
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 1

A Momentum-Guided Frank-Wolfe Algorithm
Bingcong Li, Mario Coutiño, Georgios B. Giannakis, and Geert Leus

Abstract—With the well-documented popularity of Frank
Wolfe (FW) algorithms in machine learning tasks, the present
paper establishes links between FW subproblems and the notion
of momentum emerging in accelerated gradient methods (AGMs).
On the one hand, these links reveal why momentum is unlikely
to be effective for FW-type algorithms on general problems. On
the other hand, it is established that momentum accelerates FW
on a class of signal processing and machine learning applications.
Specifically, it is proved that a momentum variant of FW, here
termed accelerated Frank Wolfe (AFW), converges with a faster
rate O(1

k2) on such a family of problems, despite the same

O(1

k
) rate of FW on general cases. Distinct from existing fast

convergent FW variants, the faster rates here rely on parameter-
free step sizes. Numerical experiments on benchmarked machine
learning tasks corroborate the theoretical findings.

Index Terms—Frank Wolfe method, conditional gradient
method, momentum, accelerated method, smooth convex opti-
mization

I. INTRODUCTION

We consider efficient means of solving the following opti-

mization problem

min
x∈X

f(x) (1)

where f is a smooth convex function. The constraint set

X ⊂ R
d is assumed to be convex and compact, and d is

the dimension of the variable x. We denote by x∗ ∈ X a

minimizer of (1). Among problems across signal processing,

machine learning, and other areas, the constraint set X can be

structured but difficult or expensive to project onto. Examples

include the nuclear norm ball constraint for matrix completion

in recommender systems [1] and the total-variation norm ball

adopted in image reconstruction tasks [2]. The computational

inefficiency of the projection, especially for a large d, impairs

the applicability of projected gradient descent (GD) [3] and

projected Accelerated Gradient Method (AGM) [4], [5].

An alternative to GD for solving (1) is the Frank Wolfe

(FW) method [6]–[8], also known as the conditional gradient

approach. FW circumvents the projection in GD by first mini-

mizing an affine function, which is the supporting hyperplane

of f(x) at xk, over X to obtain vk+1, and then updating xk+1

as a convex combination of xk and vk+1. When dealing with

This research is supported in part by NSF 1901134 and the ASPIRE
project (project 14926 within the STW OTP programme), financed by the
Netherlands Organization for Scientific Research (NWO). Mario Coutino is
partially supported by CONACYT.

B. Li and G. B. Giannakis are with the Dept. of Electrical and Computer
Engineering and the Digital Technology Center, University of Minnesota,
Minneapolis, MN 55455 USA. Emails: {lixx5599, georgios}@umn.edu.

M. Coutino and G. Leus are with the Faculty of Electrical Engineer-
ing, Mathematics and Computer Science, Delft University of Technology,
Delft 2628 CD, The Netherlands. M. Coutino is now with Radar Tech-
nology, TNO, The Hague, The Netherlands. E-mails: {m.a.coutinominguez,
g.j.t.leus}@tudelft.nl.

structural constraints such as nuclear norm balls and total vari-

ation norm balls, an efficient implementation manner or even a

closed-form solution for computing vk+1 is available [7], [9],

resulting in reduced computational complexity compared with

projection steps. In addition, when initializing well, FW di-

rectly promotes low rank (sparse) solutions when the constraint

set is a nuclear norm (ℓ1 norm) ball [1]. Providing the easiness

in implementation and enabling structural solutions, FW is

of interest in various applications. Besides those mentioned

earlier, other examples encompass structural SVM [10], video

colocation [11], particle filtering [12], traffic assignment [13],

and optimal transport [14], electronic vehicle charging [15],

[16], and submodular optimization [17].

Although FW has well documented merits in several ap-

plications, it exhibits slower convergence when compared to

AGM. Specifically, FW satisfies f(xk) − f(x∗) = O(1k).
This convergence slowdown is confirmed by the lower bound,

which indicates that the number of FW subproblems to solve

in order to ensure f(xk)−f(x∗) ≤ ǫ, is no less than O
(
1
ǫ

)
[7],

[18]. Thus, FW is a lower-bound-matching algorithm, in

general. However, improved FW type algorithms are possible

in speedup rates for certain subclasses of problems.

A. Related works

There are three common approaches to select step sizes for

FW and its variants: i) line search [7]; ii) minimizing a one-

dimensional quadratic function over [0, 1] for smooth step sizes

[9], [19]; and iii) parameter-free step sizes; that is, O(1k) [7].

Most of the fast converging FW iterations rely on choices

i) or ii), which require either the smoothness parameter or

the function value of f . Step size i) is ‘clumsy’ when it is

costly to access function values, e.g., in the big data regime.

Concerns with choice ii) arise with how well the smoothness

parameter is estimated. In addition, it is challenging to select

the smoothness inducing norm, and each norm can result in a

considerably different smoothness parameter [20]. The need

thus arises for FW variants relying on parameter-free step

sizes, especially those enabling faster convergence. To this end,

we first briefly recap existing results on faster rates.

Line search. Jointly leveraging line search and ‘away steps,’

FW-type algorithms converge linearly for strongly convex

problems when X is a polytope [8], [23]; see also [24], [25],

and [21] where the memory efficiency of away steps is also

improved.

Smooth step sizes. If X is strongly convex, and the optimal

solution is at the boundary of X , it is known that FW

converges linearly [19]. For uniformly (and thus strongly)

convex sets, faster rates are attained when the optimal solution

is at the boundary of X [26]. When both f and X are strongly

convex, FW with the smooth step size converges at a rate of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 2

TABLE I
A COMPARISON OF FW VARIANTS WITH FASTER RATES

Work Assumptions on f Assumptions on X
Additional parameters

in the step sizes
Convergence rate

[8], [21] smooth and strongly convex polytopes function value linear convergence

[19] smooth and convex
active strongly convex sets,

e.g., active ℓp norm balls with p ∈ (1, 2]
smoothness constant linear convergence

[9] smooth and strongly convex strongly convex sets smoothness constant O(1

k2)

[22]
smooth, convex, twice differentiable, and

locally strongly convex around x
∗

polytopes – O(1

k2)

This work smooth and convex active ℓp norm balls with p ∈ [1,+∞) – Õ(1

k2)

O(1
k2), regardless of where the optimal solution resides [9]. A

variant of smooth step size along with modifications on FW

jointly enable faster rates on a strongly convex f and Gauge

set X [27], at the expense of requiring extra parameters besides

the smoothness constant.

Parameter-free step sizes. Without any parameter involved

here, there is no concern on the quality of parameter estima-

tion, which saves time and effort because there is no need

for tuning step sizes. Although implementation efficiency is

ensured, theoretical guarantees are challenging to obtain. This

is because f(xk+1) ≤ f(xk) cannot be guaranteed without

line search or smooth step sizes. Faster rates for parameter-

free FW are rather limited in number. In a recent work [22],

the behavior of FW when k is large and X is a polytope

is investigated under the strong assumptions on f(x) being

twice differentiable and locally strongly convex around x∗.

Hence, the analysis does not hold for e.g., the Huber loss,

which is widely used in robust regression but is only once-

differentiable. The faster rates, along with the assumptions

on f and X , are summarized in Table I for comparison. To

establish faster rates, our solution connects the FW subproblem

with Nesterov’s momentum, which is recapped next.

Nesterov momentum. After the O(1
k2) convergence rate was

established in [3], [28], the efficiency of Nesterov momentum

is proven almost universal; see e.g., the accelerated proximal

gradient [5], [29], projected AGM [4], [5] for problems

with constraints; accelerated mirror descent [4], [5], [30],

and accelerated variance reduction for problems with finite-

sum structures [31], [32]. Parallel to these works, AGM has

been also investigated from an ordinary differential equation

(ODE) perspective [30], [33]–[35]. However, the efficiency of

Nesterov momentum on FW type algorithms is shaded given

the lower bound on the number of subproblems [7], [18]. A

means to bringing momentum into FW is to adopt conditional

gradient sliding (CGS) [36], where the projection subproblem

in the original AGM is substituted by gradient sliding which

solves a sequence of FW subproblems. The faster rate O(1
k2) is

obtained with the price of: i) the requirement of at most O(k)
FW subproblems in the kth iteration; and ii) an inefficient

implementation (e.g., the AGM subproblem has to be solved

to certain accuracy, and it relies on other parameters that are

not necessary in FW, such as the diameter of X).

Although parameter-free FW is undoubtedly attractive in

several applications, there are two main challenges in estab-

lishing faster rates for such step sizes: i) even AGM and most

of its variants are not parameter-free since they involve a

smoothness parameter; and ii) parameter-free FW in general

cannot ensure per step descent, which is essential for faster

rates. To overcome these challenges, we first unveil the links

between the notion of momentum and the FW subproblem.

Then, we leverage these connections to provide provable

constraint-dependent faster rates.

B. Our contributions

In succinct form, our contributions are as follows.

• We observe that the momentum update in AGM plays

a similar role as the subproblem in FW, intuitively

and analytically. Hence, the FW subproblem can be

leveraged to play the role of Nesterov’s momentum, thus

enabling faster rates on a useful family of problems.

• We prove that a momentum-guided FW, termed acceler-

ated Frank Wolfe (AFW), achieves a faster rate Õ(1
k2)

on active ℓp norm ball constraints without knowledge

of the smoothness parameter or the function value. We

also establish that AFW converges no slower than FW

on general problems.

• We corroborate the numerical efficiency of AFW on

two benchmark tasks. We validate faster AFW rates on

binary classification problems with different constraint

sets. We further demonstrate that for matrix completion,

AFW finds low-rank solutions with small optimality

error more rapidly than FW.

Notation. Bold lowercase letters denote column vectors;

‖x‖ stands for the ℓ2 norm of a vector x; and 〈x,y〉 denotes

the inner product between vectors x and y. All missing proofs

can be found in the Appendix.

II. PRELIMINARY

This section briefly reviews FW starting with the assump-

tions to clarify the class of problems we are focusing on.

Assumption 1. (Lipschitz Continuous Gradient.) The function

f : R
d → R has L-Lipchitz continuous gradients; that is,

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ R
d.

Assumption 2. (Convex Objective Function.) The function f :
R

d → R is convex; that is, f(y) − f(x) ≥ 〈∇f(x),y −
x〉, ∀x,y ∈ R

d.

Assumption 3. (Constraint Set.) The constraint set X is

convex and compact with diameter D, that is, ‖x − y‖ ≤
D, ∀x,y ∈ X .

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 3

Algorithm 1 FW [6]

1: Initialize: x0 ∈ X , δk = 2
k+2 , ∀k.

