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Abstract. In this paper, a monotone Bregan projection algorithm is investigated for solving equilibrium
problems and common fixed point problems of a family of closed multi-valued Bregman quasi-strict
pseudocontractions. Strong convergence is guaranteed in the framework of reflexive Banach spaces.

1. Introduction-Preliminaries

Fixed Point Theory is a fascinating key component of nonlinear functional analysis. It has a large
number of theoretical and real world applications in many fields, for example, machine learning, differential
equations, game theory, economics, transportation, and control theory; see [2, 13, 20]. During the last
decade, many convergence theorems for various convex optimization problems were established in infinite
dimensional real Hilbert spaces through fixed point methods; see [8–11, 18, 19, 21, 28, 29] and the references
therein. In the Banach setting, the approximation of fixed points via hybrid techniques is important,
however, there are few results since the duality mapping is not easy to calculated in Banach spaces. In this
paper, we are concerned with an equilibrium problem via a fixed method in the Banach setting.

Let E be a real reflexive Banach space with the norm ‖ · ‖ and let E∗ be the dual space of E. Let
f : E → (−∞,+∞] be a convex, proper and lower semi-continuous function. In this paper, we denote the
domain of f by dom f , i.e., dom f := {x ∈ E : f (x) < +∞}. Let N and R be the sets of positive integers
and real numbers, respectively. Let any x ∈ int dom f and y ∈ E, the right-hand derivative of f at x in the
direction of y is defined by

f ◦(x, y) = lim
t→0+

f (x + ty) − f (x)
t

.

Recall that the function f is said to be Gâteaux differentiable if it is Gâteaux differentiable for any x ∈ int
dom f ; Gâteaux differentiable at x if the limit f ◦(x, y) exists for any y; uniformly Fréchet differentiable on a
subset C of E if the limit f ◦(x, y) is attained uniformly for x ∈ C and ‖y‖ = 1; Fréchet differentiable at x if
the limit f ◦(x, y) is attained uniformly in ‖y‖ = 1. For function f , the following facts are known. (i) If f is
Gâteaux differentiable at x, then f ◦(x, y) coincides with O f (x), the value of the gradient O f of f at x; (ii) If a
continuous convex function f → R is Gâteaux differentiable, ∇ f is norm-to-weak∗ continuous; (iii) If f is
Fréchet differentiable, ∇ f is norm-to-norm continuous.
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Let x ∈ int dom f . The subdifferential of f at x is the convex set defined by

∂ f (x) = {x∗ ∈ E∗ : f (x) − f (y) ≤ 〈x∗, x − y〉, ∀ y ∈ E}.

The Fenchel conjugate of f is the function f ∗ : E∗ → (−∞,+∞] defined by

f ∗(x∗) = sup{〈x∗, x〉 − f (x) : x ∈ E}, ∀x∗ ∈ E∗.

Recall that a function f is said to be (i) essentially stirctly convex if (∂ f )−1 is locally bounded on its
domain and f is strictly convex on every convex subset of dom∂ f ; (ii) essentially smooth if ∂ f is both locally
bounded and single-valued on its domain; (iii) Legendre, if it is both essentially smooth and essentially
strictly convex.

In the framework of reflexive Banach spaces, we have the following facts: (i) f is essentially smooth
if and only if f ∗ is essentially strictly convex; (ii) (∂ f )−1 = ∂ f ∗; (iii) f is Legendre if and only if f ∗ is
Legendre; (iv) If f is Legendre, then ∇ f is bijection satisfying ∇ f = (∇ f ∗)−1, ran∇ f=dom∇ f ∗=int dom f ∗ and
ran∇ f ∗=dom∇ f=int dom f .

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The Bregman distance with respect to f is
the function D f : dom f×int dom f → [0,+∞) defined by

D f (y, x) := f (y) − f (x) − 〈O f (x), y − x〉.

We remark here that the Bregman distance is not a distance in the usual sense.
Recall that bifunction V f : E × E∗ → [0,∞) associated with f is defined by

V f (x, x∗) = f (x) + f ∗(x∗) − 〈x, x∗〉, ∀ x ∈ E, x∗ ∈ E∗.

