (τ)〉 is constant on M for each τ > 0. On a fibre
of π, which is a projective space, −γ is a Kähler form, and since the trace of ρM
restricted to the fibre is constant, the restriction must be a multiple of −γ, which
implies the Ricci endomorphism is a multiple of the identity on each fibre. For
cohomological reasons, the eigenvalue is n.

The functions Q and R are defined with respect to the background metric ωM
by

Q(τ) = detA(τ) = τn−1
d∏

ν=1

(1 + βν − τβν) =: τn−1Q0(τ),

R(τ) = tr
(
A(τ)−1%

)
=
n(n− 1)

τ
+ smooth.

(3.12)

Note that Q has a zero of order (n− 1) and R has a simple pole at τ = 0.

Proof of Theorem D. As in Section 2, a profile ϕ induces a bundle-adapted
metric on E whose scalar curvature is

σϕ(τ) =
(
R− 1

2Q
(ϕQ)′′

)
(τ).(3.13)

The function σϕ generally has a pole at τ = 0. Interestingly, the scalar curvature
is bounded near the zero section if, and only if, the metric extends over the zero
section:

Lemma 3.7. If the metric (3.9) is complete, then the function σϕ in equation (3.13)
has a removable singularity at τ = 0 if and only if the profile satisfies the boundary
conditions

ϕ(0) = 0, ϕ′(0) = 2,

if and only if the metric extends over the zero section of E.
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Proof. Completeness of the metric dictates that ϕ(0) = 0. Writing ϕ(τ) = ϕ′(0) τ+
O(τ2) near τ = 0—so that (ϕQ)(τ) = ϕ′(0)τnQ0(τ)+O(τn+1)—and differentiating
twice gives

σϕ(τ) =
n(n− 1)

τ

(
1− ϕ′(0)

2

)
+O(1),

so the singularity at τ = 0 is removable if and only if ϕ′(0) = 2. The remaining
assertions are proven exactly as in the line bundle case.

Lemma 3.7 says the Calabi ansatz (3.9) does not give rise to a complete Kähler
metric of constant scalar curvature on the punctured disk subbundle of E. Of
course, the punctured disk subbundle of E is biholomorphic to the punctured disk
subbundle of the line bundle τE ; the difference between Theorem C and the present
situation is that here the forms ωM (τ) drop in rank at τ = 0. As a specific example,
on the punctured projective space Pm \ {pt} (with m ≥ 2) there does not exist a
complete Kähler metric whose scalar curvature is bounded below near the puncture,
cf. Calabi ([4], p. 276).

The differential equation obtained by setting (3.13) equal to c has a regular
singular point at τ = 0, and the general solution is

ϕ(τ) =
2

Q(τ)

(
α0 + α1 τ +

∫ τ

0

(
R(x)− c

)
(τ − x)Q(x) dx

)
.

Because Q has a zero of order n − 1 at τ = 0, ϕ(0) = 0 forces α0 = α1 = 0, so
the purported profile for a bundle-adapted metric of scalar curvature c on the disk
subbundle of E is

ϕ(τ) =
2

Q(τ)

∫ τ

0

(
R(x)− c

)
(τ − x)Q(x) dx.(3.14)

This profile satisfies the boundary conditions ϕ(0) = 0 and ϕ′(0) = 2. The first
results from two applications of l’Hôpital’s rule. To obtain the latter, differentiate
ϕQ and solve for ϕ′ to get

ϕ′(τ) = −ϕ(τ)
Q′

Q
(τ) +

2
Q

∫ τ

0

(
R(x)− c

)
Q(x) dx.

Writing ϕ(τ) = ϕ′(0)τ +O(τ2) and using l’Hôpital’s rule gives

ϕ′(0) = lim
τ→0

(
− ϕ′(0)(n− 1) +O(τ) + 2

(
R(x) − c

)
Q(τ)

Q′(τ)

)
= −ϕ′(0)(n− 1) + 2n,

so ϕ′(0) = 2 as claimed. Most of the remaining points are checked exactly as in the
proof of Theorem B, using the profile (3.14). The Einstein condition ρϕ = λωϕ is
equivalent to

λπ∗ωD = ρM + n γ and
1

2Q
(
ϕQ
)′(τ) = n− λτ.

4. Limitations, Examples, and Literature Survey

The chief issue addressed in this section is the extent to which the hypothesis of
σ-constancy is necessary for the Calabi ansatz to yield metrics of constant scalar
curvature. In addition, we give detailed examples of data satisfying the hypotheses
of the existence theorems proven in Section 3, prove a few miscellaneous technical
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results, and briefly survey the existing literature, particularly contrasting the three
main approaches used by prior authors.

4.1. Scope of the Momentum Construction. This subsection describes our
attempt to understand the limitations of the Calabi ansatz. The general construc-
tion begins with horizontal data—an Hermitian holomorphic line bundle over a
complete Kähler manifold, and an interval of real numbers—and associates to each
profile ϕ a Kähler metric gϕ. The role of σ-constancy in reducing a PDE to an ODE
is discussed below (Level sets of the scalar curvature); these remarks are intended
to motivate the proof of Theorem E.

Normalization of the momentum interval. There are two intervals in the
Calabi ansatz: The momentum interval I, which is closely related to the area of
the fibre metric; and the r interval defining the S1-invariant domain on which the
metric is defined. That these intervals are essentially independent is clear from
Table 2.1.