2: for k = 0, 1, . . . ,K − 1 do

3: vk+1 = argmin
x∈X 〈∇f(xk),x〉

4: xk+1 = (1− δk)xk + δkvk+1

5: end for

6: Return: xK

Assumptions 1 – 3 are standard for FW type algorithms,

and they are assumed to hold true throughout.

FW is summarized in Alg. 1. A subproblem with a linear

loss needs to be solved to obtain vk+1 per iteration. This

subproblem is also referred to as an FW step, and it admits a

geometrical explanation. In particular, vk+1 can be rewritten

as

vk+1 = argmin
x∈X

f(xk) + 〈∇f(xk),x− xk〉. (2)

Noticing that the RHS of (2) is a supporting hyperplane of

f(x) as xk, it is thus clear that vk+1 is a minimizer of this

supporting hyperplane over X . Note also that the supporting

hyperplane in (2) is also a global lower bound of f(x) due

to the convexity of f , i.e., f(x) ≥ f(xk) + 〈∇f(xk),x −
xk〉. Upon minimizing this lower bound in (2) to obtain vk+1,

xk+1 is updated as a convex combination of vk+1 and xk to

eliminate the projection.

Next, we briefly recap the step sizes for FW to gain insights

on why the parameter-free FW is challenging to analyze.

Smooth step size. At the kth iteration, the step size δk in

Alg. 1 is obtained as

δk = argmin
δ∈[0,1]

δ〈∇f(xk),vk+1 − xk〉+
δ2L

2
‖vk+1 − xk‖2.

Clearly, it is imperative to estimate L accurately because this

estimate markedly influences the performance. It has also

been argued that algorithms relying on a guess of L are

not robust [37]. Tuning to find the ‘best’ L is employed in

practice to optimize the performance empirically. On the other

hand, smooth step sizes ensure descent per iteration, which is

analytically attractive. Indeed, Assumption 1 implies that

f(xk+1)− f(xk) (3)

≤ 〈∇f(xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

(a)
= δk〈∇f(xk),vk+1 − xk〉+

δ2kL

2
‖vk+1 − xk‖2

(b)

≤ 0

where (a) uses xk+1 = (1 − δk)xk + δkvk+1, and (b) holds

because δk minimizes the RHS of (3) over [0, 1].
Line search. An alternative to tune for the best L is to

employ line search for determining the local smoothness

parameter. In particular, the step size is chosen as δk =
argminδ∈[0,1] f

(
(1− δ)xk+ δvk+1

)
. However, the price paid

is the need to compute f(x), which is inefficient when function

evaluation is costly (e.g., in big-data regimes). Note that

f(xk+1) ≤ f(xk) is automatically ensured by line search.

Parameter-free step size. This type of step sizes does not

rely on L or other parameters, and hence it is extremely easy

Algorithm 2 AGM [3]

1: Initialize: x0=v0, δk=
2

k+2 , µ0=L, µk+1=(1− δk)µk.

2: for k = 0, 1, . . . ,K − 1 do

3: yk = δkvk + (1− δk)xk

4: xk+1 = yk − 1
L∇f(yk)

5: vk+1 = vk − δk
µk+1

∇f(yk)
6: end for

7: Return: xK

to implement. Two possible choices are δk = 2
k+2 or δk =

1
k+1 . However, these step sizes do not guarantee descent per

iteration, which becomes the bottleneck for establishing faster

rates on specific constraint sets. Our insight to overcome this

comes from the observation that the FW step is similar to the

momentum in AGM for convex problems. Hence, the FW step

itself can be used as an approximate momentum.

III. CONNECTING MOMENTUM WITH FW

To bring intuition on how momentum can be helpful for FW

type algorithms, we first recap AGM for unconstrained convex

problems, i.e., X = R
d. Note that the reason for discussing

the unconstrained problem here is only for the simplicity of

exposition, and one can extend the arguments to constrained

cases straightforwardly. AGM [3], [4], [28] is summarized in

Alg. 2. We start this section by characterizing the behavior of

{xk}, {yk} and {vk} in the next theorem.

Theorem 1. Under Assumptions 1 and 2, with δk = 2
k+3 ,

µ0 = 2L, and µk+1 = (1− δk)µk, AGM in Alg. 2 guarantees

that

f(xk)− f(x∗) = O
(f(x0)− f(x∗) + L‖x0 − x∗‖2

k2

)

, ∀k.

‖∇f(yk)‖2 ≤ O
(
L
(
f(x0)− f(x∗) + L‖x0 − x∗‖2

)

(k + 2)2

)

, ∀k.

In addition, it holds for any k that ‖vk −x∗‖2 ≤ 1
L

(
f(x0)−

f(x∗) + L‖x0 − x∗‖2
)
.

Theorem 1 shows that ‖∇f(yk)‖2 = O(1
k2), which implies

that yk also converges to a minimizer as k → ∞. Through

the increasing step size δk
µk+1

= O(kL), the update of vk stays

in the ball centered at x∗ with radius depending on both x∗

and x0.

One observation of AGM is that by substituting Line 5

in Alg. 2 with vk+1 = xk+1, the modified algorithm boils

down to GD. Hence, it is clear that the key behind AGMs

acceleration is vk and the way it is updated. We contend

that the vk+1 is obtained by minimizing an approximated

lower bound of f(x) formed as the summation of a supporting

hyperplane at yk and a regularizer. To see this, one can rewrite

Line 5 of AGM as

vk+1 = argmin
x∈Rd

f(yk) + 〈∇f(yk),x− yk〉
︸ ︷︷ ︸

supporting hyperplane

+
µk+1

2δk
‖x− vk‖2

︸ ︷︷ ︸

regularizer

(4)

where the linear part is the supporting hyperplane, and
µk+1

δk
= O(Lk). As k increases, the impact of the regularizer

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 4

3 2 1 0 1 2 3
x

1

0

1

2

3
va

lu
e

f(x)
FW lower bound
AGM lower bound

Fig. 1. Similarity between the RHS of (2) and (4).

µk+1

2δk
‖x−vk‖2 in (4) will become limited. Thus the RHS can

be viewed as an approximated lower bound of f(x). Regarding

the reasons to put a regularizer after the supporting hyperplane,

it first guarantees the minimizer exists since directly minimize

the supporting hyperplane over R
d yields no solution. In

addition, vk+1 is ensured to be unique because the RHS of

(4) is strongly convex thanks to the regularizer. Since vk+1

minimizes an approximated lower bound of f(x), it can be

used to estimate f(x∗). We explain in Theorem 4 in Appendix

B that f(yk) + 〈∇f(yk),vk+1 − yk〉 approximates f(x∗).
Consequently, one can obtain an estimated suboptimality gap

using f(xk+1)− f(yk)− 〈∇f(yk),vk+1 − yk〉.
Momentum vk update as an FW step. It is observed that

vk+1 in both FW and AGM (cf. (2) and (4)) are obtained by

minimizing an (approximated) lower bound of f(x), where the

only difference lies on whether a regularizer with decreasing

weights is utilized. The similarity between the RHS of (2) and

(4) will be amplified when k is large; see Fig. 1 for a graphical

illustration on how (4) approaches to an affine function. In

other words, the momentum update in (4) becomes similar to

an FW step for a large k. In addition, there are also several

other connections.

Connection 1. The vk+1 update via (4) is equivalent to

vk+1 = argmin
v∈Vk

〈∇f(yk),v − yk〉 (5)

for Vk := {v|‖v − vk‖2 ≤ rk} with rk denoting the time-

varying radius of the norm ball. Clearly, rk depends on
µk+1

2δk
,

and it is upper bounded by 2
L

(
f(x0)−f(x∗)+L‖x0−x∗‖2

)

according to Theorem 1. By rewriting (4) in its constrained

form (5), it can be readily recognized that for unconstrained

problems Nesterov momentum can be obtained via FW steps

with time-varying constraint sets.

Connection 2. Recall that in AGM, vk+1 obtained via (4) is

used to construct an approximation of f(x∗), which is f(yk)+
〈∇f(yk),vk+1−yk〉. When a compact X is present, directly

minimizing the supporting hyperplane f(yk) + 〈∇f(yk),x−
yk〉 over X also yields an estimate of f(x∗). Note that the

latter is exactly an FW step. In addition, the FW step in Alg.

1 also results in a suboptimality gap (known as FW gap; see

e.g., [7]), which is in line with the role of vk in AGM. In a

nutshell, both FW step and momentum update in AGM result

in an estimated suboptimality gap.

Algorithm 3 AFW

1: Initialize: x0 = v0 ∈ X , θ0 = 0, δk = 2
k+3 , ∀k.

2: for k = 0, 1, . . . ,K − 1 do

3: yk = (1− δk)xk + δkvk

4: θk+1 = (1− δk)θk + δk∇f(yk)
5: vk+1 = argmin

x∈X 〈θk+1,x〉
6: xk+1 = (1− δk)xk + δkvk+1

7: end for

8: Return: xK

Connection 3. Connections between momentum and FW

go beyond convexity. We discuss in Appendix C that AGM

for strongly convex problems updates its momentum using

exactly the same idea of FW, that is, both obtain a minimizer

of a lower bound of f(x), and then perform an update through

a convex combination.

These links and similarities between momentum and FW

naturally lead us to explore their connections, and see how

momentum influences FW.

IV. MOMENTUM-GUIDED FW

In this section we show that the momentum is beneficial for

FW by proving that it is effective at least on certain constraint

sets. Specifically, we will focus on the accelerated Frank Wolfe

(AFW) summarized in Alg. 3, and analyze its convergence

rate. Since we will see later that δk = 2
k+3 ∈ (0, 1), ∀k, for

which yk, vk and xk lie in X for all k, AFW is projection

free. Albeit rarely, it is safe to choose vk+1 = vk, and proceed

when θk+1 = 0. Note that the xk+1 update in AFW is slightly

different with that of AGM. This is because AGM guarantees

f(xk+1) ≤ f(yk), ∀k, taking advantage of the known L.

However, the same guarantee is difficult to be replicated in a

parameter-free algorithm.

