
A Monadic Analysis of Information
Flow Security with Mutable State

Karl Crary, Aleksey Kliger, Frank Pfenning

Carnegie Mellon University

FCS Workshop

Turku, Finland, July 2004

FCS’04, Turku, July 2004 – p.1

The ConCert Project

• Certified distributed computation
• Technical basis

• Typed assembly language (TAL, TALT)

• Certifying compilation (TILT, PCC)

• Some technical challenges
• Types for distributed computation

• Resource bound certification

• Architecture verification

• Information flow

FCS’04, Turku, July 2004 – p.2

Information Flow in TAL

• Typed assembly language
• Imperative

• Functional

• Sequentialized

• Abstract to high-level functional language
• Capture analagous features

• Easier to design, prove correct, understand

• Future work: transfer to TAL

FCS’04, Turku, July 2004 – p.3

Language Overview

• Information flow only through store
• Effects encapsulated in monad
• Other computations and values remain pure
• Monad and locations indexed by security levels
• Subtyping to avoid security level coercions
• Allow upcalls via informativeness judgment

FCS’04, Turku, July 2004 – p.4

Outline

• Monadic encapsulation of effects
• Information flow and store
• Upcalls and informativeness
• Proof of non-interference
• Embedding value-oriented languages

FCS’04, Turku, July 2004 – p.5

Pure Functional Core

• Standard constructs

Types A ::= bool | 1 | A → B | . . .

• Standard judgments
• Typing Γ ` M : A

• Value M val (write V for values)

• Reduction M → M ′

• Call-by-value (could be by name or by need)
• Curry-Howard isomorphism (omit recursion)

FCS’04, Turku, July 2004 – p.6

Sample Rules: Functions

• Typing

Γ, x:A ` M : B

Γ ` λx:A.M : A → B
→I

Γ ` M : A → B Γ ` N : A

Γ ` M N : B
→E

• Evaluation

λx:A.M val
M → M ′

M N → M ′ N

V val N → N ′

V N → V N ′

V val

(λx:A.M) V → M [V/x]

FCS’04, Turku, July 2004 – p.7

Monadic Encapsulation

• New type ©A for effectful computations
• New syntactic category: expressions

Terms M ::= . . . | val E

Expressions E ::= let val x = M in E | M

• Expressions include terms
• Sequencing of effects via let val

• Further expressions for specific monads

FCS’04, Turku, July 2004 – p.8

Lax Typing

• Lax typing Γ ` E ÷ A

Γ ` M : A

Γ ` M ÷ A

Γ ` E ÷ A

Γ ` val E : ©A
©I

Γ ` M : ©A Γ, x:A ` E ÷ C

Γ ` let val x = M in E ÷ C
©E

• Restriction on elimination enforces sequencing
• Related to lax logic by Curry-Howard isomorphism

FCS’04, Turku, July 2004 – p.9

Operational Semantics

• Computation steps (H,E) → (H ′, E ′) for store H

val E val

M → M ′

(H,M) → (H,M ′)

M → M ′

(H, let val x = M in F) → (H, let val x = M ′
in F)

(H,E) → (H ′, E ′)

(H, let val x = val E in F) → (H ′, let val x = val E ′
in F)

V val

(H, let val x = val V in F) → (H,F [V/x])

FCS’04, Turku, July 2004 – p.10

Security Levels

• Fixed lattice a v b

• Operations ⊥, >, u, t
• Store locations l have security level a, type A

(write: lAa , omit when clear)
• Computation E ÷(r,w) A has security levels

• r: can read only at r or below

• w: can write only at w or above

• operation level o = (r, w) for r v w

• Terms M : A have no effect, no security level

FCS’04, Turku, July 2004 – p.11

Stores

• Store locations lAa with intrinsic security level a

• Store locations are terms (no effect)

• Store locations are values

lAa val

• Stores uniquely bind locations to values

Store H ::= · | H, lAa 7→ V

FCS’04, Turku, July 2004 – p.12

Allocation, Reading, Writing

• Assign most precise type; others by subtyping
• Write E ÷ (r, w) A for readability

• Allocation neither reads nor writes

Γ ` lAa : refa A

Γ ` M : A

Γ ` refa M ÷ (⊥,>) refa A

• Reading and writing are effects

Γ ` M : refa A

Γ ` !M ÷ (a,>) A

Γ ` M : refa A Γ ` N : A

Γ ` M := N ÷ (⊥, a) 1

FCS’04, Turku, July 2004 – p.13

Subtyping

• A ≤ B A is subtype of B

• o � p o is less strict than p

• Subsumption rules

Γ ` M : A A ≤ B

Γ ` M : B

Γ ` E ÷o A o � p

Γ ` E ÷p A

Γ ` E ÷o A A ≤ B

Γ ` E ÷o B

FCS’04, Turku, July 2004 – p.14

Variance

• Recall E ÷ (r, w) A

• reads only below r

• writes only above w

• Co-variant in read, contra-variant in write

r v r′ w′ v w

(r, w) � (r′, w′)