Lemma 4.1 below justifies the assumption inf I = 0 made in our existence theo-
rems. Begin with horizontal data {p : (L, h)→ (M, gM ), I}. The horizontal forms
ωM − τ γ are assumed to be positive and complete for all τ ∈ I, so if I = R, then
γ = 0, and every profile gives rise to a local product metric. In all other cases,
I may be normalized without loss of generality; in words, every bundle-adapted
metric is isometric to a bundle-adapted metric having momentum interval I equal
to R, or else having inf I = 0:

Lemma 4.1. If {p′ : (L′, h′) → (M, g′M ), I ′} are horizontal data with I ′ 6= R
and if ψ is a profile on I ′ inducing a metric gψ, then there exist horizontal data
{p : (L, h)→ (M, gM ), I}, with inf I = 0, and a profile ϕ on I such that gϕ and gψ
are isometric.

Proof. Suppose first that I ′ is bounded below, and set a = inf I ′; thus ω′M − aγ′ is
a Kähler form on M . The ‘translated’ data

(L, h) = (L′, h′), ωM = ω′M − aγ′, I = I ′ − a, ϕ(τ) = ψ(τ − a),

have the advertised properties.
Now suppose I ′ 6= R is not bounded below. By a translation argument analogous

to that just given, it may be assumed that sup I ′ = 0. Consider the ‘inverted’ data

(L, h) = (L′∗, h−1), ωM = ω′M , I = −I ′, ϕ(τ) = ψ(−τ).

The t integral acquires a sign change, which corresponds to the inversion map
ι : (L, h) → (L∗, h−1), given locally by z0 7→ 1/z0 in a line bundle chart. It is
straightforward to verify gϕ = ι∗gψ.

The role of σ-constancy in the Calabi ansatz. According to Theorem A and
equation (2.12), the scalar curvature σϕ is given in terms of horizontal data and
the profile by

σϕ = σM (τ) − 1
2Q

∂2

∂τ2
(Qϕ)(τ), σM (τ) = R(τ)−�ωM(τ) logQ;(4.1)

Our aim has been to find data (bundle, metrics, interval, and profile) such that σϕ
is constant. We expect, however, that for “generic” horizontal data the level sets
of σϕ do not coincide with the level sets of τ , regardless of the choice of profile.
Consequently, the Calabi ansatz “usually” does not yield a metric of constant scalar
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curvature. It is natural to seek geometric conditions on the horizontal data that
are necessary and sufficient for existence of a profile inducing a metric of constant
scalar curvature (or even having scalar curvature depending only upon τ). The
condition of σ-constancy is sufficient, by the existence theorems of the preceding
section. Theorem E, to which we now turn, gives good partial information about
necessity.

Proof of Theorem E, and related remarks. Equation (4.1) holds for all pro-
files and horizontal data, and it is reasonable to regard specification of the scalar
curvature as a family of ODEs on I, parametrized by points of M . Assume σ is a
(smooth) function on I. The equation σϕ = σ(τ) is trivially integrated to

(4.2) ϕ(τ, z) =
1

Q(τ, z)

[
ϕ(0, z) +

∂ϕ

∂τ
(0, z) τ

+2
∫ τ

0

(τ − x)
(
σM (x, z)− σ(x)

)
Q(x, z) dx

]
.

The solution is viewed as a function ϕ : I ×M → R, and the general problem is
to determine when this function depends only on τ ∈ I. Specifically, the intent is
to assume the solution depends only on τ for some choice(s) of σ, and to deduce
that the horizontal data are σ-constant. For obvious reasons, it is desirable to
make minimal assumptions on σ. The arguments below require real-analyticity;
this is adequate to deduce interesting geometric consequences. (More accurately,
Theorem E assumes existence of two profiles inducing metrics with real-analytic
scalar curvature functions. The latter need not be distinct. Further partial results
give some consequences of existence of a single profile.)

Fix horizontal data {p : (L, h)→ (M, gM ), I}. Suppose there exist real-analytic
functions σ1 and σ2 on I so that the corresponding profiles ϕ1 and ϕ2 given by (4.2)
depend only on τ and agree at τ = 0. Then the function

ψ(τ) :=
(
ϕ2 − ϕ1

)
(τ) =

1
Q(τ, z)

[(
ϕ′2(0)− ϕ′1(0)

)
τ

+
∫ τ

0

(τ − x)
(
σ1(x)− σ2(x)

)
Q(x, z) dx

]
depends only on τ and vanishes at 0. Let N(τ, z) denote the term in square brackets.
The aim is to show that the horizontal data are σ-constant, namely that Q(τ, z)
depends only on τ and the horizontal metric gM (τ) has constant scalar curvature
for each τ ∈ I. Because σϕ is assumed to depend only upon τ (for ϕ = ϕ1, say), it
suffices to show that Q depends only on τ , since σM (τ) = σϕ + (1/2Q)

(
ϕQ
)′′(τ).

To this end, it is enough to show that N depends only on τ since

N ′′(τ, z) =
(
σ1(τ) − σ2(τ)

)
Q(τ, z).

The function ψ is real-analytic and not identically zero (since ϕ1 and ϕ2 are
distinct). Put α = ϕ′2(0) − ϕ′1(0), write σ1(τ) − σ2(τ) = S(τ), and consider the
initial-value problem

y′′(τ) − S(τ)
ψ(τ)

y(τ) = 0, y(0) = 0, y′(0) = α.(4.3)

For each z ∈ M , the function y = N( , z) satisfies the singular initial-value prob-
lem (4.3). Because the coefficients depend only on τ (and the initial values are
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constant), an easy power series calculation shows that N is independent of z. This
completes the proof Theorem E.

Even the case σ1 = σ2 = c is of geometric interest: If {p, I} are horizontal data,
and there exists a fibre-complete, bundle-adapted metric of scalar curvature c in
∆(L) (so that ϕ′1(0) = 2) and a similar metric in ∆×(L) (so ϕ′2(0) = 0), then the
data are σ-constant; compare Theorems B and C.

Theorem E is of course local; nothing is assumed about completeness of the
base or fibre metric. The key hypothesis is existence of two profiles whose scalar
curvature is independent of τ ; taking the difference ϕ2 − ϕ1 cancels the relatively
complicated (but profile-independent) term σM (τ).

