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The ConCert Project

• Certified distributed computation
• Technical basis

• Typed assembly language (TAL, TALT)

• Certifying compilation (TILT, PCC)

• Some technical challenges
• Types for distributed computation

• Resource bound certification

• Architecture verification

• Information flow
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Information Flow in TAL

• Typed assembly language
• Imperative

• Functional

• Sequentialized

• Abstract to high-level functional language
• Capture analagous features

• Easier to design, prove correct, understand

• Future work: transfer to TAL
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Language Overview

• Information flow only through store
• Effects encapsulated in monad
• Other computations and values remain pure
• Monad and locations indexed by security levels
• Subtyping to avoid security level coercions
• Allow upcalls via informativeness judgment
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Outline

• Monadic encapsulation of effects
• Information flow and store
• Upcalls and informativeness
• Proof of non-interference
• Embedding value-oriented languages
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Pure Functional Core

• Standard constructs

Types A ::= bool | 1 | A → B | . . .

• Standard judgments
• Typing Γ ` M : A

• Value M val (write V for values)

• Reduction M → M ′

• Call-by-value (could be by name or by need)
• Curry-Howard isomorphism (omit recursion)
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Sample Rules: Functions

• Typing

Γ, x:A ` M : B

Γ ` λx:A.M : A → B
→I

Γ ` M : A → B Γ ` N : A

Γ ` M N : B
→E

• Evaluation

λx:A.M val
M → M ′

M N → M ′ N

V val N → N ′

V N → V N ′

V val

(λx:A.M) V → M [V/x]
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Monadic Encapsulation

• New type ©A for effectful computations
• New syntactic category: expressions

Terms M ::= . . . | val E

Expressions E ::= let val x = M in E | M

• Expressions include terms
• Sequencing of effects via let val

• Further expressions for specific monads
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Lax Typing

• Lax typing Γ ` E ÷ A

Γ ` M : A

Γ ` M ÷ A

Γ ` E ÷ A

Γ ` val E : ©A
©I

Γ ` M : ©A Γ, x:A ` E ÷ C

Γ ` let val x = M in E ÷ C
©E

• Restriction on elimination enforces sequencing
• Related to lax logic by Curry-Howard isomorphism
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Operational Semantics

• Computation steps (H,E) → (H ′, E ′) for store H

val E val

M → M ′

(H,M) → (H,M ′)

M → M ′

(H, let val x = M in F ) → (H, let val x = M ′
in F )

(H,E) → (H ′, E ′)

(H, let val x = val E in F ) → (H ′, let val x = val E ′
in F )

V val

(H, let val x = val V in F ) → (H,F [V/x])
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Security Levels

• Fixed lattice a v b

• Operations ⊥, >, u, t
• Store locations l have security level a, type A

(write: lAa , omit when clear)
• Computation E ÷(r,w) A has security levels

• r: can read only at r or below

• w: can write only at w or above

• operation level o = (r, w) for r v w

• Terms M : A have no effect, no security level
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Stores

• Store locations lAa with intrinsic security level a

• Store locations are terms (no effect)

• Store locations are values

lAa val

• Stores uniquely bind locations to values

Store H ::= · | H, lAa 7→ V
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Allocation, Reading, Writing

• Assign most precise type; others by subtyping
• Write E ÷ (r, w) A for readability

• Allocation neither reads nor writes

Γ ` lAa : refa A

Γ ` M : A

Γ ` refa M ÷ (⊥,>) refa A

• Reading and writing are effects

Γ ` M : refa A

Γ ` !M ÷ (a,>) A

Γ ` M : refa A Γ ` N : A

Γ ` M := N ÷ (⊥, a) 1
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Subtyping

• A ≤ B A is subtype of B

• o � p o is less strict than p

• Subsumption rules

Γ ` M : A A ≤ B

Γ ` M : B

Γ ` E ÷o A o � p

Γ ` E ÷p A

Γ ` E ÷o A A ≤ B

Γ ` E ÷o B
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Variance

• Recall E ÷ (r, w) A

• reads only below r

• writes only above w

• Co-variant in read, contra-variant in write

r v r′ w′ v w

(r, w) � (r′, w′)