Then V f is nonnegative and satisfies V f (x, x∗) = D f (x,∇ f ∗(x∗)), ∀x ∈ E, x∗ ∈ E∗. D f (·, ·) has the following
important property, called ”three point identity”. For any x ∈ dom f and y, z ∈ int dom f ,

〈O f (z) − O f (y), x − y〉 = D f (x, y) + D f (y, z) −D f (x, z).

Let f : E→ (−∞,+∞] be a convex and Gâteaux differentiable function and let C ⊂ dom f be a nonempty,
closed, and convex set. The Bregman projection x ∈ int dom f onto C is the unique vector P f

C(x) ∈ C satisfying

D f (P
f
C(x), x) = inf{D f (y, x) : y ∈ C}.

Letting f (x) = ‖x‖2, ∀x ∈ E, we find that the Bregman projection P f
C(x) is reduced the generalized projection

ΠC(x), defined by ΠC(x) = arg miny∈C φ(y, x).
Let Br := {z ∈ E : ‖z‖ ≤ r} and SE = {x ∈ E : ‖x‖ = 1}. Then, a function f : E → R is said to be uniformly

convex on bounded subsets of E if ρr(t) > 0 for all r, t > 0, where ρr : [0,∞)→ [0,∞] is defined by

ρr(t) := inf
x,y∈Br,‖x−y‖=t,α∈(0,1)

α f (x) + (1 − α) f (y) − f (αx + (1 − α)y)
α(1 − α)

.

Let f : E → (−∞,+∞] be Gâteaux differentiable. The modulus of total convexity of f at x ∈ dom f is the
function ν f (x, ·) : [0,+∞)→ [0,+∞] defined by

ν f (x, t) := inf{D f (y, x) : y ∈ dom f , ‖y − x‖ = t}.

The modulus of the total convexity of the function f on the set B is the function ν f : int dom f × [0,+∞)→
[0,+∞] defined by ν f (B, t) := inf{ν f (x, t) : x ∈ B ∩ dom f }.

Recall that a function f is said to be: (i) totally convex at x if ν f (x, t) > 0, whenever t > 0; (ii) totally
convex if it is totally convex at any point x ∈ int dom f ; (iii) totally convex on bounded sets if ν f (B, t) > 0 for
any nonempty bounded subset B of E and t > 0.
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A function f is said to be: strongly coercive if lim‖x‖→∞ f (x)/‖x‖ = ∞; sequentially consistent if for any
two sequences {xn} and {yn} in E such that the first one is bounded,

lim
n→∞

D f (yn, xn) = 0 ⇒ lim
n→∞
‖yn − xn‖ = 0.

Let C be a nonempty, closed, and convex subset of E. We use CB(C) to denote the family of nonempty
closed bounded subsets of C. Let H(·, ·) be the Hausdorff metric on CB(C) defined by

H(A,B) = max{sup
y∈B

d(y,A), sup
x∈A

d(x,B), }, ∀A,B ∈ CB(C),

where d(a,B) = inf{‖a − b‖ : b ∈ B} is the distance from point a to subset B. Let T : C → CB(C) be a
multi-valued mapping. The fixed point set of T is denoted by F(T) := {p ∈ C : p = T(p)}. Recall that T is said
to be multi-valued Bregman quasi-nonexpansive with respect to f if F(T) , ∅ and

D f (p,u) ≤ D f (p, x), ∀u ∈ Tx, x ∈ C, p ∈ F(T).

If f (x) = ‖x‖2 for all x ∈ E, it becomes a multi-valued quasi-φ-nonexpansive mapping, that is,

φ(p,u) ≤ φ(p, x), ∀u ∈ Tx, x ∈ C, p ∈ F(T).

Recall that T is said to be multi-valued Bregman quasi-strictly pseudo-contractive with respect to f if
F(T) , ∅ and

D f (p,u) ≤ D f (p, x) + kD f (x,u), ∀u ∈ Tx, x ∈ C, p ∈ F(T).