By Theorem E, it is reasonable to assert that the Calabi ansatz is exhausted,
so far as families of Kähler metrics of constant scalar curvature are concerned: If
{p, I} is not σ-constant, then there is at most one metric (total) of constant scalar
curvature that arises from the Calabi ansatz in the disk bundle ∆(L), the punctured
disk bundle ∆×(L), or in a partial contraction of the zero section. We conclude this
section with a few remarks on the consequences of assuming existence of a single
profile whose induced metric has constant scalar curvature. These calculations are
included mostly for (pedagogical) completeness.

Problem 4.2. Let {p, I} be horizontal data, and suppose there exists a profile ϕ
depending only on τ such that σϕ is constant. Are the horizontal data necessarily
σ-constant?

We are not presently able to answer this question, though we believe the answer
is “yes.” While falling short of a proof, our calculations provide evidence and yield
some suggestive partial results.

The approach is to draw conclusions about the curvature of horizontal data
under the assumption that there exists a germ of a profile at τ = 0, satisfying
ϕ(0) = 0 and ϕ′(0) = 2, and inducing a bundle-adapted metric whose scalar curva-
ture depends only on τ . This investigation only involves consideration of rational
functions defined on I ×U , with U a neighbourhood of the origin in Cm. Solutions
of ODEs defining momentum profiles are considered in the ‘non-geometric regime’
where τ < 0. Nothing is being asserted about bundle-adapted Kähler metrics for
τ < 0, of course; what is being used is real-analyticity of ϕ in τ , and the fact that
if such a function ϕ(τ, z) depends only on τ for τ ≥ 0, then the same is true for
τ < 0.

Proposition 4.3. Fix horizontal data {p : (L, h)→ (M, gM ), I} and a polynomial
function σ. If there exists a profile ϕ(τ) such that σϕ = σ(τ), then ϕ is a rational
function.

Proof. Fix z ∈M , and let ϕ(τ, z) be the function defined by (4.2). It will be shown
that a non-rational term in ϕ has a logarithmic singularity at a root of Q, and that
this root must depend on z, so ϕ depends on z as well. These logarithmic terms
potentially arise from �ωM (τ) logQ, which enters via σM (τ) = R(τ)−�ωM(τ) logQ.

It is enough to work in a coordinate neighbourhood U around z ∈ M . Let
{βν(z)}mν=1 denote the (a priori non-constant) eigenvalues of the curvature endo-
morphism B in U , and let b1 < · · · < b` ≤ 0 be the distinct eigenvalues, of mul-
tiplicity ki; without loss of generality, ki may be assumed constant throughout U .
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Then

Q(τ, z) =
m∏
ν=1

(
1− τβν(z)

)
=
∏̀
i=1

(
1− τbi(z)

)ki
,

so

logQ(τ, z) =
∑̀
i=1

ki log
(
1− τbi(z)

)
.

Choose a unitary eigenframe {eν}mν=1 in U , and let (zν) be complex local coordi-
nates such that for 1 ≤ ν ≤ m, zν = 0 and ∂ν = eν at z. Differentiating logQ(τ, z),
using subscripts (after a comma) to denote partial derivatives, gives

∂λ∂̄µ logQ =
∑̀
i=1

(
kiτ

2bi,λbi,µ̄
(1 − τbi)2

− kiτbi,λµ̄
(1 − τbi)

)
.(4.4)

Let {θν} be the basis of
∧(1,0)

0 dual to {eν}, so along the fibre at 0 the metric and
its inverse are given by

ωM (τ) =
m∑
ν=1

(1− βντ) θν θ̄ν , ωM (τ)−1 =
m∑
ν=1

eν ēν
(1− βντ)

.

Taking the trace of (4.4) with respect to ωM (τ)−1, and using the fact that {eν} is
a coordinate basis at 0,

�ωM(τ) logQ(τ, z)

=
∑̀
i=1

m∑
λ=1

(
kiτ

2|bi,λ|2
(1− τβλ)(1 − τbi)2

− kiτbi,λλ
(1− τβλ)(1 − τbi)

)(4.5)

at 0. When the right-hand side is expanded in partial fractions, the coefficients
of the principal part at τ = 1/bi are linear combinations of derivatives of bi. In
particular, if a principal part appears, then bi is non-constant.

The integrand in (4.2) is rational for each z ∈ M , and the only non-polynomial
terms come from (4.5). In other words, ϕ(τ, z) is the integral of a rational function,
and any non-rational (logarithmic) terms arise from a principal part. But as just
observed, a principal part is non-vanishing only when some bi is non-constant, and
this implies ϕ depends on z.

Under similar hypotheses, the calculations in the proof can be used to read off
other geometrically interesting consequences. When the curvature endomorphism B
is a multiple of the identity, examination of the highest-order pole in (4.5) implies
σ-constancy:

Proposition 4.4. Let {p, I} be horizontal data such that B(z) = β(z)I for some
smooth function β. Assume there is a profile ϕ(τ) inducing a metric whose scalar
curvature is σ(τ) for some polynomial σ. Then the data are σ-constant.

Finally, the non-constant eigenvalues of the curvature are tightly constrained by
the assumptions made above.

Proposition 4.5. Let {p, I} be horizontal data, and let {bi(z)}`i=1 denote the dis-
tinct eigenvalues of the curvature endomorphism. Suppose there exists a profile,
depending only on τ and inducing a metric whose scalar curvature depends only
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on τ . If bi(z) is non-constant, then for every z ∈ M , (1 − τbi)ki divides the term
in square brackets in (4.2).

Proof. By hypothesis, ϕ—and in particular each pole—is independent of z. So if
(1 − τbi)ki does not divide the numerator (the term in square brackets) in (4.2),
then bi is independent of z.

