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Abstract. In this paper we develop a monotone approximation method, based on
an upper and lower solutions technique, for solving the nonautonomous size-structured
model. Such a technique results in the existence and uniqueness of solutions for this
equation. Furthermore, we establish a first-order convergence of the method and present
a numerical example.

1. Introduction. In this paper we consider the following first-order nonlocal hyper-
bolic initial-boundary value problem that describes the dynamics of a size-structured
population:

v,t + (g{t, x)u)x = —m(t, x) u, 0 < t < T, a < x < 6,

(1.1) g(t,a)u(t,a) = C(t) + q(t,x)u(t,x)dx, 0 <t<T,
u(0,x) = uo(x), a < x <b.

The above class of models was proposed by Sinko and Streifer [9] in analogy to the
McKendrick-Von Foerster class of age-structured models. Here, the function u(t, x) rep-
resents the density of individuals in the size class [x, x+dx) at time t, i.e., the total number
of individuals between sizes X\ and x2, X\ < x2, at time t is given by J"®2 u{t,x)dx. The
parameter g(t, x) represents the time and size-dependent growth rate. The parameter
m(t,x) represents the mortality rate, and q(t, x) represents the reproduction rate of an
individual of size x at time t. The function C(t) represents the inflow of a-size individuals
from an external source.

The above problem has been widely investigated [1, 2, 6, 7]. In particular, several
numerical methods for approximating the autonomous case of this equation have been
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developed. Two common approaches that have been used to study well-posedness and es-
tablish convergence of approximation methods for the autonomous case are the semigroup
approach and the method of characteristics [1, 7]. The goal of this paper is to present a
different approach for establishing well-posedness of the nonautonomous equation (1.1)
as well as developing a monotone approximation scheme, which is computationally at-
tractive, for solving this equation. To the best of our knowledge, comparison results and
approximation methods based on monotone sequences have not been established for this
equation.

To carry out our program, the following assumptions will be imposed on our parame-
ters throughout the paper:

(Al) g e ^([C^T] x [a, 6]), g > 0 on [0, T] x [a, b), and g(t, b) = 0, t e [0, T];
(A2) q e C([0, T] x [a, 6]) and q > 0 in [0, T] x [a, 6];
(A3) m € C([0, T] x [a, 6]) and m > 0 in [0, T] x [a, 6];
(A4) C(t) e C([0, T]), and C{t) > 0;
(A5) uq € C([a,b]), uo > 0 and satisfies the following compatibility condition:

g(0, a)u0(a) = C(0) + / q(0,x)uo(x)dx.
J a

The plan of our paper is as follows. In Sec. 2 we establish a comparison result for
(1.1). In Sec. 3 we construct monotone sequences of upper and lower solutions and show
their linear convergence to the unique solution of (1.1). In Sec. 4 we present a numerical
example illustrating the simplicity of applying this scheme to approximate the solution
of our equation.

2. Comparison principle. For simplicity, let Dr = (0, T) x (a, b). We begin with
the definition of upper and lower solutions of problem (1.1).

Definition. A function u(t,x) is called an upper (a lower) solution of (1.1) on Dt
if all the following hold:

(i) ueC(DT)nL°°(DT);
(ii) w(0,x) > (<) uo(x) in [o, 6];

(iii) For every t G (0,T) and every nonnegative £{t,x) G C1(Dr),

f\(t,x)£(t,x)dx
> (<) fa "(0, z)£(0, x)dx + f* £(t, a) (c(t) + fba q{r, x)u{t, x)dx^j dr

+ Jo Ja U(T'x) Kt + x)^x] dx dr
fo fa {(r,x)m(T,x)u(T,x)dxdT.

A function u(t,x) is said to be a solution to Eq. (1.1) if it satisfies the definition of
both a lower solution and an upper solution to this equation. With the above definition
we are ready to prove the following theorem.

Theorem 2.1. Let u and v be an upper solution and a lower solution of (1.1), respec-
tively. Then u > v in Dt-

Proof. Let w(t,x) = v — u. Then w satisfies

(2.1) w(0, x) = w(0, x) — u(0, x) < 0 in [a, 6]
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and

fa w(t, x)£(t, x)dx
(2 2) - fo Z(T>a) fa 9(r' x)w(r, x) dx dr

+ fo fa w& + 9{t, x)£x] dx dr
~ fo fa £(r> X) TO(T' X) W(T> X) dx dT'

Letting x) — e_7t£(£, x), where 7 (> 0) is chosen so that 7 — m > 0 on Dt, then we
have that

e7' f^ w(t, x)((t, x)dx
< fl e7TC(r, a) f* q{r, x)w(t, x) dx dr

+ Jo /a W(T' x)e7T[Cr + 9{r, x)(x] dx dr
+ Jo fa eJT((T>x) (7 - "i(r, a1)) W(T> dx dr-

We now set up the following backward problem:

Cr + sCx =0, 0 < t < i, a < x < b,
(2.4) £(r, b) — 0, 0 < r <

C(M) = X(z), a < x < b.

