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A Monocular Vision-based System for 6D Relative Robot Localization

Andreas Breitenmoser, Laurent Kneip and Roland Siegwart

Abstract— The objective of this paper is the full 6D relative
localization of mobile devices, and direct robot-robot local-
ization in particular. We present a novel relative localization
system that consists of two complementary modules: a monoc-
ular vision module and a target module with four active or
passive markers. The core localization algorithm running on
the modules determines the marker positions in the camera
image and derives the relative robot pose in 3D space. The
system is supported by a prediction mechanism based on
regression. The modules are tested successfully in experiments
with a quadrotor helicopter as well as on a team of two e-puck
robots performing a coverage task. The relative localization
system provides accuracies of a few centimeters in position and
up to a few degrees in orientation. Furthermore, the system
is lightweight, with low complexity and system requirements,
which enables its application to a wide range of mobile robot
platforms.

I. INTRODUCTION

Localization is one of the fundamental components in

mobile robotics. The robot has to localize itself in an often

unknown environment with respect to an absolute frame

of reference (global localization), or in relation to a local

object like a landmark or other robots in its vicinity (relative

localization). In this work, we focus on vision-based relative

localization, especially in the context of multi-robot systems.

Collaborative tasks often require only relative localization,

i.e. absolute positioning of the robots in the world is not

necessarily needed for successful task completion. Collision

avoidance, pattern formation, coordinated manipulation or

coverage with a group of mobile robots are examples, where

mutual information of relative poses is sufficient for planning

the next actions. Moreover, relative localization can lead back

to global localization if a robot measures its location relative

to a fixed landmark of known position.

[1] distinguished relative localization methods based on

the level of sensed information: some relative localization

systems only measure range or angle information, others

the position or the full pose, including the orientation of

the observed device. Furthermore, localization systems can

be classified into planar or spatial systems, depending on

whether 2D or 3D location information is measured. How-

ever, most of today’s relative localization systems rely on
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Fig. 1. Relative localization system. The localization modules are installed
on three e-puck robots: the robot climbing the metallic wall in the back-
ground is equipped with a camera module, the robot on the left features a
target module with the smaller target composed of active color LED markers,
and the robot in the center carries the passive version of the same target
module. An additional target module on the right with a larger passive target
of the same geometry represents an example of a target that can be deployed
in a workspace as a fixed landmark.

the assumption of a 2D workspace, and provide only 2D

information of a robot’s position.

In this paper, we present a relative localization system

that allows for measuring the full 6D pose of a device in

3D space. The localization system consists of a monocular

camera module and a complementary spatial target module,

which includes four markers in a fixed arrangement of

known geometry. The position and orientation information

between target and camera is determined from continuously

detecting the markers in the camera image and then solving

a Perspective-Three-Point (P3P) problem. Tracking of the

target in the 3D space rather than in the 2D image plane

improves the prediction and final detection of the modules’

poses.

Our relative localization system is in line with classic

work in visual servoing [2], and is motivated by a lack of

existing solutions for relative on-board localization of robots

moving in 3D space. Industrial robots that climb walls and

ceilings and perform coordinated inspection tasks in small

teams [3], or flying robots that monitor a certain area or

hover in place for landing need compact solutions for relative

6D localization. As the relative localization system is based

on a simple target and a monocular camera, it only requires

a single passive sensor. This results in a lightweight, low-

cost and low-power system, which relies on relatively simple

algorithms with low computational complexity, and offers the

potential to perform relative localization in real-time.



The remainder of the paper is organized as follows. First,

we review related work on relative localization systems. In

Section III we present the system overview and describe

the hardware components of the two localization modules.

The fundamentals of the relative localization algorithm are

explained in Section IV. In Section V the system is evaluated

by experiments in two different scenarios: localization of a

flying robot against a fixed landmark and relative localization

of a ground and climbing robot in a coverage task.

II. RELATED WORK

The system in [4] uses beacons that emit radio frequency

(RF) and ultrasonic pulses to measure distance information

between robots located in the 2D plane; three Millibots can

jointly infer the position of a fourth robot by trilateration.

Similar to the Millibots, the Cricket indoor location sys-

tem [5] consists of several beacons that sense 3D position

from RF and ultrasonic pulses. The Wii remote, as presented

in [6], and its sensor bar counterpart can be understood as

localization modules that provide 4D information, i.e. 3D

position plus roll. Combined with the built-in accelerometer,

full pose information can be gained with the cost of an

additional sensor.