The condition that the numerator should have such a factor is a strong con-
straint on the way in which bi(z) can vary. Unfortunately, it is a constraint whose
consequences seem hard to express in simple fashion.

4.2. Line Bundles. This section describes some examples of data satisfying the
hypotheses of Theorems B and C. The “atomic” examples are suitable line bundles
over Hodge manifolds of constant scalar curvature; even when the base is a curve,
interesting metrics arise.

Scalar-flat metrics on complex surfaces. It is instructive to see what emerges
from the momentum construction when the (complex) dimension of the base M is
1. (The case dimM = 0 was dealt with in Section 2.2, see Table 2.1.)

The conditions of σ-constancy are satisfied if and only if ρM = λωM and γ =
βωM , for constants λ and β. Then Q(τ) = 1 − βτ and R(τ) = λ(1 − βτ)−1. The
profiles with ϕ(0) = 0 which yield a metric of constant scalar curvature c are given,
with their derivative at 0, by

ϕ(τ) =
2τ + (λ− c)τ2 + cβτ3/3

1− βτ , ϕ′(0) = 2;(4.6)

or

ϕ(τ) =
(λ− c)τ2 + cβτ3/3

1− βτ , ϕ′(0) = 0.(4.7)

It is easy to analyze the choices of β, λ, and c that give rise to positive profiles
and hence to complete metrics. However, the most interesting case is that where
c = 0, for then the metric is anti-self-dual in the sense of 4-dimensional conformal
geometry. In addition to recovering a number of known examples, we find new
metrics on C2 and suitable quotients by Z and Z⊕ Z.

The first case to consider is when λ > 0, so M = P1 with a Fubini-Study (round)
metric, normalized so that λ = 1. In this case, if L = O(−k), then β = −k/2; the
factor of 2 arises because the canonical bundle is O(−2). Equation (4.6) takes the
form

ϕk(τ) =
2τ + τ2

1 + kτ/2
,

which is clearly positive on (0,∞) if k ≥ 0. The growth is linear at ∞, so the
corresponding metric ωk lives on the line bundle (not some disk subbundle).

By Theorem B, ωk is Einstein if and only if k = 2. The resulting metric—the
Eguchi-Hanson graviton—is an example of the Ricci-flat metric on T ∗Pd found by
Calabi [4]. If k = 1 the metric is the Burns metric on the blow-up of C2 at the
origin [18, 19]. If k ≥ 3 the metrics are those found by LeBrun in [18].

In the case λ < 0, equation (4.6) never yields complete metrics; the corresponding
profiles are all negative for large τ , but if b is the first positive zero then ϕ′(b) = −2
if and only if β = 0. This case does, however, yield compact extremal Kähler
metrics, see [35].
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Finally, if λ = 0—so the universal cover of M is C—then (4.6) reduces to

ϕ(τ) =
2τ

1− βτ .(4.8)

This profile yields a complete metric on L = OC, whose total space is C2, provided
β < 0. These complete, scalar-flat Kähler metrics on C2 are not Einstein, and
appear to be new. The formula hβ := exp

(
β(Im z)2

)
defines an Hermitian metric of

constant, negative curvature; indeed, γ(OC, hβ) = βω, where ω = (
√
−1/2)dz ∧ dz̄

is the standard Kähler form.
If the Hermitian metric h is suitably translation-invariant, then the profile (4.8)

gives rise to complete metrics of zero scalar curvature on (C/Z) × C and on the
total space of a line bundle of negative degree over an elliptic curve. If β is integral,
hβ is an example of such a Z⊕ Z-invariant metric.

Bundles over product manifolds. The basic example of σ-constant horizontal
data comes from a combination of some well-known results:

Lemma 4.6. Let (M, g) be a Hodge manifold of constant scalar curvature. Then
there exists an Hermitian line bundle p : (L, h) → (M, g) such that the data{
p, [0,∞)

}
are σ-constant.

Proof. By the Lefschetz Theorem on (1, 1)-classes, there exists a holomorphic line
bundle L whose first Chern class is [−ω]. To see there is an Hermitian structure h
with γ(L, h) = −2πω, start with an arbitrary Hermitian structure h0 and let γ0

be the curvature form. By the Hodge Theorem, there exists a unique smooth,
real-valued function u satisfying

γ − γ0 =
√
−1∂∂̄u,

∫
M

u dvolg = 0.

Put h = e−uh0. For this Hermitian structure, the horizontal forms ωM (τ) are
positive—indeed, are homothetic to ωM—hence have constant scalar curvature for
all τ ≥ 0. Finally, the curvature endomorphism is a scalar multiple of the identity,
in particular has constant eigenvalues.

There are trivial improvements on the statement; the Kähler form need only be
homothetic to an integral form, and every positive power of L admits a suitable
Hermitian structure. It is also clear that there are examples of σ-constant horizontal
data over certain non-compact manifolds, such as Hermitian symmetric spaces.

Remark 4.7. It is tempting to ‘iterate’ the momentum construction, using a con-
stant scalar curvature metric gϕ on a disk bundle ∆(L) as the base metric for
appropriate horizontal data. While this is sometimes possible, it is noteworthy
that the ‘natural’ choice of line bundle—L pulled back over its own total space,
equipped with the induced Hermitian structure—does not fit into this framework.
Indeed, if (L, h) is non-flat, then the curvature of the pullback bundle, computed
with respect to an arbitrary bundle-adapted metric on the disk bundle, does not
have constant eigenvalues.