Here x(x) G C0°°(a,6), 0 < x < 1-
The existence of £ € C1(Dt) follows from the fact that by the variable change s = t—r,

(2.4) can be written into

Cs - g(x = 0, 0 < s < t, a < x < b,
(2.5) £(s,6) = 0, 0 < s < t,

C(0,x) = x(x)> a < x < b.
Note that the initial and boundary values for £ imply that 0 < C < 1 on Dt-

Substituting such a ( in (2.3) yields
nb ft pb

(2.6) / w(t,x)x(x)dx < L / / w(t,x)+ dxdr,
J a Jo J a

where L = max [q(t, x) + 7 — m(t, a;)].
Dt

Since this inequality holds for every x, we can choose a sequence {xn} °n (a, b) con-
verging to

1 if w(t, x) > 0,
0 otherwise.X={

Consequently, we find that
fb nt nb

/ w(t,x)+dx < L / / w(T,x)+dxdr,
J a J 0 J a

ds

fJ a

which by Gronwall's inequality leads to
rb

w(t, x)+dx = 0

Thus, the conclusion follows.
Remark 2.2. If we assume that u,v £ L°°(Dt), then we obtain that u > v a.e. on

Dt-
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3. Monotone approximation scheme. We start this section by constructing
monotone sequences of upper and lower solutions. To this end, let a°(t,x) and /3°(t,x)
be a lower solution and an upper solution of (1.1), respectively. We now define our two
sequences {a^}^ and as follows:

at + (^(^i X)ak)x = —m(t,x) ak, 0 <t<T, a < x < b,
(3.1) g(t,a)ak(t,a) = Rk~l(t), 0 <t<T,

ak(0,x) = uq(x), a < x <b,

where Rk~1(t) = C(t) + q(t,x)ak~1(t,x)dx, and

Pt + (g(t,x)/3k)x = —m(t,x) (3k, 0 <t <T, a < x < b,
(3.2) g{t,a)Pk{t,a) = 0 < t < T,

(3k{0,x) = uq(x), a < x <b,

where Bk~1(t) = C(t) + q(t, x)(3k~l (t, x)dx.
The existence of ak and (3k follows from the fact that Rk~x and Bk^1 are given

functions; hence these systems can be solved using the method of characteristics [3, 4, 5,
10]. In fact, the equations for the characteristic curves are given by

(3.3)
-^x(s) = g{t(s),x(s)).

Along a characteristic curve (t(s), x(s)), the solution ak to Eq. (3.1) satisfies the following
ordinary differential equation:

(3.4) ^ak(s) = ~{gx(t{s),x{s)) + m(t(s), x(s)))ak(s).

Under assumption (Al), Eq. (3.3) has a unique solution for any initial point (t(so),x(so)).
If we parametrize the characteristic curves with the variable t, then a characteristic curve
passing through (t,x) is given by (t, X(t; t, x)), where X satisfies

:{t;t,x) = g(t,X(t-,t,x))

and X(t: t, x) = x. By (Al) the function A is a strictly increasing function, and therefore
a unique inverse function F(x;£,x) exists. Hence if we define G(x) = T(x;0,a), then
(G(x), x) represents the characteristic curve passing through (0, a) and this curve divides
the (t,x)-plane into two parts. For any point (t,x) with t < G(x), the solution ak(t,x)
is determined through the initial condition by

(3.5)

ak(t,x) — uo(A(0; t,x)) exp |- J (gx(s,X(s-, t,x)) + m(s, A(s; t, x)))ds|.
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On the other hand, if t > G(x) then the solution is determined via the boundary condition
by
(3.6)

ak(t, x) — Rh~l(T(a; t,x)) exp < — / (gx(s, X(s~,t,x)) + m(s, X(s;t,x)))ds>,
Jr (a;t,x) J

where Rk~l(t) = ————. A similar representation can be obtained for the solution

6fc-i
(3kto Eq. (3.2) by replacing with Bk~1, where Bk~1 = — 

g(t,a)
Our next task is to show that the sequences {afc}fc_0 and {/?fe}fc_0 are monotone. To

this end, let w = a0 — a1. Then w satisfies (2.1)-(2.2). Hence, by the comparison result,
w(t,x) < 0, which implies that a0 < a1. Similarly, we can show that (3° > /31, a1 < (3°,
and a0 < /31. Prom this, it easily follows that a1 and /31 are a lower solution and an
upper solution, respectively. Hence, a1 < /31.