The key to AFW is the vk+1 update, which plays the role

of momentum. To see this, if one unrolls θk+1 (cf. (22) in

Appendix) and plugs it into Line 5 of Alg. 3, vk+1 can be

equivalently rewritten as

vk+1 = argmin
x∈X

k∑

τ=0

wτ

[
f(yτ) + 〈∇f(yτ),x− yτ 〉

]
(6)

where wτ = δτ
∏k

j=τ+1(1− δj) and
∑k

τ=0 wτ ≈ 1 (the exact

value of the sum depends on the choice of δτ). Note that

f(yτ)+ 〈∇f(yτ),x−yτ 〉 is a supporting hyperplane of f(x)
at yτ , hence the right-hand side (RHS) of (6) is a lower bound

for f(x) constructed through a weighted average of supporting

hyperplanes at {yτ}. In other words, vk+1 is a minimizer of

a lower bound of f(x), hence it is in line with the role of

momentum. However, the momentum in AFW differs from

AGM in two aspects. First, instead of relying on ∇f(yk), the

update of vk+1 utilizes coefficient θk+1, which is (roughly) a

weighted average of past gradients {∇f(yτ)}kτ=1 with more

weight placed on recent ones. The second difference on the

vk+1 update with AGM is whether a regularizer is used. As

a consequence of the non-regularized lower bound (6), its

minimizer is not guaranteed to be unique. A simple example is

to consider the ith entry [θk+1]i = 0. The ith entry [vk+1]i can

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 5

then be chosen arbitrarily as long as vk+1 ∈ X . This subtle

difference leads to a significant gap between the performance

of AFW and AGM, that is, AFW cannot achieve acceleration

on general problems, as will be illustrated shortly. However,

we confirm that momentum is still helpful since it is effective

on a class of problems.

A. AFW convergence for general problems

The analysis of AFW relies on a tool known as estimate

sequence (ES) introduced by [3]. ES is commonly adopted to

analyze projection based algorithms; see e.g., [31], [32], [38],

[39], but seldomly used for FW. Formally, ES is defined as

follows.

Definition 1. (ES.) A tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is called

an estimate sequence of function f(x) if limk→∞ λk = 0, and

for any x ∈ R
d we have

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x).

ES is generally not unique and different constructions can be

used to design different algorithms. To highlight our analysis

technique, recall that quadratic surrogate functions {Φk(x)}
are used for the derivation of AGM [3] (or see (12) in

Appendix). Different from AGM, and taking advantage of

the compact constraint set, here we consider linear surrogate

functions for AFW

Φ0(x) ≡ f(x0) (7a)

Φk+1(x) = (1− δk)Φk(x)

+ δk

[

f(yk) +
〈
∇f(yk),x− yk

〉]

, ∀ k ≥ 0. (7b)

Evidenced by the terms in the bracket of (7b), i.e., it is a

supporting hyperplane of f(x), Φk+1(x) is an approximated

lower bound of f(x) constructed by weighting the supporting

hyperplanes at {yτ}kτ=0. Next, we show that (7) together with

proper {λk} forms an ES for f . Through the ES based proof, it

is also revealed that the link between the momentum in AGM

and the FW step is also in the technical proof level.

Lemma 1. With λ0 = 1 and λk = λk−1(1− δk−1), the tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
in (7) is an ES of f(x).

Using properties of the functions in (7) (cf. Lemma 4 in

Appendix E), the following lemma holds for AFW.

Lemma 2. With Φ∗
k := minx∈X Φk(x), AFW is guaranteed

to satisfy f(xk+1) ≤ Φ∗
k+1 + ξk+1, ∀ k, where ξk+1 = (1 −

δk)ξk +
Lδ2

k

2 ‖vk+1 − vk‖2 and ξ0 = 0.

Leveraging Lemma 2, the convergence rate of AFW for

general problems can be established.

Theorem 2. When Assumptions 1, 2 and 3 are satisfied, upon

choosing δk = 2
k+3 and θ0 = 0, AFW guarantees

f(xk)− f(x∗) ≤ 2
(
f(x0)− f(x∗)

)

(k + 1)(k + 2)
+

2LD2

k + 2
, ∀ k.

Theorem 2 asserts that the convergence rate of AFW is

O(LD2

k), coinciding with that of FW [7]. Notwithstanding,

AFW is tight in terms of the number of FW steps required. To

see this, note that the convergence rate in Theorem 2 translates

to requiring O(LD2

ǫ) FW steps to guarantee f(xk)−f(x∗) ≤
ǫ. This matches the lower bound [7], [40]. Similar to other FW

variants, acceleration for AFW cannot be claimed for general

problems. AFW however, is attractive numerically because it

can alleviate the zig-zag behavior1 of FW, as we will see in

Section V.

Why acceleration cannot be achieved in general? Recall

from Lemma 2, that critical to acceleration is ensuring a small

ξk, which in turn requires vk+1 and vk to stay sufficiently

close. This is difficult in general because the non-uniqueness of

vk prevents one from ensuring a small upper bound of ‖vk −
vk+1‖2 ∀ vk, ∀ vk+1. The ineffectiveness of momentum in

AFW in turn signifies the importance of the added regularizer

in AGM momentum update (4).

B. AFW acceleration for a class of problems

In this subsection, we provide constraint-dependent accel-

erated rates of AFW when X is a ball induced by some

norm. Even for projection based algorithms, most accelerated

rates are obtained with L-dependent step sizes [41]. Thus,

faster rates for parameter-free algorithms are challenging to

establish. An extra assumption is needed in this subsection.

Assumption 4. The constraint is active; that is, ‖∇f(x∗)‖2 ≥
G > 0.

To analyze convergence of FW iterations, it is reasonable

to rely on the position of the optimal solution, which justifies

why this assumption is also adopted in [19], [26], [42], [43].

For a number of signal processing and machine learning tasks,

Assumption 4 is rather mild. Relying on Lagrangian duality,

it can be seen that problem (1) with a norm ball constraint is

equivalent to the regularized formulation minx f(x) + γg(x),
where γ ≥ 0 is the Lagrange multiplier, and g(x) denotes

some norm. In view of this, Assumption 4 simply requires

γ > 0 in the equivalent regularized formulation, that is, the

norm ball constraint plays the role of a regularizer. Given the

prevalence of regularized formulations, it is worth investigat-

ing their equivalent constrained form (1) under Assumption 4.

Next, we will use the ℓ2 norm ball constraints to illustrate the

intuition behind the acceleration.

ℓ2 norm ball constraint. Consider X := {x|‖x‖2 ≤ D
2 }.

In this case, vk+1 admits a closed-form solution

vk+1 = argmin
x∈X

〈θk+1,x〉 = − D

2‖θk+1‖2
θk+1. (8)

The uniqueness of vk+1 is ensured by its closed-form solution,

wiping out the obstacle for a faster rate. In addition, through

(8) it becomes possible to guarantee that vk+1 and vk are

close whenever θk is close to θk+1.

Theorem 3. If Assumptions 1, 2, 3 and 4 are satisfied, and

X is an ℓ2 norm ball, choosing δk = 2
k+3 and θ0 = 0, AFW

guarantees acceleration with convergence rate

f(xk)− f(x∗) = O
(

min
{LD2T + C ln k

k2
,
LD2

k

})

1The change between f(xk+1) and f(xk) is large with high frequency,
so zig-zag emerges when plotting f(xk)− f(x∗) versus k.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 6

TABLE II
A SUMMARY OF DATASETS USED IN NUMERICAL TESTS

Dataset d n (train) nonzeros

a9a 123 32, 561 11.28%
covtype 54 406, 709 22.12%

mushroom 122 8, 124 18.75%
mnist (digit 4) 784 60, 000 12.4%

where C and T are constants depending on L, D and G.

Theorem 3 demonstrates that momentum improves the con-

vergence of FW by providing a faster rate. Roughly speaking,

when the iteration number k ≥ T , the rate of AFW dominates

that of FW. We note that this matches our intuition, that

is, the momentum in AGM (4) only behaves like an affine

function when k is large (so that the weight on the regularizer

is small). In addition, the rate in Theorem 3 can be written

compactly as Õ
(
TLD2

k2

)
, ∀k, hence it achieves acceleration

with a worse dependence on D compared to vanilla FW. Note

that the choice for δk and θ0 remains the same as those used

in general problems, leading to an identical implementation to

non-accelerated cases. Compared with CGS, AFW sacrifices

the D dependence in the convergence rate to trade for i) the

nonnecessity of the knowledge of L and D, and ii) ensuring

only one FW subproblem per iteration (whereas at most O(k)
subproblems are needed in CGS).

ℓ1 norm ball constraint. For the sparsity-promoting con-

straint X := {x|‖x‖1 ≤ R}, the FW steps can be solved in

closed form. Taking vk+1 as an example, we have

vk+1 = R · [0, . . . , 0,−sgn[θk+1]i, 0, . . . , 0]
⊤

with i = argmax
j

|[θk+1]j |. (9)

We show in the Appendix (Theorem 5) that when Assumption

4 holds and the set argmaxj
∣
∣[∇f(x∗)]j

∣
∣ has cardinality

1, a faster rate O(T1LD2

k2) can be obtained. The additional

assumption here is known as strict complementarity, and has

been adopted also in, e.g., [44], [45] for analysis.

ℓp norm ball constraint. Consider an active ℓp norm ball

constraint X := {x|‖x‖p ≤ R}, where p ∈ (1,+∞) and

p 6= 2. The i-th entry of vk+1 is found in closed form as

[vk+1]i = −[θk+1]i

∣
∣[θk+1]i

∣
∣
q−2

‖θk+1‖q−1
q

·R

where 1/p + 1/q = 1. We discuss in Appendix K that faster

rates are possible under mild conditions. Though not covering

all cases, it still showcases that the momentum is partially

helpful for parameter-free FW algorithms.

Beyond ℓp norm balls. In general, when a specific struc-

ture of x∗ (e.g., sparsity) is promoted by X (so that x∗

is likely to live on the boundary), and one can ensure the

uniqueness of vk through either a closed-form solution or a

specific implementation, acceleration can be effected. A direct

extension of the results in this subsection to matrix space is

when the constraint is a Schatten ℓp norm ball. This is because

‖X‖p := ‖σ1(X), σ2(X), . . . , σr(X)‖p, where σi(X) denotes

the ith singular value of X. Our numerical results confirm the

acceleration in Section V-B.

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

Fig. 2. Performance of AFW when the optimal solution is at interior.

V. NUMERICAL TESTS

We validate our theoretical findings as well as the efficiency

of AFW on two benchmarked machine learning problems,

binary classification and matrix completion in this section. All

numerical experiments are performed using Python 3.7 on a

desktop equipped with Intel i7-4790 CPU @3.60 GHz (32 GB

RAM). Additional numerical tests using other loss functions

and constraints can be found in Appendix L.

A. Binary classification

Logistic regression for binary classification is adopted to

test AFW. The objective function is

f(x) =
1

n

n∑

i=1

ln
(
1 + exp(−bi〈ai,x〉)

)
(10)

where (ai, bi) is the (feature, label) pair of datum i and n is

the total number of data samples. Datasets from LIBSVM2

are used in the numerical tests presented. Details regarding

the datasets are summarized in Table II, where d is the

dimension of x, n is the number of data, and ‘nonzeros’

refers to the percentage of nonzero entries in {ai}ni=1 to reflect

the sparsity of the dataset. The constraint sets considered

include ℓ1 and ℓ2 norm balls. As benchmarks, the chosen

algorithms are: projected GD with the standard step size 1
L ;

parameter-free FW with step size 2
k+2 [7]; and projected AGM

with parameters according to [4]. The step size of AFW is

δk = 2
k+3 according to Theorems 2 and 3. Note that both GD

and AGM are not parameter-free.