A ≤ B o � p

©oA ≤ ©pB

• refa A is non-variant (paper: refrr A and refww A)
• Other subtyping standard

FCS’04, Turku, July 2004 – p.15

Operational Semantics Revisited

• Standard rules for reduction with store

• Example: allocation

M → M ′

(H, refa M) → (H, refa M ′)

V val la 6∈ dom(H)

(H, refa V) → ((H, l 7→ V), l)

FCS’04, Turku, July 2004 – p.16

Lax Typing Revisited

• Lax security typing Γ ` E ÷o A

Γ ` M : A

Γ ` M ÷ (⊥,>) A

Γ ` E ÷o A

Γ ` val E : ©oA
©I

Γ ` M : ©oA Γ, x:A ` E ÷o C

Γ ` let val x = M in E ÷o C
©E

• (⊥,>) is minimal for �

FCS’04, Turku, July 2004 – p.17

Upcalls

• Consider a call of E at high security from within F
at low security

E ÷ (>,>) 1

z:1 ` F ÷ (⊥,⊥) 1

let val z = val E in F ÷ (?,⊥) 1

• Current rules force ? = >

• Does E leak information?
• Depends of type of returned value (here, 1)

FCS’04, Turku, July 2004 – p.18

Informativeness

• A ↗ r A is informative only at r and above

• Use to demote reading level of expressions

Γ ` E ÷ (r, w) A A ↗ r

Γ ` E ÷ (⊥, w) A

• Some rules

1 ↗ r

B ↗ b

A → B ↗ b

FCS’04, Turku, July 2004 – p.19

Informativeness of Computations

• Storage locations

refb A ↗ b

A ↗ a

refb A ↗ a

• Computations

A ↗ a

©(r,w)A ↗ w u a

FCS’04, Turku, July 2004 – p.20

General Information Laws

• Contra-variant in security level

A ↗ ⊥

A ↗ a b v a

A ↗ b

A ↗ b A ↗ c

A ↗ b t c

• Now can type untilFalse : ©(>,>)bool → ©(⊥,>)1
[see paper]

• Do not consider termination channel

FCS’04, Turku, July 2004 – p.21

Theorems

• Write ` H if store is well-typed
• Write ` (H,E) ÷o A if ` H and ` E ÷o A

• Language so far satisfies
• Preservation: If ` (H,E) ÷o A, and (H,E) → (H ′, E ′)

then ` (H ′, E ′) ÷o A.

• Progress: If ` (H,E) ÷o A then either E = V for V val or
(H,E) → (H ′, E ′) for some (H ′, E ′)

• Non-interference: “Computations at low security cannot
observe high-security values”

FCS’04, Turku, July 2004 – p.22

Sketch of Non-Interference

• Define in-view locations for level ζ:

↓ (ζ) = {la | a v ζ}

• Define equivalence on in-view locations
H1 ≈ζ H2 and (H1, E1) ≈ζ (H2, E2) ÷o A

• Theorem: If ` H and x:A ` E ÷(r,w) B and
V1 ≈r V2 : A then if (H,E[V1/x]) →∗ S1 and
(H,E[V2/x]) → S2 then S1 ≈r S2 ÷(r,w) B.

• Proof: Syntactic, using Church-Rosser modulo
in-view equivalence with respect to r.

FCS’04, Turku, July 2004 – p.23

Related Work

• Information flow inference for ML
[Pottier&Simonet’03]

• Any term may have an effect

• Emphasis on inference

• Here: monadic encapsulation, checking

• Dependency Core Calculus (DCC)
[Abadi,Banerjee,Heintze,Riecke’99]

• Monads for sealing values, not state

• Protectedness ∼ informativeness

FCS’04, Turku, July 2004 – p.24

Related Work

• λREF
SEC [Zdancewic’02]

• Security levels for values, not locations

• Can be mapped to our language [see paper]

• Information flow for π-calculus [Honda&Yoshida’02]

• Different computational setting

• Tampering levels ∼ informativeness

• Domain separation [Harrison,Tullsen,Hook’03]

• State insulation via monads

• No interaction between monads

FCS’04, Turku, July 2004 – p.25

Future Work

• Additional effects (I/O, control effects)
• Information flow in TAL (register re-use)
• Decomposing the monad into �, ♦

[Pf.&Davies’01]

• Dependent type theory with information flow

FCS’04, Turku, July 2004 – p.26

Summary

• Type system for information flow
• Higher-order functional language

• Store monad, indexed by operation levels

• Security levels for locations, not values

• Conservative over base language
• Upcalls permitted via informativeness
• Preservation, progress, non-interference

FCS’04, Turku, July 2004 – p.27

	The ConCert Project
	Information Flow in TAL
	Language Overview
	Outline
	Pure Functional Core
	Sample Rules: Functions
	Monadic Encapsulation
	Lax Typing
	Operational Semantics
	Security Levels
	Stores
	Allocation, Reading, Writing
	Subtyping
	Variance
	Operational Semantics Revisited
	Lax Typing Revisited
	Upcalls
	Informativeness
	Informativeness of Computations
	General Information Laws
	Theorems
	Sketch of Non-Interference
	Related Work
	Related Work
	Future Work
	Summary