Proceeding in a similar manner we can show that ah < ak+l < (3h+l < (3k and that
ak+1 and (3k+l are also a lower solution and an upper solution of (1.1), respectively.
Hence by induction, we obtain two monotone sequences that satisfy

a0 < a1 <■■■< ak < (3k <■■■< /3l < (3° in Dr

for each k = 0,1,2, We remark that from the monotonicity of the sequences
and {/3fe}^ln there exist functions a and f3 such that ak —> a and (3k —> (3 pointwise in

Dr.
Having established the monotonicity of our sequences, we now prove the following

convergence result.

Theorem 3.1. Suppose that a°(t,x) and (3°(t,x) are a lower solution and an upper
solution of (1.1), respectively. Then, the sequences {afc}^_Q and {/3k}^_0 converge
uniformly to the unique solution u(t,x) of Eq. (1.1) on Dr- Moreover, the order of
convergence is linear.

Proof. We first prove the convergence result for the sequence {afc}^0. To this end,
using standard arguments (see, [8] p. 189), the solution representation for ak given in
(3.5)-(3.6), the fact that a0 < ak < (3°, and the monotonicity of the sequence {afc}, we
have that along the characteristic curves passing through the points (0,xo), the solution

ak(t, X(t; 0, x0)) = u0(x0) exp (gx(s,X(s;0,x0)) + m(s, X(s; 0, x0)))c;s|

coincides with

a(t,X(t;0,xo) = uo(xo) exp j-l J (gx(s, X(s; 0, x0)) + m(s, X(s; 0, x0)))ds|

on 0 < t < T. Similarly, since Rk(t) is monotone and uniformly bounded on the interval
0 < t < T, along the characteristic curves passing through (to, a), the solution

ak(t,X(t;t0,a)) = Rk~1 (t0) exp (gx(s,X(s;t0,a)) + m(s, X(s; t0, a)))ds
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converges to

a(t,X(t;t0,a) = R(t0) exp (gx(s,X(s;t0,a)) + m(s,X(s;t0,a)))ds

uniformly and monotonically on to < t < T, where

R(t) = ——- I C(t) + I q(t,x)a(t,x)dx ] .

Consequently, we can define

(3.7)
{ «o(X(0;i,x))expj-/J (&,($, X(s;f,x))+m(s,A:(s;i,x)))<isJ, t < G(x),

R(T{a; t, x)) exp|- fp{a.t x) (gx(s,X(s-,t,x))+m(s,X(s;t,x)))ds^, t > G(x).
u(t, x) ■

Now using the compatibility condition (A5) imposed on uq, the continuity of the limit
function u(t, x) is easily established. Furthermore, we can show that u(t, x) is a solution
of Eq. (1.1). In a similar manner, we can obtain a continuous limit function u from the
sequence {/3fc}^Q. Using the comparison result, we have that u = u = u. This proves
the existence of a solution. The uniqueness follows immediately from Theorem 2.1. In
particular, if u and v are two solutions of Eq. (1.1), then from Theorem 2.1 we obtain that
v < u and u < v. As for the linear convergence, subtracting the solution representation
of ak given in (3.5)-(3.6) from that of the limit function u(t,x) given in (3.7), we get

Iak(t x) - u(t x)l < i t ~

where M = sup^T exp Jr(a-t,x)(9x{s, X(s; t, x)) + m{s, A(s; t, x)))ds|. Hence taking

the supremum over all t € [0, T\ and x € [a, b], we get

sup |ak(t,x) — u(t,x)| < M||g||oc(6 — a) sup \ak~1(t,x) — u(t,x)|.
Dt Dt

4. Numerical results. For our numerical example, we have chosen the following
initial condition and parameter functions

Uo = cos 47tx + 2, g(t,x) = 1 — x, C = 0, q(t, x) = 3xe_t, and m(t,x) = 2xe°'bt.

We set a°(t,x) = u0(x)e_15t. It can easily be verified that a°(t,x) generates a lower
solution for our example problem. To solve Eq. (1.1), we use a first-order discretization
of the solution representation for the approximation scheme given in (3.5)-(3.6) with k =
0,1,..., 10. In this example, the interval [a, 6] = [0,1] and the final time T = 1. In Figure
1 we present the final iteration a10(f, x). We note that supjj \aU)(t,x)—a9(t.,x)\ « 10~12,
which indicates the rapid convergence of this method.
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Fig. 1. The approximate solution a:10(t,x).
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