For data as in Lemma 4.6, the functions P , Q, and R are written explicitly as
follows: Let the constant scalar curvature of the Hodge manifold (Mm, g) be σ, and
let p : (L, h)→ (M, g) be the Hermitian line bundle with curvature γ = −2πω. For
each positive integer k, the bundle (Lk, hk) has curvature kγ. Fix α > 0, and equip
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M with the metric gM = 2πα g. Together with the compatible interval [0,∞), these
data are σ-constant, and

Q(τ) =
(

1− k

α
τ

)m
, R(τ) =

ασ

α− kτ ,

P (τ) = 2σ
(

1− k

α
τ

)m−1

.

(4.9)

Since every positive or negative Einstein-Kähler metric is (homothetic to) a
Hodge metric, Lemma 4.6 encompasses most prior examples of horizontal data to
which Theorems B and C may be applied. It is reasonable to ask whether or
not a Hodge metric of constant scalar curvature is “essentially” Einstein-Kähler.
The answer is “no,” even discounting product metrics, homogeneous metrics, and
the like. LeBrun [20] constructed scalar-flat metrics on certain blown-up ruled
surfaces; the Kähler classes of these metrics depend on a real parameter, and the
class is rational when the parameter value is rational. Higher-dimensional examples
include the manifolds obtained from P2k+1 by blowing up a pair of skew Pk’s. Such
a manifold is a P1-bundle over Pk ×Pk, and a Kähler class is determined by the
area of a P1 fibre and by the areas of lines in each of the base factors. If the latter
are equal, and are a rational multiple of the area of a fibre, then the Kähler class is
proportional to a Hodge class, and by [12] (Remark 5.3, p. 584) is represented by
a metric of constant scalar curvature.

The family gM (τ) of horizontal metrics arising from σ-constant horizontal data
need not be homothetic. A simple way to arrange this is to take a suitable product
of data arising from Lemma 4.6:

Lemma 4.8. Let
{
pj : (Lj , hj) → (Mj, gj), [0,∞)

}
, j = 1, . . . , n, be σ-constant

horizontal data. Then the line bundle

p : L =
n⊗
j=1

π∗jLj −→M = M1 × · · · ×Mn,

πj : M →Mj the projection, equipped with the induced metrics, is σ-constant.

The proof is immediate. The corresponding function Q is a product of terms as
in equation (4.9), while R is a sum of such terms.

If (Mj , gj) are Einstein-Kähler, then the construction just described gives rise
to complete metrics on tensor products of pluri-canonical and pluri-anticanonical
bundles as in Corollaries B.2 and B.3.

Remarks about compact Einstein-Kähler metrics. By Yau and Aubin’s so-
lution of the Calabi conjecture, simply-connected Einstein-Kähler manifolds of non-
positive scalar curvature are plentiful, the simplest examples being smooth complete
intersection varieties of degree k ≥ N + 1 and dimension m ≥ 2 in the complex
projective space PN .

Work of Tian and Yau [34] and Tian [33] shows that, with precisely two ex-
ceptions, every compact complex surface with positive first Chern class admits an
Einstein-Kähler metric.

Remark 4.9. (Deformation of positive Einstein-Kähler manifolds) In higher di-
mensions, work of Nadel [25] and Siu [31] shows that if m/2 ≤ k ≤ m + 1, then
the Fermat hypersurface of degree k in Pm+1 admits an Einstein-Kähler metric
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with positive Ricci curvature. Nadel also proved existence of positive Einstein-
Kähler metrics on certain branched coverings of projective space. These exam-
ples can be deformed; this is an immediate consequence of a theorem of LeBrun
and Simanca [21] regarding deformations of extremal Kähler metrics. Precisely, if
(M,J, gM ) is a positive Einstein-Kähler manifold with no non-trivial holomorphic
vector fields, their result implies that every sufficiently small deformation of the
complex manifold (M,J) also admits an Einstein-Kähler metric.

If (M,J) is a smooth hypersurface of degree k ≤ m + 1 in Pm+1, then ev-
ery small deformation is realized by a hypersurface in the same projective space.
Consequently, there is a moduli space of dimension

(
m+k+1

k

)
− (m + 2)2 + 1 (the

dimension of the space of monomials minus the dimension of Aut Pm+1) consisting
of Einstein-Kähler structures (complex structure and compatible Kähler metric) on
the smooth manifold underlying the Fermat hypersurface. Since for m ≥ 3 every
smooth, irreducible hypersurface in Pm+1 has h1,1 = b2 = 1 (by the Lefschetz Hy-
perplane Theorem), every holomorphic line bundle over such a manifold admits an
Hermitian structure for which the line bundle data are σ-constant.

4.3. Vector Bundles. This section describes some examples of data satisfying
the hypotheses of Theorem D. As mentioned in the introduction, σ-constancy for a
vector bundle of rank n > 1 is a strong condition, nowhere nearly as flexible as the
corresponding notion for line bundles. This is expected, since the base metric gD
lives on a space of dimension d, while it is necessary to control d+ n− 1 curvature
eigenvalues. The examples here are all chosen so that the exceptional divisor of
the blow-up is particularly simple, either a homogeneous space, or else a product
D × Pn−1. Nonetheless, there are interesting metrics, many of which seem to be
new.

Homogeneous vector bundles. Let D be a compact, homogeneous Kählerian
manifold, and fix a maximal compact group K ⊂ Aut0(D), endowed with a bi-
invariant measure of unit volume. The group K is unique up to conjugacy in
Aut0(D). Furthermore, K acts transitively on D, and every de Rham class (in par-
ticular, every Kähler class) contains a unique K-invariant representative, obtained
from an arbitrary representative by averaging.

Remark 4.10. When D is simply-connected, it is known that D is rational, and that
every holomorphic vector bundle over D is homogeneous. Generally, a compact,
homogeneous Kähler manifold is the Kähler product of a flat torus and a rational
homogeneous space, see Matsushima [24], or the book of Besse [3] for a more detailed
expository treatment.