We first let X be an ℓ2 norm ball with a large enough radius

so that ‖∇f(x∗)‖ ≈ 10−4. This case maps to our result in

Theorem 2, where the convergence rate of AFW is O(1k).
The performance of AFW is shown in Fig. 2. On dataset a9a,

AFW slightly outperforms GD and FW, but is slower than

AGM. Evidently, AFW is much more stable than FW, as one

can see from the shaded areas that illustrate the zig-zag range.

Next, we consider active ℓ2 norm ball constraints, where the

diameter of X is chosen to maximize the generalization error

on the validation dataset. In this case, our result in Theorem

3 applies and AFW achieves an Õ(1
k2) convergence rate. The

performance of AFW is listed in the first row of Fig. 3. In all

2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 7

0 200 400 600 800 1000
k

10 5

10 4

10 3

10 2

10 1

100
f(x

k)
f(x

*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

(a) mushroom (b) mnist (c) covtype

Fig. 3. Performance of AFW on ℓ2 norm balls (first row) and ℓ1 norm balls (second row).

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

101

102

f(X
k)/

f(X
*)

1

FW
AFW

0 200 400 600 800 1000
k

0

25

50

75

100

125

150

175

ra
nk

 o
f X

k

FW
AFW

(a) optimality (b) rank

Fig. 4. Performance of AFW for matrix completion problems.

tested datasets, AFW significantly improves over FW, while

on datasets other than covtype, AFW also outperforms AGM,

especially on mushroom.

When the constraint set is an ℓ1 norm ball, the performance

of AFW is depicted in the second row of Fig. 3. It can be

seen that on datasets such as covtype and mnist, AFW exhibits

performance similar to AGM, which is significantly faster

than FW. While on dataset mushroom, AFW converges even

faster than AGM. Note that comparing AFW with AGM is not

fair since each FW step requires d operations at most, while

projection onto an ℓ1 norm ball in [46] takes cd operations for

some c > 1. This means that for the same running time, AFW

will run more iterations than AGM. We stick to this unfair

comparison to highlight how the optimality error of AFW and

AGM evolves with k.

B. Matrix completion

We then consider matrix completion problems that are

ubiquitous in recommender systems. Consider a matrix A ∈
R

m×n with partially observed entries, that is, entries Aij for

(i, j) ∈ K are known, where K ⊂ {1, . . . ,m} × {1, . . . , n}.

Note that the observed entries can also be contaminated by

noise. The task is to predict the unobserved entries of A. Al-

though this problem can be approached in several ways, within

the scope of recommender systems, a commonly adopted

empirical observation is that A is low rank [47]–[49]. Hence

the problem to be solved is

min
X

1

2

∑

(i,j)∈K

(Xij −Aij)
2 s.t. ‖X‖∗ ≤ R (11)

where ‖X‖∗ denotes the nuclear norm of X, and it is leveraged

to promote a low rank solution. Problem (11) is difficult to be

solved via GD or AGM because projection onto a nuclear

norm ball is expensive. On the contrary, FW and its variants

are more suitable for (11) given that FW step can be solved

easily and the update promotes low-rank solution directly [1].

We test AFW and FW on a widely used dataset, Movie-

Lens100K3, where 1682 movies are rated by 943 users with

6.30% percent ratings observed. And the initialization and data

processing are the same as those used in [1]. The numerical

performance can be found in Fig. 4. In subfigures (a) and (b),

we plot the optimality error and rank versus k choosing R = 3.

The choice of R is based on the number of different movie

categories. It is observed that AFW exhibits improvement in

terms of both optimality error and rank of the solution. In

particular, AFW roughly achieves 1.4x performance improve-

ment compared with FW in terms of optimality error, and finds

solutions with much lower rank.

VI. CONCLUSIONS

We built links between the momentum in AGM and the FW

step by observing that they are both minimizing an (approxi-

mated) lower bound of the objective function. Exploring this

link, we show how momentum benefits parameter-free FW. In

particular, a momentum variant of FW, which we term AFW,

was proved to achieve a faster rate on active ℓp norm ball

constraints while maintaining the same convergence rate as

3Online available at https://grouplens.org/datasets/movielens/100k/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 8

FW on general problems. AFW thus strictly outperforms FW

providing the possibility for acceleration. Numerical experi-

ments validate our theoretical findings, and suggest AFW is

promising for binary classification and matrix completion.

APPENDIX

A. Proof of Theorem 1

The convergence on xk is given in [41], and hence we do

not repeat here. Next we show the behavior of yk and vk.

We use the same surrogate functions with those in [41], i.e.,

Φ0(x) = Φ∗
0 +

µ0

2
‖x− x0‖2 (12a)

Φk+1(x) = (1− δk)Φk(x)+

δk

[

f(yk) +
〈
∇f(yk),x− yk

〉]

, ∀ k ≥ 0. (12b)

In [41], it is shown that with λ0 = 1 and λk = λk−1(1 −
δk−1), the tuple

(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an ES of f(x).

In addition, it is also shown that Φk+1(x) can be rewritten as

Φk(x) = Φ∗
k +

µk

2 ‖x− vk‖2, where µk+1 = (1− δk)µk, and

f(xk) ≤ Φ∗
k = minx Φk(x). We will use these conclusions

directly. Rearranging the terms in Φk(x) = Φ∗
k+

µk

2 ‖x−vk‖2,

we arrive at

1

2
‖x− vk‖2 =

1

µk

(

Φk(x)− Φ∗
k

)

=
1

µk

(

Φk(x)− f(x) + f(x)− Φ∗
k

)

(a)

≤ λk

µk

[
Φ0(x)− f(x)

]
+

1

µk

[
f(x)− f(xk)

]

=
1

2L

[
Φ0(x)− f(x)

]
+

1

µk

[
f(x)− f(xk)

]

where (a) is because Φk(x) − f(x) ≤ λk

(
Φ0(x) − f(x)

)
by

Definition 1, and f(xk) ≤ Φ∗
k shown in [3]. Choosing x as

x∗, we arrive at

1

2
‖x∗ − vk‖2

≤ 1

2L

[
Φ0(x

∗)− f(x∗)
]
− 1

µk

[
f(xk)− f(x∗)

]

≤ 1

2L

[
Φ0(x

∗)− f(x∗)
]
, ∀k.

This further implies

‖x∗ − vk‖2 ≤ 1

L

[
Φ0(x

∗)− f(x∗)
]
, ∀k. (13)

Hence the behavior of vk in Theorem 1 is proved.

To prove the convergence of yk, the following inequality is

true as a result of (13)

‖vk+1 − vk‖ ≤ ‖vk+1 − x∗‖+ ‖x∗ − vk‖

≤ 2

√

1

L

[
Φ0(x∗)− f(x∗)

]
.

Next, we link ∇f(yk) and vk+1 − vk through the update

vk+1 = vk − δk
µk+1

∇f(yk) to get

‖vk+1 − vk‖2 =
(k + 2)2

4L2
‖∇f(yk)‖2

≤ 4

L

[
Φ0(x

∗)− f(x∗)
]
, ∀k.

Rearranging the terms we can obtain the convergence of

‖∇f(yk)‖2, that is,

‖∇f(yk)‖2 ≤ 16L

(k + 2)2
[
Φ0(x

∗)− f(x∗)
]
.

Plugging Φ0(x
∗) = f(x0) + L‖x0 − x∗‖2 in completes the

proof.

B. f(yk) + 〈∇f(yk),vk+1−yk〉 approximates f(x∗)

We show next that a weighted version of f(yk) +
〈∇f(yk),vk+1 − yk〉 is no larger then f(x∗) + O(1

k2) to

elaborate that f(yk) + 〈∇f(yk),vk+1−yk〉 is (almost) an

under-estimate of f(x∗).

Theorem 4. If Assumptions 1 and 2 hold, and we choose
µk+1

δk
= 2L

k+2 ; and per iteration k, we let w
(τ)
k = 2(τ+2)

k(k+3) for

τ = 0, 1, . . . , k − 1, then i)
∑k−1

τ=0 w
(τ)
k = 1; and, ii)

k−1∑

τ=0

w
(τ)
k

[

f(yτ) +〈∇f(yτ),vτ+1 − yτ 〉
]

− f(x∗)

≤ 2L‖x0 − x∗‖2
k(k + 3)

.

Proof. It is easy to verify that
∑k−1

τ=0 w
(τ)
k = 1. Next we have

f(yk) + 〈∇f(yk),vk+1 − yk〉
= f(yk) + 〈∇f(yk),vk+1 − x∗〉+ 〈∇f(yk),x

∗ − yk〉
(a)

≤ f(x∗) + 〈∇f(yk),vk+1 − x∗〉
= f(x∗) +

µk+1

δk
〈vk − vk+1,vk+1 − x∗〉

(b)
= f(x∗) +

µk+1

2δk

[

‖x∗ − vk‖2

− ‖x∗ − vk+1‖2 − ‖vk+1 − vk‖2
]

(c)
= f(x∗) +

L

k + 2

[

‖x∗ − vk‖2

− ‖x∗ − vk+1‖2 − ‖vk+1 − vk‖2
]

(14)

where (a) follows from the convexity of f , that is,

〈∇f(yk),x
∗−yk〉 ≤ f(x∗)−f(yk); (b) uses 2〈a,b〉 = ‖a+

b‖2−‖a‖2−‖b‖2; and (c) is by plugging the value of
µk+1

δk
in.

Now, if we define dk := f(yk)+〈∇f(yk),vk+1−yk〉−f(x∗),
rearranging (14), we get

(k + 2)dk

≤ L
[

‖x∗ − vk‖2 − ‖x∗ − vk+1‖2
]

− L‖vk+1 − vk‖2

≤ L
[

‖x∗ − vk‖2 − ‖x∗ − vk+1‖2
]

Summing over k (and recalling v0 = x0), we arrive at

k−1∑

τ=0

(τ + 2)dτ ≤ L
[

‖x∗ − v0‖2 − ‖x∗ − vk‖2
]

≤ L‖x∗ − x0‖2.

By the definition of w
(τ)
k , which is w

(τ)
k = 2(τ+2)

k(k+3) , we obtain

k−1∑

τ=0

w
(τ)
k dτ ≤ 2L‖x∗ − x0‖2

k(k + 3)
(15)

which completes the proof.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 9

C. AGM Links with FW in strongly convex case

We showcase the connection between the momentum update

of AGM in strongly convex case and FW. We first formally

define strong convexity, which is used in this subsection only.