A ≤ B o � p

©oA ≤ ©pB

• refa A is non-variant (paper: refrr A and refww A)
• Other subtyping standard
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Operational Semantics Revisited

• Standard rules for reduction with store

• Example: allocation

M → M ′

(H, refa M) → (H, refa M ′)

V val la 6∈ dom(H)

(H, refa V ) → ((H, l 7→ V ), l)
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Lax Typing Revisited

• Lax security typing Γ ` E ÷o A

Γ ` M : A

Γ ` M ÷ (⊥,>) A

Γ ` E ÷o A

Γ ` val E : ©oA
©I

Γ ` M : ©oA Γ, x:A ` E ÷o C

Γ ` let val x = M in E ÷o C
©E

• (⊥,>) is minimal for �
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Upcalls

• Consider a call of E at high security from within F
at low security

E ÷ (>,>) 1

z:1 ` F ÷ (⊥,⊥) 1

let val z = val E in F ÷ (?,⊥) 1

• Current rules force ? = >

• Does E leak information?
• Depends of type of returned value (here, 1)
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Informativeness

• A ↗ r A is informative only at r and above

• Use to demote reading level of expressions

Γ ` E ÷ (r, w) A A ↗ r

Γ ` E ÷ (⊥, w) A

• Some rules

1 ↗ r

B ↗ b

A → B ↗ b
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Informativeness of Computations

• Storage locations

refb A ↗ b

A ↗ a

refb A ↗ a

• Computations

A ↗ a

©(r,w)A ↗ w u a
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General Information Laws

• Contra-variant in security level

A ↗ ⊥

A ↗ a b v a

A ↗ b

A ↗ b A ↗ c

A ↗ b t c

• Now can type untilFalse : ©(>,>)bool → ©(⊥,>)1
[see paper]

• Do not consider termination channel
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Theorems

• Write ` H if store is well-typed
• Write ` (H,E) ÷o A if ` H and ` E ÷o A

• Language so far satisfies
• Preservation: If ` (H,E) ÷o A, and (H,E) → (H ′, E ′)

then ` (H ′, E ′) ÷o A.

• Progress: If ` (H,E) ÷o A then either E = V for V val or
(H,E) → (H ′, E ′) for some (H ′, E ′)

• Non-interference: “Computations at low security cannot
observe high-security values”

FCS’04, Turku, July 2004 – p.22



Sketch of Non-Interference

• Define in-view locations for level ζ:

↓ (ζ) = {la | a v ζ}

• Define equivalence on in-view locations
H1 ≈ζ H2 and (H1, E1) ≈ζ (H2, E2) ÷o A

• Theorem: If ` H and x:A ` E ÷(r,w) B and
V1 ≈r V2 : A then if (H,E[V1/x]) →∗ S1 and
(H,E[V2/x]) → S2 then S1 ≈r S2 ÷(r,w) B.

• Proof: Syntactic, using Church-Rosser modulo
in-view equivalence with respect to r.
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Related Work

• Information flow inference for ML
[Pottier&Simonet’03]

• Any term may have an effect

• Emphasis on inference

• Here: monadic encapsulation, checking

• Dependency Core Calculus (DCC)
[Abadi,Banerjee,Heintze,Riecke’99]

• Monads for sealing values, not state

• Protectedness ∼ informativeness
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Related Work

• λREF
SEC [Zdancewic’02]

• Security levels for values, not locations

• Can be mapped to our language [see paper]

• Information flow for π-calculus [Honda&Yoshida’02]

• Different computational setting

• Tampering levels ∼ informativeness

• Domain separation [Harrison,Tullsen,Hook’03]

• State insulation via monads

• No interaction between monads

FCS’04, Turku, July 2004 – p.25



Future Work

• Additional effects (I/O, control effects)
• Information flow in TAL (register re-use)
• Decomposing the monad into �, ♦

[Pf.&Davies’01]

• Dependent type theory with information flow
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Summary

• Type system for information flow
• Higher-order functional language

• Store monad, indexed by operation levels

• Security levels for locations, not values

• Conservative over base language
• Upcalls permitted via informativeness
• Preservation, progress, non-interference
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