Vision-based localization modules with single or multiple

cameras are oftentimes more general and need less hardware

development, which results in increased flexibility for inte-

gration on existing robots. The approach in [7] uses stereo

vision to detect a single marker target and measures 3D

position and 2D orientation information. In [8], monocular

omnidirectional vision is used to build a localization system

of similar functionality as in [4]. It is capable of measuring

range information and 2D position within a robot team. A

monocular vision approach that exploits prior information

of target shape and orientation is presented in [9]; it can

estimate up to 5 degrees of freedom (DOF) of a quadrotor.

QRTags, ARTags and the ARToolKit [10] represent useful

tools for 6D relative localization, which is beyond their

primary application in augmented reality. The ARToolKit

provides comparable accuracy for tags of similar size but

- unlike our system - is not designed for omnidirectional

localization in 3D space.

A robotic system that achieves 6D relative localization

is presented in [11]. The idea is similar to ours but more

restrictive on the assumptions taken: a minimum number of

four heterogeneous robots is required, from which one is

climbing above the others to track them, and visibility of

the ground robots among each other must be guaranteed.

Especially in real applications, where often only a pair of

robots or robots with similar capabilities are available, and

in presence of obstacles and occlusions, the planning of

trajectories to maintain visibility is neither trivial nor very

practical. This clearly favors the ability of direct robot-robot

localization.

Besides, 6 DOF motion capturing systems, such as the

Vicon motion capture system1 are becoming more and more

1http://www.vicon.com

popular in the robotic community. [12] for example presents

a low-cost pose tracking system and a target design method-

ology, from which we found inspiration. However, motion

capturing systems are composed of multiple cameras which

are installed in a fixed configuration in the environment

in order to provide multiple views of the markers of the

tracked targets. The pose is determined from the projections

to the different views. In order to obtain complete 6D pose

information, a minimum number of three markers per target

need to be detected in at least two cameras. In contrast, our

relative localization system requires only one camera but at

least four markers.

III. SYSTEM OVERVIEW

Figure 1 shows the camera and target modules of the

relative localization system as they are applied to a group of

three e-puck robots [13].

The robot that is equipped with the camera module

computes the relative localization between two robots. In

general, this is the direct relative position and orientation

of a neighboring robot in the robot’s own frame, but also

the indirect distance and orientation between two robot

neighbors in the case of three (or more robots) can be

inferred. The robot that carries the target module serves as

a mobile landmark, which is detected by the robots that are

equipped with the camera module. The 6D relative pose can

be inverted and communicated from the camera to the target

module. If no communication devices are available to the

robots, a pair of camera and target modules may be placed

on each robot to provide for mutual relative localization.

The modules are very flexible and allow for customization

into many directions. Any calibrated camera can be used

with the camera module for detecting the target. However,

for localization in close to planar settings, omnidirectional

cameras are the preferred choice due to their 360◦ field of

view (FOV) in the direction parallel to the image plane. Fish-

eye lenses are particularly suitable in 3D scenarios where

devices need to be localized when moving into free open

space on hemispherical trajectories around the robot.

The target on the target module is an optimized configura-

tion of four spherical markers, all identical in size and shape.

Markers are either active or passive. Active markers can

be built from light-emitting diodes, such as infrared LEDs

or LEDs of a specified color (see Figure 1: smaller target

with markers of diameter b = 1 cm, made from green SMD

LEDs integrated into a spherical diffusor). Passive markers

are colored or reflective balls (see Figure 1: smaller target

with b = 1.5 cm, larger target with b = 3 cm, both with

painted markers). The camera might thus be either color or

monochrome, depending on the chosen target.

The target size and geometry, the diameter of the markers

and the camera resolution are important system characteris-

tics because they define the maximum distance over which

relative localization can still be performed in a reliable way.

During the design of the system all three characteristics must

be adjusted with respect to the final application.



A. Optimization of target geometries

The target has known geometry and the markers are

all identical. Hence, once the markers are detected in the

camera image, the identities of the markers within a target

as well as the identities of several targets among each other

can only be resolved by the knowledge of the markers’

spatial arrangement. The target geometry is essential for the

relative localization, as a good design lowers the occurence

of occlusions and similarities among different target views,

and contributes to the overall robustness of the target pose

prediction.

First, the self-similarity and symmetries in a single tar-

get must be minimized, such that they appear different if

observed from different directions. This guarantees correct

estimation of the target’s orientation in space. Second, if

multiple targets are present in the same system, similarity

among different targets must be minimized to restore the

markers’ identities reliably. In addition, degenerate arrange-

ments, such as configurations with three colinear markers or

flat tetrahedrons with four nearly coplanar markers, should

be avoided.