Assumption 5. (Strong convexity.) The function f : Rd → R

is µ-strongly convex; that is, f(y)−f(x) ≥ 〈∇f(x),y−x〉+
µ
2 ‖y − x‖2, ∀x,y ∈ R

d.

Under Assumptions 1 and 5, the condition number of f is

κ := L
µ . To cope with strongly convex problems, Lines 4 – 6

in AGM (Alg. 2) should be modified to [3]

yk =
1

1 + δ
xk +

δ

1 + δ
vk (16a)

xk+1 = yk − 1

L
∇f(yk) (16b)

vk+1 = (1− δ)vk + δyk − δ

µ
∇f(yk). (16c)

where δ = 1√
κ

. Here vk+1 in (16c) denotes the momentum

and thus plays the critical role for acceleration. To see how

vk+1 is linked with FW, we will rewrite vk+1 as

zk+1 = argmin
x

f(yk) + 〈∇f(yk),x− yk〉+
µ

2
‖x− yk‖2

= yk − 1

µ
yk (17a)

vk+1 = (1− δ)vk + δzk+1 (17b)

Notice that zk+1 is the minimizer of a lower bound of f(x)
(due to strongly convexity). Therefore, the vk+1 update is

similar to FW in the sense that it first minimizes a lower bound

of f(x), then update through convex combination (cf Alg. 1).

This demonstrates that the momentum update in AGM shares

the same idea of FW update.

A few basic lemmas for all the proofs in Section IV are

provided below.

D. Proof of Lemma 1.

Proof. We show this by induction. Because λ0 = 1, it holds

that Φ0(x) = (1−λ0)f(x)+λ0Φ0(x) = Φ0(x). Suppose that

Φk(x) ≤ (1−λk)f(x)+λkΦ0(x) is true for some k. We have

Φk+1(x) = (1− δk)Φk(x) + δk

[

f(yk) +
〈
∇f(yk),x− yk

〉]

(a)

≤ (1− δk)Φk(x) + δkf(x)

≤ (1− δk)
[

(1− λk)f(x) + λkΦ0(x)
]

+ δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x)

where (a) is because the convexity of f ; and the last equa-

tion is by definition of λk+1. Together with the fact that

limk→∞ λk = 0, the tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
satisfies

the definition of an estimate sequence.

E. A few useful lemmas.

Lemma 3. For {Φk(x)} in (7), if f(xk) ≤ minx∈X Φk(x) +
ξk, it is true that

f(xk)− f(x∗) ≤ λk

(
f(x0)− f(x∗)

)
+ ξk, ∀ k.

Proof. If f(xk) ≤ minx∈X Φk(x) + ξk holds, then we have

f(xk) ≤ min
x∈X

Φk(x) + ξk ≤ Φk(x
∗) + ξk

≤ (1− λk)f(x
∗) + λkΦ0(x

∗) + ξk

where the last inequality is because Definition 1. Subtracting

f(x∗) on both sides, we arrive at

f(xk)− f(x∗) ≤ λk

(
Φ0(x

∗)− f(x∗)
)
+ ξk

= λk

(
f(x0)− f(x∗)

)
+ ξk

which completes the proof.

Lemma 4. Let v0 = x0, θ0 = 0, Φ∗
0 = f(x0), then Φk+1(x)

in (7) can be rewritten as

Φk+1(x) = Φ∗
k+1 + 〈x− vk+1,θk+1〉 (18)

with

θk+1 = δk∇f(yk) + (1− δk)θk (19a)

vk+1 := argmin
x∈X

Φk+1(x) = argmin
x∈X

〈x,θk+1〉 (19b)

Φ∗
k+1 := min

x∈X
Φk+1(x) = Φk+1(vk+1) (19c)

= (1− δk)Φ
∗
k + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉

+ δk〈∇f(yk),vk+1 − yk〉.

Proof. We prove this lemma by induction. First Φ0(x) = Φ∗
0+

〈x − v0,θ0〉 ≡ f(x0). From (7) it is obvious that Φk(x) is

linear in x, and hence suppose that Φk(x) = Φ∗
k+〈x−vk,θk〉

holds for some k. Then we will show that Φk+1(x) = Φ∗
k+1+

〈x− vk+1,θk+1〉 is true. Consider that

Φk+1(x) (20)

= (1− δk)Φk(x) + δk

[

f(yk) +
〈
∇f(yk),x− yk

〉]

= (1− δk)Φ
∗
k + (1− δk)〈x− vk,θk〉+ δkf(yk)

+ δk
〈
∇f(yk),x− yk

〉

= (1− δk)Φ
∗
k + δkf(yk) +

〈
x, (1− δk)θk + δk∇f(yk)

〉

− (1− δk)〈vk,θk〉 − δk
〈
∇f(yk),yk

〉
.

Clearly, since Φk+1(x) is linear in x, the slope is θk+1 :=
(1− δk)θk + δk∇f(yk). In addition, because vk+1 is defined

as the minimizer of Φk+1(x) over X , from (20) we have

vk+1 = argmin
x∈X 〈x,θk+1〉. Then, since Φ∗

k+1 is defined as

Φ∗
k+1 := minx∈X Φk+1(x), by plugging vk+1 into Φk+1(x)

in (20), we have

Φ∗
k+1 = Φk+1(vk+1) = (1− δk)〈vk+1 − vk,θk〉

+ (1− δk)Φ
∗
k + δkf(yk) + δk

〈
∇f(yk),vk+1 − yk

〉
.

The proof is thus completed.

F. Proof of Lemma 2.

Proof. We prove this lemma by induction. First by definition

f(x0) = Φ∗
0+ ξ0. Suppose now we have f(xk) ≤ Φ∗

k+ ξk for

some k. Next, we will show that f(xk+1) ≤ Φ∗
k+1 + ξk+1.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 10

Using (19c), we have

Φ∗
k+1 + (1− δk)ξk

= (1− δk)Φ
∗
k + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉

+ δk〈∇f(yk),vk+1 − yk〉+ (1− δk)ξk
(a)

≥ (1− δk)f(xk) + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉
+ δk〈∇f(yk),vk+1 − yk〉

(b)

≥ (1− δk)f(xk) + δkf(yk) + δk〈∇f(yk),vk+1 − yk〉
= f(yk) + (1− δk)

[
f(xk)− f(yk)

]

+ δk〈∇f(yk),vk+1 − yk〉
(c)

≥ f(yk) + (1− δk)
〈
∇f(yk),xk − yk

〉

+ δk〈∇f(yk),vk+1 − yk〉
(d)

≥ f(xk+1)−
L

2
‖xk+1 − yk‖2 + 〈∇f(yk),yk − xk+1〉

+ (1− δk)
〈
∇f(yk),xk − yk

〉
+ δk〈∇f(yk),vk+1 − yk〉

(e)
= f(xk+1)−

L

2
‖xk+1 − yk‖2

where (a) is because Φ∗
k ≥ f(xk) − ξk; (b) is by the fact

vk = argmin
x∈X 〈θk,x〉 so that 〈θk,vk+1 − vk〉 ≥ 0; (c) is

because of the convexity of f ; (d) is by Assumption 1, that is

f(xk+1)− f(yk) ≤ 〈∇f(yk),xk+1 −yk〉+ L
2 ‖xk+1 −yk‖2;

(e) follows from the choice of xk+1 = (1− δk)xk + δkvk+1.

Finally by using yk = (1 − δk)xk + δkvk, and plugging the

definition of ξk+1, the proof is completed.

G. Proof of Theorem 2

Proof. Since Lemma 2 holds, one can directly apply Lemma

3 to have

f(xk)− f(x∗) ≤ λk

(
f(x0)− f(x∗)

)
+ ξk (21)

=
2
(
f(x0)− f(x∗)

)

(k + 1)(k + 2)
+ ξk

where ξk is defined in Lemma 2. Clearly, ξk ≥ 0, ∀k, and we

can find an upper bound for it in the following manner.

ξk = (1− δk−1)ξk−1 +
Lδ2k−1

2
‖vk − vk−1‖2

≤ (1− δk−1)ξk−1 +
LD2δ2k−1

2

=
LD2

2

k−1∑

τ=0

δ2τ

[k−1∏

j=τ+1

(1− δj)

]

=
LD2

2

k−1∑

τ=0

4

(τ + 3)2
(τ + 2)(τ + 3)

(k + 1)(k + 2)
≤ 2LD2

k + 2
.

Plugging ξk into (21) completes the proof.

H. Proof of Theorem 3

The basic idea is to show that under Assumptions 1, 2, 3

and 4, ‖vk −vk+1‖2 is small enough when k is large. To this

end, we will make use of the following lemmas.

Lemma 5. [3, Theorem 2.1.5] If Assumptions 1 and 2 hold,

then it is true that

1

2L
‖∇f(x)−∇f(y)‖2 ≤ f(y)− f(x)− 〈∇f(x),y − x〉.

Next we show that the value of ∇f(x∗) is unique.

Lemma 6. If both x∗
1 and x∗

2 minimize f(x) over X , then we

have ∇f(x∗
1) = ∇f(x∗

2).

Proof. From Lemma 5, we have

1

2L
‖∇f(x∗

2)−∇f(x∗
1)‖22

≤ f(x∗
2)− f(x∗

1)− 〈∇f(x∗
1),x

∗
2 − x∗

1〉
(a)

≤ f(x∗
2)− f(x∗

1) = 0

where (a) is by the optimality condition, that is, 〈∇f(x∗
1),x−

x∗
1〉 ≥ 0, ∀x ∈ X . Hence we can only have ∇f(x∗

2) =
∇f(x∗

1). This means that the value of ∇f(x∗) is unique

regardless of the uniqueness of x∗.

Lemma 7. Choose δk = 2
k+3 and let M := maxx∈X f(x)−

f(x∗), then we have

‖∇f(yk)−∇f(x∗)‖ ≤ C1√
k + 3

.

where C1 =
√
6LM + 4L2D2.

Proof. By convexity

f(yk)− f(x∗)

≤ (1− δk)
[
f(xk)− f(x∗)

]
+ δk

[
f(vk)− f(x∗)

]

(a)

≤ k + 1

k + 3

[
2
(
f(x0)− f(x∗)

)

(k + 1)(k + 2)
+

2LD2

k + 2

]

+
2M

k + 3

≤ 2M

(k + 2)(k + 3)
+

2LD2

k + 3
+

2M

k + 3

≤ 3M + 2LD2

k + 3

where (a) is by Theorem 2. Next using Lemma 5, we have

1

2L
‖∇f(yk)−∇f(x∗)‖2

≤ f(yk)− f(x∗)− 〈∇f(x∗),yk − x∗〉
(b)

≤ f(yk)− f(x∗) ≤ 3M + 2LD2

k + 3

where (b) is by the optimality condition, that is, 〈∇f(x∗),x−
x∗〉 ≥ 0, ∀x ∈ X . This further implies

‖∇f(yk)−∇f(x∗)‖ ≤
√

2L(3M + 2LD2)

k + 3
.