The Ricci form of a K-invariant Kähler metric is K-invariant and represents
2πc1(D). In other words, there is only one K-invariant Ricci form, and its eigen-
values, with respect to a K-invariant Kähler form are K-invariant functions, i.e.
constants.

Suppose p : E → D is a homogeneous holomorphic vector bundle, namely is
induced by a representation of K on GL(n,C), and that the ruled manifold M =
P(E) is K-homogeneous (for example, if E is irreducible). Then the tautological
bundle p : L → M is a homogeneous line bundle, and by averaging over K it is
clear that for every Kähler class on M , there exists a Kähler form ωM representing
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the chosen class, and an Hermitian structure in L, such that the data p : (L, h)→
(M, gM ) are σ-constant.

A tubular neighbourhood of the zero section of L is obtained by blowing up
a tubular neighbourhood of the zero section of E, so it is clear that these neigh-
bourhoods are either both pseudoconvex or both not pseudoconvex. But in L,
pseudoconvexity is equivalent to non-positivity of the curvature. Thus, under the
assumptions of Corollary D.1, the hypotheses of Theorem D are satisfied, so the
total space of E (or the disk subbundle) admits complete metrics of constant scalar
curvature.

Finally, consider the K-invariant Ricci form ρM on M . The restriction of ρM
to a fibre of π : M → D is the Ricci form of a Fubini-Study metric, so the form
ρM − nγ vanishes on kerπ∗, hence is pulled back from D. Provided this form is
non-positive, there is an Einstein-Kähler metric on the total space of E or the disk
subbundle. We shall not pursue this avenue; a detailed (partial) classification of
cohomogeneity-one Einstein-Kähler metrics has been accomplished by Dancer and
Wang [6], see also Podesta and Spiro [28].

Sums of line bundles. Let E = Λ ⊗ Cn be a sum of n copies of an Hermitian
line bundle over a base space such that (Λ, h) → (D, gD) is σ-constant. Then the
projectivization is a product manifold M = D×Pn−1, and the tautological bundle
is τE = π∗1Λ ⊗ π∗2OPn−1(−1). It is clear that the induced Hermitian structure on
L = τE is σ-constant with respect to the obvious metric on M .

As a partial complement to this remark, observe that if L1 and L2 are holomor-
phic line bundles over a compact manifold D, and if exactly one of L∗1 ⊗ L2 and
L∗2 ⊗ L1 admits a non-trivial holomorphic section, then there do not exist metrics
g and h such that the data (L1 ⊕ L2, h)→ (D, g) are σ-constant. This generalizes
the remark about Hirzebruch surfaces that was made following Theorem D. As in
that case, the projective bundle M = P(L1⊕L2) has non-reductive automorphism
group, hence (by a theorem of Lichnerowicz) does not admit a Kähler metric of
constant scalar curvature. Considerations of this type rather seriously restrict the
possibility of finding sums of line bundles to which Theorem D applies. For exam-
ple, if D = Pd (or more generally, is a compact, irreducible, rank-one Hermitian
symmetric space), then the only sums of line bundles satisfying the hypotheses of
Theorem D are as in the previous paragraph.

Stable bundles over curves. Many of the observations below regarding ruled
manifolds over curves were made by Fujiki in the context of seeking extremal Kähler
metrics on ruled manifolds, see [9].

Let C be a smooth, compact Riemann surface of genus at least two, and let
E → C be a holomorphic vector bundle of rank n and degree k. We will use a
theorem of Narasimhan-Seshadri [26], as formulated by Atiyah-Bott [1], to show
that when E is stable there is an Hermitian metric in E satisfying the hypotheses
of Theorem D.

Equip C with the (unique up to isometry) Kähler form ωC of unit area and
constant Gaussian curvature, so that c1(E) = kωC . It is well-known (see [1],
Sections 6 and 8, for example) that stable holomorphic bundles E correspond to
irreducible representations ΓR → U(n), where ΓR is a central extension of the
fundamental group:

0→ R→ ΓR → π1(C)→ 0.
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It follows that if E is stable then there is a family of metrics with constant Ricci
eigenvalues on P(E). Indeed, because the universal cover ∆ of C is Stein (and
contractable) the universal cover of P(E) may be identified holomorphically with
∆ × P(Cn). Equipping this with a product metric Poincaré × Fubini-Study, it
follows that if E is stable then M = P(E) is the quotient ∆ × P(Cn)/π1(C)
where the action is by isometries. Scaling the two factors gives a two-parameter
family of Kähler forms on M whose Ricci eigenvalues are constant, and whose
eigenbundles are the vertical tangent bundle of M and its orthogonal complement.
Thus h1,1(M) ≥ 2.

The Leray-Hirsch Theorem (see for example [14], pp. 31ff.) implies that, as a
module over H∗(C,R), the cohomology ring H∗(M,R) is generated by the first
Chern class ζ of the tautological bundle τE subject to the relation

0 = ζn − c1(E) ζn−1 = ζn − kωC ζn−1.(4.10)

In particular, h2(M) = 2, so by the observations made in the previous paragraph,
every two-dimensional cohomology class is represented by a form whose pullback to
∆×Pn−1 is a (possibly indefinite) linear combination of the Poincaré form and the
Fubini-Study form. Kähler classes are exactly those classes whose representatives
pull back to positive combinations of these metrics. Fix a Kähler class on M ,
and let gM be the distinguished representative. Every holomorphic line bundle
p : L → (M, gM ) admits an Hermitian structure h, unique up to scaling, whose
curvature form is a combination of the Poincaré and Fubini-Study forms; thus the
data p : (L, h)→ (M, gM ) are σ-constant.