We define the similarity of target geometries according

to [14] as the smallest difference of the pairwise marker

distances over all markers and targets in the system. The

objective of the target optimization is to find arrangements

of minimum similarity to form n targets with m markers

each, i.e. the maximization of smin = min(S), where S =⋃
i 6= j

∣∣di −d j

∣∣ with di, d j the pairwise Euclidean marker

distances between all the markers i, j ∈ I = {1, ..., (n ·m)}.

The optimization procedure follows the procedure explained

in [14] to a large part.

At the beginning, the targets are initialized by random

sampling from a predefined set of discrete positions and

lengths. The initial set of markers is then optimized itera-

tively by maximizing the cost function

f (P,w) =






w · smin +(1−w) · savg, D1 ≤ di ≤ D2,

∧ hmin ≥ H (1)

−G, otherwise

with savg the average distance difference over S, w a

free weighting parameter to balance worst-case and av-

erage target quality, D1 and D2 the lower and upper

bounds of the allowed pairwise marker distances and H

the minimum allowed height of the target faces. H in-

troduces a colinearity constraint, which prevents the tar-

get to turn out too flat. G is a constant positive value

that penalizes violations of the constraints imposed by

D1, D2 and H. The dimensions of the larger target used in

this paper (see Figure 1 right) are given by the tetrahedron

with vertex set {(0.00, −16.51, 23.66), (0.00, 13.04, 18.45),
(6.26, −2.21, 5.39), (−8.02, 2.49, 6.21)}, and circumsphere

of radius 15.2 (all in [cm]). It was obtained from an

optimization with parameters set to w = 2/3, D1 = 15 cm,

D2 = 30 cm and H = 4 ·b = 12 cm. The smaller passive and

active targets installed on the e-puck robots have the same

proportions but are scaled to half the size (see Figure 1 on

the left and center).

The actual optimization was carried out with the Nelder-

Mead simplex algorithm [15]. The optimization was repeated

over 1000 runs and resulted in several best solutions due to

the existence of local optima. Especially, as we optimized

for only a single target (n = 1), many valuable solutions

remain. In order to select a final solution, the projection of

the markers to the support plane tangent to the robot base was

considered in a last optimization step. The target is rotated,

such that the cost function in Equation (1) with adjusted

constraints D1, D2 and H is maximized. This leads to targets

that are most distinct when viewed from the top, which

is particularly favorable for robots climbing on opposite

surfaces, or flying robots that localize with respect to the

ground (like in our experiments of Section V for example).

IV. RELATIVE LOCALIZATION ALGORITHM

Next we describe step-by-step the processing pipeline

of the relative localization algorithm that runs on top of

the localization system hardware introduced in the previous

section. We consider the case of a single camera with camera

frame C and one visible target with target frame Tl = T ,

where l ∈ Itar = {1, ..., n} and n = 1. Figure 2 illustrates the

sequence of operations of the proposed method.

A. Pose and marker prediction

The relative localization system uses single cameras to

determine poses in 3D space. Poses can be predicted by

tracking the markers in the image plane or the relative camera

location in 3D space. We track the pose of the camera

relative to the target frame T . Pose prediction in 3D improves

robustness of the algorithm as spatial information is retained.

The 3D pose estimation resolves situations with crossing

marker trajectories in the image plane or markers leaving

the image plane for a certain fraction of time, and allows

for direct inclusion of the underlying relative motion model

of the moving camera. It also allows for the application of

standard pose estimation methods, such as Kalman filters.

In our current implementation we make use of a sim-

plified approach for predicting the image coordinates of

the target’s markers. The 6D camera pose
[
R̂k

T C | t̂k
cam,T

]

at discrete time k is estimated based on the camera pose

history {
[
R

k−kR
T C | t

k−kR
cam,T

]
, ...,

[
Rk−1

T C | tk−1
cam,T

]
} relative to the

target frame T , with kR the number of regression samples

taken into account. Linear regression with kR = 2 already

results in an accurate prediction with only slight overshooting

at abrupt motion changes, as can be expected from the

linear motion model. Through the modular character of

our algorithm, more advanced pose estimators that take

into account measurements from additional sensors - as for

instance inertial readings - can easily replace the current pose

prediction.