The proof is thus completed.

Lemma 8. Choose δk = 2
k+3 , it is guaranteed to have

‖θk+1 −∇f(x∗)‖ ≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)
.

In addition, there exists a constant C2 ≤ 4
3C1 +

2
3(

√
3+1)

√
G

such that

‖θk+1 −∇f(x∗)‖ ≤ C2√
k + 3− 1

.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 11

Proof. First we have

θk+1 = (1− δk)θk + δk∇f(yk) (22)

=
k∑

τ=0

δτ∇f(yτ)

[k∏

j=τ+1

(1− δj)

]

=
k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)
∇f(yτ).

Noticing that 2
∑k

τ=0(τ +2) = (k+1)(k+4) = (k+2)(k+
3)− 2, we have

‖θk+1 −∇f(x∗)‖

=
∥
∥
∥

k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)

[
∇f(yτ)−∇f(x∗)

]

− 2

(k + 2)(k + 3)
∇f(x∗)

∥
∥
∥

≤
k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)

∥
∥∇f(yτ)−∇f(x∗)

∥
∥

+
2

(k + 2)(k + 3)

∥
∥∇f(x∗)

∥
∥

(a)

≤
k∑

τ=0

2(τ + 2)

(k + 2)(k + 3)

C1√
τ + 3

+
2
√
G

(k + 2)(k + 3)

≤ 2C1

(k + 2)(k + 3)

k∑

τ=0

√
τ + 2 +

2
√
G

(k + 2)(k + 3)

≤ 4C1

3(k + 2)(k + 3)
(k + 3)3/2 +

2
√
G

(k + 2)(k + 3)

=
4C1

3(
√
k + 3 + 1)(

√
k + 3− 1)

√
k + 3 +

2
√
G

(k + 2)(k + 3)

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)

where (a) follows from Lemma 7 and Assumption 4.

Then to find C2, we have

‖θk+1 −∇f(x∗)‖

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)

=
4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 3)(
√
k + 3 + 1)(

√
k + 3− 1)

(b)

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

3(
√
3 + 1)(

√
k + 3− 1)

where in (b) we use k + 3 ≥ 3 and
√
k + 3 + 1 ≥

√
3 + 1.

The proof is thus completed.

Lemma 9. There exists a constant T ≤
(
2C2√
G
+1
)2 − 3, such

that ‖θk+1‖ ≥
√
G
2 , ∀k ≥ T . In addition, it is guaranteed to

have for any k ≥ T + 1

‖vk+1 − vk‖ ≤ C3√
k + 2− 1

where C3 ≤ 4R
G

[
4
√
GC2 +

2C2
2√

T+4−1

]
.

Proof. Consider a specific k̃ with ‖θk̃+1‖ <
√
G
2 satisfied. In

this case we have

‖θk̃+1 −∇f(x∗)‖ ≥ ‖∇f(x∗)‖ − ‖θk̃+1‖ >
√
G−

√
G

2
=

√
G

2
.

From Lemma 8, we have

√
G

2
< ‖θk̃+1 −∇f(x∗)‖ ≤ C2

√

k̃ + 3− 1
.

From this inequality we can observe that ‖θk̃+1‖ can be less

than
√
G
2 only when k̃ < T =

(
2C2√
G
+1
)2−3. Hence, the first

part of this lemma is proved.

For the upper bound of ‖vk+1 −vk‖, we only consider the

case where θk+1 6= 0 since otherwise vk+1 = vk and the

lemma holds automatically. For any k ≥ T +1, from (8), one

can rewrite

‖vk+1 − vk‖ (23)

= R
∥
∥
∥

θk+1

‖θk+1‖
− θk

‖θk‖
∥
∥
∥

=
R

‖θk+1‖‖θk‖
∥
∥
∥‖θk‖θk+1 − ‖θk+1‖θk

∥
∥
∥

(a)

≤ 4R

G

∥
∥
∥‖θk‖θk+1 − ‖θk+1‖θk

∥
∥
∥

where (a) is by θk ≥
√
G
2 for k ≥ T + 1. Next we rewrite

θk := ∇f(x∗) + γk. From Lemma 8 we have ‖γk‖ = ‖θk −
∇f(x∗)‖ ≤ C2√

k+2−1
. Using this relation, the RHS of (23)

becomes

∥
∥
∥‖θk‖θk+1 − ‖θk+1‖θk

∥
∥
∥

=
∥
∥
∥

∥
∥∇f(x∗) + γk

∥
∥
(
∇f(x∗) + γk+1

)

−
∥
∥∇f(x∗) + γk+1

∥
∥
(
∇f(x∗) + γk

)
∥
∥
∥

≤ ‖∇f(x∗)‖
∥
∥
∥

∥
∥∇f(x∗) + γk

∥
∥−

∥
∥∇f(x∗) + γk+1

∥
∥

∥
∥
∥

+
∥
∥
∥γk+1

∥
∥∇f(x∗) + γk

∥
∥− γk

∥
∥∇f(x∗) + γk+1

∥
∥

∥
∥
∥

≤
√
G
(
‖γk‖+ ‖γk+1‖

)
+ ‖γk+1‖

(√
G+ ‖γk‖

)

+ ‖γk‖
(√

G+ ‖γk+1‖
)

≤ 4
√
GC2√

k + 2− 1
+

2C2
2

(
√
k + 2− 1)(

√
k + 3− 1)

≤ 4
√
GC2√

k + 2− 1
+

2C2
2

(
√
k + 2− 1)(

√
T + 4− 1)

.

Plugging back to (23), the proof can be completed.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 12

I. Proof of Theorem 3.

Proof. We first consider the constraint set being an ℓ2 norm

ball. From Lemma 2, we can write

ξk+1 = (1− δk)ξk +
Lδ2k
2

‖vk+1 − vk‖2

=
L

2

k∑

τ=0

δ2τ‖vτ+1 − vτ‖2
[k∏

j=τ+1

(1− δτ)

]

(a)
=

L

2

T∑

τ=0

δ2τ‖vτ+1 − vτ‖2
[k∏

j=τ+1

(1− δτ)

]

+

k∑

τ=T+1

δ2τ‖vτ+1 − vτ‖2
[k∏

j=τ+1

(1− δτ)

]

(b)

≤ L

2

T∑

τ=0

δ2τD
2

[k∏

j=τ+1

(1− δτ)

]

+
k∑

τ=T+1

δ2τ
C2

3

(
√
τ + 2− 1)2

[k∏

j=τ+1

(1− δτ)

]

=
L

2

T∑

τ=0

4D2

(τ + 3)2
(τ + 2)(τ + 3)

(k + 2)(k + 3)

+
k∑

τ=T+1

4

(τ + 3)2
C2

3

(
√
τ + 2− 1)2

(τ + 2)(τ + 3)

(k + 2)(k + 3)

≤ 2LD2(T + 1)

(k + 2)(k + 3)
+

4C2
3

(k + 2)(k + 3)

k∑

τ=T+1

1

(
√
τ + 2− 1)2

= O
(

LD2(T + 1) + C2
3 ln k

(k + 2)(k + 3)

)

where in (a) T is defined in Lemma 9; (b) is by Lemma 9 and

Assumption 4; and in the last equation constants are hide in

the big O notation.

Finally, applying Lemma 3, we have

f(xk)− f(x∗) ≤ 2
[
f(x0)− f(x∗)

]

(k + 1)(k + 2)
+ ξk. (24)

Plugging ξk in the proof is completed.

When the constraint set is an ℓ1 norm ball, the basic

proof idea is similar as the ℓ2 norm ball case, i.e., after

T iterations vk and vk+1 are near to each other. The only

difference is that a regularization condition should be satisfied

to ensure the uniqueness of vk (only for proof, not necessary

for implementation). There are multiple kinds of regularization

schemes, for example, [∇f(x∗)]i − [∇f(x∗)]j = c > 0,

where i, j are the largest and second largest entry of ∇f(x∗),
respectively. In this case, we only need to modify the T in

Lemma 9 as a c dependent constant, and all the other proofs

follow.

J. ℓ1 norm ball

In this subsection we focus on the convergence of AFW

for ℓ1 norm ball constraint under the assumption that

argmaxj
∣
∣[∇f(x∗)]j

∣
∣ has cardinality 1 (which naturally im-

plies that the constraint is active). Note that in this case

Lemma 6 still holds hence the value of ∇f(x∗) is unique

regardless the uniqueness of x∗. This assumption directly leads

to argmaxj
∣
∣[∇f(x∗)]j

∣
∣− |[∇f(x∗)]i| ≥ λ, ∀i.

When X = {x|‖x‖1 ≤ R}, the FW steps for

AFW can be solved in closed-form. We have vk+1 =
[0, . . . , 0,−sgn[θk+1]iR, 0, . . . , 0]⊤, i.e., only the i-th entry

being nonzero with i = argmaxj |[θk+1]j |.
Lemma 10. There exist a constant T (which is irreverent with

k), whenever k ≥ T , it is guaranteed to have

‖vk+1 − vk+2‖ = 0

Proof. In the proof, we denote i = argmaxj |[∇f(x∗)]j | for

convenience. It can be seen that Lemma 8 still holds.

We show that there exist T = (3C2

λ + 1)2 − 3, such that

for all k ≥ T , we have argmaxj |[θk+1]j | = i, which further

implies only the i-th entry of vk+1 is non-zero. Since Lemma

8 holds, one can see whenever k ≥ T , it is guaranteed to have

‖θk+1−∇f(x∗)‖ ≤ λ
3 . Therefore, one must have

∣
∣|[θk+1]j |−

|[∇f(x∗)]j |
∣
∣ ≤ λ

3 , ∀j. Then it is easy to see that |[θk+1]i| −
|[θk+1]j | ≥ λ

3 , ∀j. Hence, we have argmaxj |[θk+1]j | = i.
Then one can use the closed form solution of FW step to

see that when k ≥ T , we have vk+1 − vk+2 = 0. The proof

is thus completed.

Lemma 11. Let ξ0 = 0 and T defined the same as in Lemma

10. Denote Φ∗
k := Φk(vk) as the minimum value of Φk(x)

over X , then we have

f(xk) ≤ Φk(vk) = Φ∗
k + ξk, ∀k ≥ 0

where for k < T + 1, ξk+1 = (1 − δk)ξk + LD2

2 δ2k, and

ξk+1 = (1− δk)ξk for k ≥ T + 1.