Lemma 4.11. Let E → C be a holomorphic vector bundle of rank n and degree k
over a compact Riemann surface of genus g ≥ 2. Assume C and M = P(E)
are equipped with metrics as above, and let ωF denote the push-forward to M of
the integral Fubini-Study form on ∆ × Pn−1. Then the curvature form γ of the
tautological bundle of E and the Ricci form ρM are given by

1
2π
γ =

k

n
ωC − ωF ,

1
2π
ρM = (2− 2g)ωC + nωF .(4.11)

Proof. Write γ = k1 ωC + k2 ωF . Then k2 = −1 since the restriction of τE to a
fibre is OPn−1(−1). By equation (4.10) and a short calculation, k1 = k/n. To see
the Ricci form is as claimed, pull back to the universal cover, where the metric is a
product, and recall that ωC has unit area.

If L → M is a line bundle whose first Chern class is non-positive, then the
hypotheses of Theorems B and C are satisfied. Further, by Lemma 4.11 the tauto-
logical bundle L = τE has non-positive first Chern class if and only if k = degE ≤ 0.
In this event, the hypotheses of Theorem D are satisfied, and the total space of E
(or the disk subbundle) admits complete Kähler metrics of constant scalar curva-
ture. Finally, Lemma 4.11 implies ρM + nγ = 2π(2− 2g + k)ωC so by Theorem D
the disk subbundle of E supports a complete Einstein-Kähler metric of negative
curvature.

4.4. Metrics of Finite Fibre Area. Metrics of finite fibre area arise in the mo-
mentum construction when the momentum interval is bounded. In this case the
most convenient normalization is to take the momentum interval I to be sym-
metric about τ = 0, rather than insisting that inf I = 0. The requirement that
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ωM (τ) = ωM − τγ be positive-definite for all τ ∈ I no longer imposes a sign re-
striction on γ. The main difficulty is that the problem of constructing a complete,
finite-volume Kähler metric of constant scalar curvature is over-determined: There
are two boundary conditions—namely ϕ = 0, and |ϕ′| = 0 or 2—that must be
satisfied at each end of the momentum interval, and only three parameters (the
initial conditions, and the value of the scalar curvature).

Metrics on compact manifolds. Theorem 4.12 below is an existence result for
Kähler metrics of constant (positive) scalar curvature on certain compact manifolds
to which the momentum construction is applicable. It was proven in [12], and is
included here for two purposes: To suggest the type of theorem to be expected for
(non-compact) metrics of finite fibre area, and to indicate the parts of the proof
that generalize with no extra effort. The important philosophical point is that on a
compact manifold, it is not generally the case that every Kähler class is represented
by a metric of constant scalar curvature.

Theorem 4.12. Let (M, gM ) be a product of positive Einstein-Kähler manifolds,
each having b2 = 1, and let p : L → M be a holomorphic line bundle whose first
Chern class is strictly indefinite. Then the completion L̂ = P(L⊕1) admits a Kähler
metric of constant scalar curvature. In fact, the set of Kähler classes containing
such a metric is a real-algebraic family that separates the Kähler cone.

Proof. (Sketch) The first step is to establish that under the hypotheses of Theo-
rem 4.12, every Kähler class on L̂ is represented by a Kähler metric whose scalar
curvature is an affine function of τ . (This means the gradient of the scalar curvature
is a global holomorphic vector field, hence that the metric is critical for a certain
energy functional, see [5]. Such a metric is extremal (in the sense of Calabi). A
Kähler class containing an extremal representative is an extremal class.)

Let Q and R be defined as in Section 2, and let I = [−b, b]. Set σ(τ) = σ0 + σ1τ
and solve the boundary value problem

(ϕQ)′′(τ) = 2Q(τ)
(
R(τ) − σ0 − σ1τ

)
;

ϕ(±b) = 0, ϕ′(±b) = ∓2.
(4.12)

The values of σ0 and σ1 are determined uniquely byQ, R, and b, and a root counting
argument shows that (ϕQ)′′ vanishes at most twice, so that ϕQ—which is positive
near the endpoints of I—is positive on (−b, b). Thus equation (4.12) determines a
momentum profile whose induced metric is extremal.

The scalar curvature of such a metric is constant exactly when σ1 = 0. Direct
calculation expresses σ1 as a polynomial in the curvature and Ricci eigenvalues
of the horizontal data; the “variables” are exactly the parameters controlling the
Kähler class of the base metric. The top-degree coefficient changes sign as the
parameters vary, so σ1 changes sign on the Kähler cone, hence vanishes on a real-
algebraic hypersurface that separates the cone.

There are substantial difficulties in extending Theorem 4.12 to compact man-
ifolds when the base curvature is not positive. Perhaps the greatest, found by
Tønnesen-Friedman [35], is that the set of extremal classes is not obviously the
entire Kähler cone. In particular, on a ruled surface whose base has genus at least
two, the set of classes for which the momentum construction yields an extremal

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2322 ANDREW D. HWANG AND MICHAEL A. SINGER

metric is not generally the entire Kähler cone. This potentially complicates the fi-
nal portion of the argument, since σ1 may vanish for certain choices of eigenvalues,
but the relevant parameters may not correspond to extremal classes.

Non-compact metrics of finite fibre area. By analogy with the compact case,
it is desirable to search among a family of metrics whose scalar curvature may be
non-constant. The natural extension is to the class of formally extremal metrics, by
definition those whose scalar curvature is an affine function of the moment map. As
before, the hope is to find, for each pair of boundary conditions, an affine function
σ0 + σ1τ such that the function ϕ satisfying

R(τ) − 1
2Q(τ)

(ϕQ)′′(τ) = σ0 + σ1τ(4.13)

matches the given boundary conditions and is non-negative. Matching the bound-
ary conditions is easy linear algebra:

Lemma 4.13. Let {p : (L, h)→ (M, gM ), [−b, b]} be σ-constant horizontal data for
some b > 0. For each pair of boundary values ϕ′(±b), there exists a unique choice
of σ0 and σ1 such that the function ϕ defined by (4.13) has the given boundary
derivatives and satisfies ϕ(±b) = 0.