After the prediction of the 6D pose of the camera frame

C relative to the target frame T is obtained, the predicted

marker positions Q̂k = {q̂k
i },∀i∈ I, in the camera image plane

follow from the projection of the target’s marker positions

Ptar,T = {ptari,T},∀i ∈ I. In the case of a pinhole camera

model, the predicted marker positions are given by q̂k
i =



Fig. 2. Processing pipeline of the relative localization algorithm running on the camera modules.

K ·
[
R̂kT

T C | −R̂kT

T C · t̂k
cam,T

]
·ptari,T , with K the intrinsic camera

parameter matrix.

B. Blob extraction

The predicted marker positions Q̂k allow for extracting

a region of interest (ROI) in the image up-front. Thus any

image processing operations can be constrained to the ROI,

which leads to substantial increase in speed and robustness.

During the first kR runs of the initialization phase, where

the prediction is still inaccurate or unavailable, an adapted

version of the blob extraction is applied to the whole image.

Besides, in the case of detection failure blobs may be

searched in the entire image for reinitialization.

The actual blob extraction mainly applies standard image

processing methods, which makes it simple to reimplement

on other platforms. The blob extraction for grayscale images

works similarly for active and passive markers, only that

the thresholds are computed inversely depending on whether

light or dark markers are used. First, the image foreground is

extracted by iterated thresholding and filtering (see Figure 3

right). A strategy based on successive application of two

adaptive thresholds has shown to be especially useful for

initial blob detection over the entire image, or for scenes

with changing light. The first threshold F1 is computed after

Otsu’s criterion and assumes that the image contains clear

fore- and background. Whereas threshold F1 locates the blobs

in the image, threshold F2 refines their shape and location

by being less restrictive. F2 exploits the fact that there are

much more background pixels than foreground pixels. A

Gaussian is fitted to the grayscale histogram of the image and

F2 is defined at a multiple of the standard deviation. After

thresholding with F1, the extracted set of blobs is filtered by

executing the first round of outlier rejection: too small and

too large blobs as well as blobs with strong non-convexity

and excentricity are removed. The window that encloses all

the remaining blobs is subject to threshold F2, and a second

round of outlier rejection is started.

If the number of blobs still exceeds the specified number

of markers (n · m) in the system, the nearest neighbor of

each blob is computed to subsequently remove the blobs

with farthest distance to all the remaining blobs, or to merge

the two closest blobs respectively. An alternative would be to

make use of the prediction of the blob position in the image

to reject false positives. On the other hand, if the number

of detected markers is below n ·m, a cascade of recovery

methods with increasing complexity - from simple erosion

to circular Hough transform (applied to the unwrapped image

for lenses of high distortion) - is executed. Finally, the blob

centers Qk = {qk
i },∀i∈ I, result from the centroid calculation

of the blob areas with subpixel precision (see Figure 3 left).

We noticed that passive markers sometimes are affected

by shadows on the bottom side, which has the unfavorable

effect of cutting a segment of the circular blob away when

thresholding. In these cases, we suggest to fit an ellipse to

the (unwrapped) blob and determine the blobs’ centers by

intersection of the perpendicular bisectors of two chords. A

circular Hough transform could be used alternatively.

The use of color cameras in combination with colored

markers rather simplifies the blob extraction step. The fore-

ground extraction as described above for grayscale images is

then replaced by thresholding the image in the YUV color

space, as proposed in [16]. This adds robustness to the blob

detection because the relevant color information on the U

and V dimensions is decoupled from marker brightness.

Remark 1: In naturally dark environments (e.g. at night,

in tunnels or pipelines), active targets are favorable. In man-

made environments of changing light conditions (e.g. indoor

hallways or industrial structures), passive color targets are

most useful. A clear limitation of the approach is shown

in cluttered indoor or outdoor environments of changing

light and color. Investigations of infrared or laser-emitting

targets as solutions for such environments are left for future

research.

C. Pose update

After having found the marker positions Qk in the image

plane, one still needs to determine their correspondences to

the 3D target points. In the worst case (e.g. during initializa-

tion when no prediction exists) a maximum of (n ·m)! = 4! =
24 permutations Sσ , with σ : Xnm → Xnm, results for a single

target with four markers (n = 1, m = 4). After initialization,

this number can be strongly decreased by the pose prediction

and the resulting distances of the predicted (correspondence

known) and extracted (correspondence unknown) marker

positions Q̂k and Qk in the image plane. Thus Sσ is restricted

to a subset of permutations with high likelihood. However,

there might be ambiguous situations remaining, for instance

when two of the markers are close to each other.