Proof. The proof for k < T +1 is similar as that in Lemma 2,

hence it is omitted here. For k ≥ T+1, using similar argument

as in Lemma 2, we have

Φ∗
k+1 ≥ f(xk+1) +

Lδ2k
2

‖vk+1 − vk‖2 − (1− δk)ξk

= f(xk+1)− (1− δk)ξk

where the last equation is because of Lemma 10.

Theorem 5. Consider X is an ℓ1 norm ball. If

argmaxj
∣
∣[∇f(x∗)]j

∣
∣ has cardinality 1, and Assumptions 1

- 3 are satisfied, AFW guarantees that

f(xk)− f(x∗) = O
(1

k2

)

.

Proof. Let T be defined the same as in Lemma 10. For

convenience denote ξk+1 = (1−δk)ξk+ζk. When k < T +1,

we have ζk = LD2

2 δ2k; when k ≥ T +1, we have ζk = 0. Then

we can write

ξk+1 = (1− δk)ξk + θk

=

k∑

τ=0

θτ

k∏

j=τ+1

(1− δj) =

k∑

τ=0

θτ
(τ + 2)(τ + 3)

(k + 2)(k + 3)

=
T∑

τ=0

LD2

2
δ2τ

(τ + 2)(τ + 3)

(k + 2)(k + 3)
=

2LD2(T + 1)

(k + 2)(k + 3)
.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 13

Finally, applying Lemma 3, we have

f(xk)− f(x∗) ≤ 2
[
f(x0)− f(x∗)

]

(k + 1)(k + 2)
+ ξk.

Plugging ξk in completes the proof.

K. ℓp norm ball

In this subsection we focus on AFW with an active ℓp norm

ball constraint X := {x|‖x‖p ≤ R}, where p ∈ (1,+∞) and

p 6= 2. We show that if the magnitude of every entry in ∇f(x∗)
is bounded away from 0, i.e., |[∇f(x∗)]i| = λ > 0, ∀i, then

AFW converges at O(1
k2).

In such cases, the FW step in AFW can be solved in closed-

form, that is, the i-th entry of vk+1 can be obtained via

[vk+1]i = −sgn
(
[θk+1]i

)
∣
∣[θk+1]i

∣
∣
q−1

‖θk+1‖q−1
q

·R (25)

= −[θk+1]i

∣
∣[θk+1]i

∣
∣
q−2

‖θk+1‖q−1
q

·R

where 1/p+1/q = 1. For simplicity we will emphasis on the

k dependence only and use O notation in this subsection. We

will also use θik to replace [θk]i for notational simplicity. In

other words, θik denotes the i-th entry of θk.

First according to Lemma 8, and use the equivalence of

norms, we have ‖θk − ∇f(x∗)‖q = O(1√
k
). Hence, there

must exist T1, such that ‖θk‖q ≤ 2G, ∀k ≥ T1. Next using

similar arguments as the first part of Lemma 9, there must

exist T2, such that ‖θk‖q ≥ G/2, ∀k ≥ T2. In addition, using

again similar arguments as the first part of Lemma 9, we can

find that there exist T3, such that |θik| > λ
2 , ∀k ≥ T3.

Let T := max{T1, T2, T3}. Next we will show that ‖vk+1−
vk‖2 = O(1k), ∀k ≥ T . To start, using (25), one can have

vik+1 − vik

=
R

‖θk+1‖q−1
q ‖θk‖q−1

q

[

− θik+1|θik+1|q−2‖θk‖q−1
q

+ θik|θik|q−2‖θk+1‖q−1
q

]

=
R

‖θk+1‖q−1
q ‖θk‖q−1

q

[

θik+1|θik+1|q−2
(

‖θk+1‖q−1
q − ‖θk‖q−1

q

)

+ ‖θk+1‖q−1
q

(

θik|θik|q−2 − θik+1|θik+1|q−2
)]

.

Next using G/2 ≤ ‖θk+1‖q ≤ 2G, ∀k ≥ T , and |θik+1| ≤
‖θk+1‖q , we have

|vik+1 − vik| (26)

= O
(
∣
∣
∣‖θk+1‖q−1

q − ‖θk‖q−1
q

∣
∣
∣+
∣
∣
∣θik|θik|q−2 − θik+1|θik+1|q−2

∣
∣
∣

)

.

We first bound the first term in RHS of (26). Let h(x) =
(x)q−1. Then by mean value theorem we have h(y) = h(x)+
∇h(x)(y − x) +∇2h(z)‖x− y‖2, where z = (1− α)x+ αy

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
AFW

0 200 400 600 800 1000
k

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
AFW

(a) mnist (b) mushroom

Fig. 5. Performance of AFW on n-support norm balls.

for some α ∈ [0, 1]. Taking x = ‖θk‖q and y = ‖θk+1‖q , and

using the fact G/2 ≤ ‖θk‖q ≤ 2G for k ≥ T , we have

‖θk+1‖q−1
q (27)

= ‖θk‖q−1
q +O(

∣
∣‖θk‖q − ‖θk+1‖q

∣
∣+
∣
∣‖θk‖q − ‖θk+1‖q

∣
∣
2
)

= ‖θk‖q−1
q +O

(1√
k

)

Hence, one can find that the first term on the RHS of (26) is

bounded by O
(

1√
k

)
.

Next we focus on the second term of (26) by considering

whether θik and θik+1 have different signs.

Case 1: θik and θik+1 have the same sign. Then we have

∣
∣
∣θik|θik|q−2 − θik+1|θik+1|q−2

∣
∣
∣

=
∣
∣
∣|θik|q−1 − |θik+1|q−1

∣
∣
∣ ≤ O

(1√
k

)
(28)

where the last inequality uses the same mean-value-theorem

argument as (27) and the fact |θik| ≥ λ
2 .

Case 2: θik and θik+1 have different signs. We assume

θik+1 ≥ 0 w.l.o.g. In this case, by the update manner of θk+1,

we have |θik+1| ≤ |δk[∇f(yk)]i| = O(δk) = O(1k). This is

impossible given the fact |θik+1| > λ
2 when k ≥ T .

Therefore, we have the second term in (26) bounded by

O(1√
k
). Hence, it is easy to see that

‖vk+1 − vk‖2 = O
(1

k

)

.

Applying the same argument in the proof of Theorem 3, we

have that when k ≥ T , ξk+1 = Õ(1
k2). This further implies

f(xk)− f(x∗) = Õ(1
k2) as well.

L. Additional numerical tests

AFW is tested on other loss functions and constraints to

demonstrate its efficiency.

n-support norm ball constraint. We first consider logistic

regression over a n-support norm ball [50]. This is challenging

due to the constraint X = conv{x|‖x‖0 ≤ n, ‖x‖2 ≤ R},

where conv{·} denotes the convex hull. GD and AGM are

expensive for such a constraint set since efficient projection is

unclear, while the FW subproblem can be solved easily [51].

For this reason, we only compare FW with AFW, and the

numerical results depicted in Fig. 5 demonstrate that AFW

outperforms FW.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 14

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
AFW

(a) ℓ2 norm ball (b) n-support norm ball

Fig. 6. Performance of AFW on log-sum-exp losses.

Log-sum-exp loss. We also test AFW using the log-sum-

exp loss function, that is,

f(x) = ln
(n∑

i=1

exp
(
〈ai,x〉

))

. (29)

We set n = 1, 000 and d = 500, and draw ai from a

standardized normal distribution. The ℓ2 norm ball and n-

support norm balls are used as constraints. The results in Fig.

6 corroborate that AFW outperforms FW.

REFERENCES

[1] R. M. Freund, P. Grigas, and R. Mazumder, “An extended frank–wolfe
method with in-face directions, and its application to low-rank matrix
completion,” SIAM Journal on Optimization, vol. 27, no. 1, pp. 319–346,
2017.

[2] Z. Harchaoui, A. Juditsky, and A. Nemirovski, “Conditional gradient
algorithms for norm-regularized smooth convex optimization,” Mathe-

matical Programming, vol. 152, no. 1-2, pp. 75–112, 2015.
[3] Y. Nesterov, Introductory lectures on convex optimization: A basic

course. Springer Science & Business Media, 2004, vol. 87.
[4] Z. Allen-Zhu and L. Orecchia, “Linear coupling: An ultimate unification

of gradient and mirror descent,” arXiv preprint arXiv:1407.1537, 2014.
[5] Y. Nesterov, “Universal gradient methods for convex optimization prob-

lems,” Mathematical Programming, vol. 152, no. 1-2, pp. 381–404,
2015.

[6] M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval research logistics quarterly, vol. 3, no. 1-2, pp. 95–110, 1956.

[7] M. Jaggi, “Revisiting frank-wolfe: Projection-free sparse convex opti-
mization.” in Proc. Intl. Conf. on Machine Learning, 2013, pp. 427–435.

[8] S. Lacoste-Julien and M. Jaggi, “On the global linear convergence of
frank-wolfe optimization variants,” in Proc. Advances in Neural Info.

Process. Syst., 2015, pp. 496–504.
[9] D. Garber and E. Hazan, “Faster rates for the frank-wolfe method over

strongly-convex sets,” in Proc. Intl. Conf. on Machine Learning, 2015.
[10] S. Lacoste-Julien, M. Jaggi, M. W. Schmidt, and P. Pletscher, “Block-

coordinate frank-wolfe optimization for structural svms,” in Proc. Intl.

Conf. on Machine Learning, no. CONF, 2013, pp. 53–61.
[11] A. Joulin, K. Tang, and L. Fei-Fei, “Efficient image and video co-

localization with frank-wolfe algorithm,” in Proc. European Conf. on

Computer Vision. Springer, 2014, pp. 253–268.
[12] S. Lacoste-Julien, F. Lindsten, and F. Bach, “Sequential kernel herding:

Frank-wolfe optimization for particle filtering,” in Artificial Intelligence

and Statistics, 2015, pp. 544–552.
[13] M. Fukushima, “A modified frank-wolfe algorithm for solving the traffic

assignment problem,” Transportation Research Part B: Methodological,
vol. 18, no. 2, pp. 169–177, 1984.

[14] G. Luise, S. Salzo, M. Pontil, and C. Ciliberto, “Sinkhorn barycenters
with free support via frank-wolfe algorithm,” in Proc. Advances in

Neural Info. Process. Syst., 2019, pp. 9318–9329.
[15] L. Zhang, V. Kekatos, and G. B. Giannakis, “Scalable electric vehicle

charging protocols,” IEEE Trans. on Power Systems, vol. 32, no. 2, pp.
1451–1462, 2016.

[16] L. Zhang, G. Wang, D. Romero, and G. B. Giannakis, “Randomized
block frank–wolfe for convergent large-scale learning,” IEEE Trans. on

Signal Processing, vol. 65, no. 24, pp. 6448–6461, 2017.
[17] A. Mokhtari, H. Hassani, and A. Karbasi, “Stochastic conditional gradi-

ent methods: From convex minimization to submodular maximization,”
arXiv preprint arXiv:1804.09554, 2018.