The proof is simple linear algebra, identical to the compact case. This “boundary-
matching” result is the only part of the proof of Theorem 4.12 that generalizes
immediately, and the results of Tønnesen-Friedman suggest that there are genuine
geometric complications in less restricted settings.

4.5. Other Constructions of Bundle-Adapted Metrics. Several authors have
constructed bundle-adapted metrics from various points of view. With the excep-
tion of LeBrun, who worked over curves, the authors mentioned below have used
the following curvature hypotheses, either implicitly or explicitly:

(i): The eigenvalues of the curvature endomorphism B are constant;
(ii): The eigenvalues of the Ricci endomorphism % are constant;
(iii): At each point of M , B and % are simultaneously diagonalizable.
For brevity, data satisfying these conditions are said to be ρ-constant. Data that

are ρ-constant are clearly σ-constant. Roughly, the distinction is between assuming
an endomorphism has constant trace and assuming its eigenvalues are constant.
It is clear that σ-constant data satisfying λωM = ρM + kγ are ρ-constant; thus
ρ-constancy is a natural curvature condition when searching for Einstein-Kähler
metrics.

Historical survey. The list below is in approximate chronological order, but does
not necessarily follow lines of development back to their earliest discernible ori-
gins. We offer our sincerest apologies to authors whose related work we may have
overlooked.

Calabi [4] used distortion potential functions to construct complete Einstein-
Kähler metrics in line bundles over an Einstein-Kähler base, and in the cotangent
bundle of Pd, and used the same method (in [5]) to construct compact extremal
Kähler metrics of non-constant scalar curvature.

Koiso and Sakane [16, 17] used the momentum map as a coordinate to con-
struct compact Einstein-Kähler metrics of real cohomogeneity one. Their work
followed Sakane [29], likely inspired by the work of Bérard-Bergery [2] on compact,
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non-homogeneous Einstein metrics. One salient point of their work is an explicit
interpretation of vanishing of the Futaki invariant as an integrability condition for
an ODE. At about the same time, Mabuchi [22] gave a more symplectic proof of
existence of Einstein-Kähler metrics on the same spaces considered by Koiso and
Sakane. Mabuchi also gave a satisfactory interpretation of the Futaki invariant in
terms of convex geometry.

A symplectic approach was also taken by LeBrun [19], and his formalism was
generalized by Pedersen and Poon [27]. LeBrun assumed that the base M was a
curve, but allowed the profile to be a general (positive) function on I ×M . (Corre-
spondingly the dependence upon τ of ωM (τ) is not necessarily affine, and dωϕ = 0
is an additional condition.) He showed that every S1-invariant scalar-flat Kähler
metric in complex dimension 2 is locally described by a pair of functions u and w
on I ×M satisfying certain partial differential equations. His w is essentially 1/ϕ.
Remarkably, these equations are tractable when dimM = 1 and lead, for exam-
ple, to the construction of scalar-flat Kähler metrics on (certain) blow-ups of ruled
surfaces.

Pedersen and Poon allowed dimM > 1 and worked with torus bundles, but
made assumptions that reduce their very complicated system of equations to the
ODEs studied in this paper. (In most of their examples, M is Einstein-Kähler and
L is a (possibly fractional) power of the canonical bundle.) Their examples include
metrics of constant scalar curvature on line and disk bundles over projective spaces.
In particular they showed that there exist Kähler metrics of zero scalar curvature
on the total space of O(−k) → Pm provided that k ≥ m. This restriction on k is
unnecessary, as shown by Simanca [30], also using the Calabi ansatz.

The methods of Koiso and Sakane were used in [12], and independently by
Guan [10], to extend Calabi’s families of extremal metrics. Hwang ([12], p. 564)
mis-attributed the construction to Koiso and Sakane, overlooking the fact that
Calabi ([4], p. 281, equation (4.9), for example) had written the moment map and
distance function in the manner of equation (2.2) above. However, Calabi seems to
have made the observation in passing, and did not emphasize the use of momentum
coordinates.

Koiso [15] and Guan [11] used the method of Koiso and Sakane to study Hamil-
ton’s Ricci flow for Kähler metrics and how it may fail to converge; the concept
of a quasi-Einstein Kähler metric is introduced in the latter two papers. A quasi-
Einstein Kähler metric is the Kählerian analogue of a Ricci soliton, introduced by
R. Hamilton.

Dancer and Wang [6] and Podesta and Spiro [28] independently used the tech-
niques of Koiso and Sakane to obtain a partial classification of Einstein-Kähler
metrics having real hypersurface orbits under the action of the isometry group.

Engman [7, 8] and Taimanov [32] used the momentum construction (sometimes
implicitly) to study spectral geometry of surfaces of revolution. Momentum coor-
dinates are ideal, since the Laplacian reduces to a second-order, linear, ordinary
differential operator.

Tønnesen-Friedman [35] used the Calabi ansatz to study existence of extremal
Kähler metrics on some ruled surfaces. Some of her examples are of geometric inter-
est for the following reason. If (M,J) is a compact complex manifold that admits
an extremal Kähler metric in some Kähler class, then there are two properties that
might generally be hoped for:
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• Every Kähler class contains an extremal representative;
• Extremal metrics in a fixed class on M are unique up to the action of the

automorphism group.

Tønnesen-Friedman found families of complex surfaces (admitting extremal met-
rics) for which at least one of the preceding statements fails.

The number of geometric, analytic, and physical applications of the momentum
construction (in addition to its independent discovery by workers in different fields)
indicates its potential interest to the mathematical community. It is our hope that
the expository elements of this account will bring the technique to a wider audience,
and that many will find bundle-adapted metrics a useful testing ground for a variety
of investigations.
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