Once all the possible permutations are determined,

the final camera pose with respect to the target frame[
Rk

T C | tk
cam,T

]
is to be computed. The identical problem of

finding the pose of a camera given three points in the world

frame (and their corresponding points in the image plane)



is well-known in computer vision as the Perspective-Three-

Point (P3P) problem.

There are several approaches to solve the P3P problem,

such as the algorithms presented in [17] and by references

therein. We make use of a novel closed-form solution [18]

that derives translation tk
cam,T and rotation Rk

T C of the camera

with respect to the target frame T directly, i.e. without

further need of intermediate derivation of first the target point

coordinates in the camera frame C, and then the aligning

transformation of two point groups. Increased numerical

stability and especially computational efficiency is gained,

which favors any lightweight implementation.

As the geometry of the target and the positions of

the four markers Ptar,T are known, projecting three of

the four marker points into the parametrized camera pose[
Rk

T C(θ) | tk
(ptar1

cam),T (θ)
]

results in the quartic equation

a4 ·cos4(θ)+a3 ·cos3(θ)+a2 ·cos2(θ)+a1 ·cos(θ)+a0 = 0,
(2)

with the coefficients a4, ..., a0 as defined in [18]. Solving for

parameter cos(θ) using Ferrari’s approach and substituting

back leads to four solutions for the camera position tk
cam,T =

ptar1
+ tk

(ptar1
cam),T (θ) and orientation Rk

T C = Rk
T C(θ) in T .

The target pose with respect to the camera frame C is

inversely given by Rk
C T = RkT

T C and tk
tar,C = −Rk

C T · tk
cam,T .

In our case, the correspondences between the 2D points

in the image plane and the 3D world reference points are

not predefined. Each of the permutations in Sσ serves as

starting point to solve the above P3P problem with 4! ·4 = 96

solutions in the worst case. The reprojection of the fourth

marker position qk
4 is then used for disambiguation; the

candidate transformations for which the fourth point does

not fit are removed from the solution set. In the initialization

phase, multiple valid hypotheses may be maintained until

there is only one remaining. If not in the initialization

mode, the unique solution
[
Rk

T C | tk
cam,T

]
is finally obtained

by selecting the remaining candidate that is closest to the

prediction
[
R̂k

T C | t̂k
cam,T

]
. Alternatives for outlier rejection

filtering are the inclusion of prior knowledge, such as the

knowledge that a ground robot is always moving in the 2D

plane, the use of robot odometry information, or the inclusion

of further predictions for the same target by other camera

modules.

Remark 2: Opposed to our assumption, markers could

also be distinct. By means of different colors, color codes or

varying emission frequencies of pulsed active markers, the

identities are assigned to the markers statically, independent

of any 3D information. However, staying with the more

general problem formulation of having identical markers

per target leaves the possibility to use colors or emission

patterns for the differentiation among multiple targets. In

summary, target modules with distinct markers improve the

robustness of the relative localization by simplifying the

marker identification process, increasing the stability when

searching for 2D/3D point correspondences and reducing the

importance of optimality in the target design.

Fig. 3. Blob extraction from Experiment 1. Left: four markers are detected
in the ROI. Right: labeled blobs resulting from the foreground extraction.

V. EXPERIMENTAL EVALUATION

The relative localization system is tested in two different

contexts: in Experiment 1, a quadrotor helicopter with a

camera module is localized against a target module placed as

landmark on the ground, whereas two e-puck robots jointly

cover a ground and wall surface in Experiment 2.

A. Experiment 1: Aerial vehicle localization

The goal of the first experiment is to characterize the

relative localization system and analyze its accuracy. A

Point Grey Firefly MV monochrome camera2 with 752×480

resolution and 90◦ FOV lens is mounted on the bottom

of a AscTec Hummingbird quadrotor3 pointing toward the

ground, where the larger target is positioned as a fixed

landmark (see Figure 3 left). The experiment is carried out

in a laboratory room with a Vicon motion capture system

installed, which provides the ground truth of the robot

trajectory.

In a first run, the quadrotor is moved over the target by

hand to produce rather rich and well-controlled trajectories

in an environment close to the one of the final robot deploy-

ment. The ground truth and the measured pose obtained from

our relative localization system, as well as the corresponding

localization errors, are presented in Figure 4. The system

achieves following accuracy: the position error is between

0.1 cm and 12.2 cm with a mean of 1.5 cm and standard

deviation of 0.7 cm; the orientation error lies between 0.1◦

and 4.5◦ with a mean of 1.2◦ and standard deviation of 0.4◦.