[18] G. Lan, “The complexity of large-scale convex programming under a
linear optimization oracle,” arXiv preprint arXiv:1309.5550, 2013.

[19] E. S. Levitin and B. T. Polyak, “Constrained minimization methods,”
USSR Computational mathematics and mathematical physics, vol. 6,
no. 5, pp. 1–50, 1966.

[20] B. Li, M. Coutiño, and G. B. Giannakis, “Revisit of estimate se-
quence for accelerated gradient methods,” in ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP). IEEE, 2020, pp. 3602–3606.

[21] D. Garber and O. Meshi, “Linear-memory and decomposition-invariant
linearly convergent conditional gradient algorithm for structured poly-
topes,” in Proc. Advances in Neural Info. Process. Syst., 2016, pp. 1001–
1009.

[22] F. Bach, “On the effectiveness of richardson extrapolation in machine
learning,” arXiv preprint arXiv:2002.02835, 2020.

[23] J. Guélat and P. Marcotte, “Some comments on wolfe’s away step,”
Mathematical Programming, vol. 35, no. 1, pp. 110–119, 1986.

[24] F. Pedregosa, A. Askari, G. Negiar, and M. Jaggi, “Step-size adaptivity
in projection-free optimization,” arXiv preprint arXiv:1806.05123, 2018.

[25] G. Braun, S. Pokutta, D. Tu, and S. Wright, “Blended conditional
gradients: the unconditioning of conditional gradients,” arXiv preprint

arXiv:1805.07311, 2018.

[26] T. Kerdreux, A. dAspremont, and S. Pokutta, “Projection-free optimiza-
tion on uniformly convex sets,” arXiv preprint arXiv:2004.11053, 2020.

[27] J. Abernethy, K. A. Lai, K. Y. Levy, and J.-K. Wang, “Faster rates for
convex-concave games,” in Conference On Learning Theory, 2018, pp.
1595–1625.

[28] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate 1/k2,” in Soviet Math. Dokl, vol. 27, 1983.

[29] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM journal on imaging sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[30] W. Krichene, A. Bayen, and P. L. Bartlett, “Accelerated mirror descent
in continuous and discrete time,” in Proc. Advances in Neural Info.

Process. Syst., 2015, pp. 2845–2853.

[31] A. Nitanda, “Stochastic proximal gradient descent with acceleration
techniques,” in Proc. Advances in Neural Info. Process. Syst., Montreal,
Canada, 2014, pp. 1574–1582.

[32] H. Lin, J. Mairal, and Z. Harchaoui, “A universal catalyst for first-
order optimization,” in Proc. Advances in Neural Info. Process. Syst.,
Montreal, Canada, 2015, pp. 3384–3392.

[33] W. Su, S. Boyd, and E. Candes, “A differential equation for modeling
Nesterov accelerated gradient method: Theory and insights,” in Proc.

Advances in Neural Info. Process. Syst., 2014, pp. 2510–2518.

[34] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie, “Direct runge-kutta
discretization achieves acceleration,” in Proc. Advances in Neural Info.

Process. Syst., 2018, pp. 3900–3909.

[35] B. Shi, S. S. Du, W. J. Su, and M. I. Jordan, “Acceleration via symplectic
discretization of high-resolution differential equations,” arXiv preprint

arXiv:1902.03694, 2019.

[36] G. Lan and Y. Zhou, “Conditional gradient sliding for convex optimiza-
tion,” SIAM Journal on Optimization, vol. 26, no. 2, pp. 1379–1409,
2016.

[37] Y. Malitsky and K. Mishchenko, “Adaptive gradient descent without
descent,” in Proc. Intl. Conf. on Machine Learning, 2020.

[38] A. Kulunchakov and J. Mairal, “Estimate sequences for variance-reduced
stochastic composite optimization,” in Proc. Intl. Conf. on Machine

Learning, 2019.

[39] B. Li, L. Wang, and G. B. Giannakis, “Almost tune-free variance
reduction,” in Proc. Intl. Conf. on Machine Learning, 2020.

[40] K. L. Clarkson, “Coresets, sparse greedy approximation, and the frank-
wolfe algorithm,” ACM Transactions on Algorithms (TALG), vol. 6,
no. 4, p. 63, 2010.

[41] A. Nemirovski, “Prox-method with rate of convergence o (1/t) for
variational inequalities with lipschitz continuous monotone operators
and smooth convex-concave saddle point problems,” SIAM Journal on

Optimization, vol. 15, no. 1, pp. 229–251, 2004.

[42] J. C. Dunn, “Rates of convergence for conditional gradient algorithms
near singular and nonsingular extremals,” SIAM Journal on Control and

Optimization, vol. 17, no. 2, pp. 187–211, 1979.

[43] B. Li, L. Wang, G. B. Giannakis, and Z. Zhao, “Enhancing
parameter-free frank wolfe with an extra subproblem,” arXiv preprint

arXiv:2012.05284, 2020.

[44] L. Ding, Y. Fei, Q. Xu, and C. Yang, “Spectral frank-wolfe algorithm:
Strict complementarity and linear convergence,” in Proc. Intl. Conf. on

Machine Learning, 2020.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2021.3087910, IEEE

Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING (SUBMITTED) 15

[45] D. Garber, “Revisiting frank-wolfe for polytopes: Strict complementary
and sparsity,” arXiv preprint arXiv:2006.00558, 2020.

[46] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient
projections onto the l 1-ball for learning in high dimensions,” in Proc.

Intl. Conf. on Machine Learning. ACM, 2008, pp. 272–279.
[47] J. Bennett, S. Lanning et al., “The netflix prize,” in Proc. KDD cup and

workshop, vol. 2007. New York, NY, USA., 2007, p. 35.
[48] R. M. Bell and Y. Koren, “Lessons from the netflix prize challenge.”

SiGKDD Explorations, vol. 9, no. 2, pp. 75–79, 2007.
[49] M. Fazel, “Matrix rank minimization with applications,” 2002.
[50] A. Argyriou, R. Foygel, and N. Srebro, “Sparse prediction with the k-

support norm,” in Proc. Advances in Neural Info. Process. Syst., 2012,
pp. 1457–1465.

[51] B. Liu, X.-T. Yuan, S. Zhang, Q. Liu, and D. N. Metaxas, “Efficient k-
support-norm regularized minimization via fully corrective frank-wolfe
method.” in Proc. Intl. Joint Conf. on Artifical Intelligence, 2016, pp.
1760–1766.

Bingcong Li received the B. Eng. degree (with
highest honors) in Communication Science and En-
gineering from Fudan University, and the M.Sc. de-
gree in Electrical and Computer Engineering (ECE)
from the University of Minnesota (UMN), in 2017
and 2019, respectively. He is now pursuing his
Ph.D. degree at UMN. His research interests lie in
optimization and machine learning, with applications
to cyber physical systems. He received the National
Scholarship twice from China in 2014 and 2015, and
UMN ECE Department Fellowship in 2017.

Mario Coutino (Student member, IEEE) received
the M.Sc. and the Ph.D degree (cum laude) in
electrical engineering in July 2016 and April 2021,
respectively, from the Delft University of Technol-
ogy, Delft, The Netherlands. Since October 2020,
he has been working in TNO, The Netherlands, in
the Radar Technology Department as a Signal Pro-
cessing Researcher. He has held positions at Thales
Nederlands, during 2015, and Bang & Olufsen,
during 20152016. He received a Best Student Paper
Award for his publication at the CAMSAP 2017

conference in Curacao and was a visiting researcher with RIKEN AIP and the
Digital Technological Center, University of Minnesota, during 2018 and 2019,
respectively. His research interests include array signal processing, signal
processing on networks, submodular and convex optimization, and numerical
linear algebra.

Georgios B. Giannakis (Fellow, IEEE) received his
Diploma in Electrical Engr. from the Ntl. Tech. Univ.
of Athens, Greece, 1981. From 1982 to 1986 he
was with the Univ. of Southern California (USC),
where he received his MSc. in Electrical Engineer-
ing, 1983, MSc. in Mathematics, 1986, and Ph.D.
in Electrical Engr., 1986. He was a faculty member
with the University of Virginia from 1987 to 1998,
and as of 1999 he has been a professor with the Univ.
of Minnesota, where he held an ADC Endowed
Chair of Telecommunications, served as director of

the Digital Technology Center from 2008 to 2021, and since 2016 he is a
University of Minnesota McKnight Presidential Chair in ECE.

His general interests span the areas of statistical learning, signal processing,
communications, and networking - subjects on which he has published more
than 480 journal papers, 780 conference papers, 25 book chapters, two
edited books and two research monographs. Current research focuses on Data
Science, and Network Science with applications to the Internet of Things, and
power networks with renewables. He is the (co-) inventor of 34 issued patents,
and the (co-) recipient of 10 best journal paper awards from the IEEE Signal
Processing (SP) and Communications Societies, including the G. Marconi
Prize Paper Award in Wireless Communications. He also received the IEEE-
SPS Norbert Wiener Society Award (2019); EURASIP’s A. Papoulis Society
Award (2020); Technical Achievement Awards from the IEEE-SPS (2000)
and from EURASIP (2005); the IEEE ComSoc Education Award (2019); and
the IEEE Fourier Technical Field Award (2015). He is a foreign member of
the Academia Europaea, and Fellow of the National Academy of Inventors,
the European Academy of Sciences, IEEE and EURASIP. He has served the
IEEE in a number of posts, including that of a Distinguished Lecturer for the
IEEE-SPS.

Geert Leus (Fellow, IEEE) received the M.Sc.
and Ph.D. degree in Electrical Engineering from
the KU Leuven, Belgium, in June 1996 and May
2000, respectively. Currently, Geert Leus is a Full
Professor at the Faculty of Electrical Engineering,
Mathematics and Computer Science of the Delft
University of Technology, The Netherlands. Geert
Leus received the 2021 EURASIP Individual Tech-
nical Achievement Award, a 2005 IEEE Signal Pro-
cessing Society Best Paper Award, and a 2002 IEEE
Signal Processing Society Young Author Best Paper

Award. He is a Fellow of the IEEE and a Fellow of EURASIP. Geert Leus was
a Member-at-Large of the Board of Governors of the IEEE Signal Processing
Society, the Chair of the IEEE Signal Processing for Communications and
Networking Technical Committee, and the Editor in Chief of the EURASIP
Journal on Advances in Signal Processing. Currently, he is the Chair of the
EURASIP Technical Area Committee on Signal Processing for Multisensor
Systems and the Editor in Chief of EURASIP Signal Processing.