The distance from the camera on the quadrotor to the target

module varied between 67.7 cm and 174.1 cm.

In a second run, the quadrotor was flown over the target up

to a height of 3 m. At this distance, the localization accuracy

is 2.2 cm and 1.0◦ in average. The 3D trajectory of the flying

quadrotor is visualized in Figure 5. A video with sequences

of the experimental runs accompanies the paper.

In both experiments, we observed only a minor increase in

the localization error when the distance between the camera

and target module was increased to the maximum range.

However, the relation of the distance between modules, the

target and marker sizes as well as the camera resolution

define limitations of the system. At a distance of 3 m, the

size of the detected markers is reduced to only a few pixels

in the camera of 752× 480 resolution for example. In the

2http://www.ptgrey.com
3http://www.asctec.de
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Fig. 4. Relative localization of a quadrotor, which is moved manually over
a target module landmark. 6D pose (position and angles) and corresponding
errors are shown.

experiments, several situations occurred where only two or

three of the four markers were visible in the camera for

a certain duration. The localization algorithm proved to be

robust and recovered from these situations, even though

the accuracy is affected. The maximum errors of 12.2 cm

and 4.5◦ from the first run for instance are both caused

by situations with only three markers visible in the camera

image.

B. Experiment 2: Relative localization for multiple robots

The second experiment aims at the application of the

relative localization modules to a multi-robot system. The

experimental setup comprises an active and passive target

module, and two camera modules. The first camera module

consists of a Point Grey Flea2 color camera with 1280×
960 resolution installed overhead at a height of 230 cm. It

remains static throughout the duration of the experiment and

can be thought of representing a robot, which is aware of its
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Fig. 5. Relative localization of a flying quadrotor. The ground truth (red)
and measured (blue) trajectories are visualized (position in [cm]).

absolute position at the ceiling (e.g. it might have means for

climbing and performing global localization). The passive or

active target module, respectively, is fitted to robot A, an

e-puck robot that covers the surface on the ground with a

swath coverage pattern of dimensions 30 cm× 42 cm. The

second camera module uses an IDS uEye color camera4 with

752×480 resolution and 150◦ FOV lens, and is mounted on

robot B, an e-puck robot further augmented with magnets

in the structure, such that it can climb the wall to cover

the inclined surface (swath coverage pattern with dimensions

25 cm×21 cm).

Figure 6 shows the two e-puck robots during the coverage

task and the views of the camera modules, as well as the view

from an additional external camera recording the experiment.

The ground truth coverage paths and the actual coverage

paths are projected into the image planes. The measured

paths deviate from the ground truth by a few centimeters. The

localization accuracy of the target module however varies

significantly between robot A and robot B. The average and

maximum position errors are 1.0 cm and 3.3 cm for robot A

and 1.7 cm and 7.8 cm for robot B. Whereas the overhead

camera features a higher resolution and remains completely

static during the experiment, robot B carries a camera with

lower resolution and moves while detecting the moving target

module on robot A. Furthermore, the trajectory of robot B

is transformed via robot A into the frames of the overhead

camera and the external camera, which results in an addition

of localization errors.

The same setup was tested for robot A equipped with the

active target in a dimmed room with similar results (see

Figure 7). Two runs of the experiment, one with passive

and one with active target module, are included in the

accompanying video.

4http://www.ids-imaging.de



Fig. 6. Relative localization of multiple robots (ground truth paths in red, measured paths in blue, robot orientations in black). Left: View of the overhead
camera. Center: View of robot B (the trajectory in violet is obtained from the projection when varying over time). Right: View of the external camera.

VI. CONCLUSIONS

The paper addresses the problem of 6D relative localiza-

tion for robots like flying or climbing robots, which move in

3D space. We propose a novel relative localization system,

composed of a target and a camera module, which offers

a simple, lightweight and portable solution that relies on

monocular vision. The modules were applied in two different

scenarios, namely a hovering quadrotor helicopter and two

e-puck robots collaboratively covering surfaces of different

inclination. The experiments proved the applicability of the

relative localization system to real robots and the evaluation

of the measured poses resulted in centimeter/degree accura-

cies, which is sufficient for most robot applications.

The system will be integrated and tested on the MagneBike

inspection robots [3], which are able to climb tube-like

industrial structures for non-destructive testing. As the long-

term goal is coordinated inspection among several Mag-

neBikes, the optimization and disambiguation of multiple

targets in the same system, as well as the combination of

our relative localization system with cooperative localization

approaches (e.g. [1]) offer further interesting directions for

future research.
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