If f (x) = ‖x‖2 for all x ∈ E, it becomes a multi-valued quasi-φ-strictly pseudo-contractive mapping, that is,

φ(p,u) ≤ φ(p, x) + kφ(x,u), ∀u ∈ Tx, x ∈ C, p ∈ F(T).

Let 1 : C × C→ R be a bifunction. Recall that the equilibrium problem in the sense of Blum and Oettli
[5] is find x̃ such that

1(x̃, y) ≥ 0, ∀y ∈ C. (1)

In this paper, the set of solutions of the equilibrium problem is denoted by EP(1). Equilibrium problem
1 provides us a a general and unified framework to study a wide class of problems arising in convex
optimization problems; see [6, 12, 15, 16, 22] and the references.

In view of the generality and importance of equilibrium problems, fixed point algorithms have been
extensively investigated for approximation solutions of problem (1); see [1, 7, 14, 23, 27, 33] and the references
therein. It is known that Picard iterative method may fail to converge for nonexpansive-type mappings
whose complementary mappings are monotone. Mann-type iterative method which is one of most popular
iterative methods has recently attracted much attention in optimization and analysis communities. Mann-
type iterative method is efficient for nonexpansive-type mappings, however, it is only weakly convergent
in the framework of infinite dimensional spaces. To modify the Mann-type iterative method such that
the strong convergence is guaranteed without compact assumptions, hybrid projection techniques were
considered; see [26, 30, 34]. Unfortunately, the success achieved in using geometric properties in Hilbert
spaces is not easy to carry over to the framework of Banach spaces. The main difficulty is that the normalized
duality map appears in most Banach space inequalities This creates very serious technical difficulties in
computation. Recently, attempts with the Bregman distance have been made to overcome these difficulties;
see [17, 24, 25, 31, 32] and the references therein.

In this article, a monotone Bregan projection algorithm is investigated for solving equilibrium problems
and common fixed point problems of a family of closed multi-valued Bregman quasi-strict pseudocontrac-
tions. Strong convergence is guaranteed in the framework of reflexive Banach spaces. Our algorithm is
efficient for an infinite family of mappings, which is one of the highlights of this paper.

To study equilibrium problem (1), we impose the following restrictions on bifunction 1.
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(R-1) 1(x, x) ≡ 0,∀a ∈ C;

(R-2) 1(x, y) ≥ lim supt↓0 1(tz + (1 − t)x, y), ∀x, y, z ∈ C;

(R-3) 1(y, x) + 1(x, y) ≤ 0,∀x, y ∈ C;

(R-4) y 7→ 1(x, y) is convex and weakly lower semi-continuous, ∀x ∈ C.

There are a lot of bifunction satisfying the above restrictions, for example, 1(x, y) = y − x. For r > 0, the
resolvent operator of bifunction 1, Res1r : E→ C is defined as follows:

Res1r (x) = {z ∈ C : 〈y − z,∇ f (z) − ∇ f (x)〉 + r1(z, y) ≥ 0, ∀ y ∈ C}, ∀x ∈ E. (2)

Lemma 1.1. [11] Let E be a reflexive Banach space and let C be a nonempty, closed, and convex subset of E. Let
f : E → R be a convex, continuous, and strongly coercive function which is bounded on bounded subsets and
uniformly convex on bounded subsets of E. Let 1 : C × C → R be a bifunction satisfying (R-1)-(R-4) and let
Res1r : E→ C be resolvent defined by (2). Then the following statements hold:

(a) Res1r is single-valued;
(b) F(Res1r ) = EP(1);
(c) EP(1) is closed and convex;
(d) D f (p,Res1r x) + D f (Res1r x, x) ≤ D f (p, x), ∀ p ∈ EP(1), ∀ x ∈ E.

Lemma 1.2. [4] Suppose that f is Gâteaux differentiable and totally convex on int dom f . Let x ∈ int dom f and let
C ⊂ int dom f be a nonempty, closed and convex set. If x̂ ∈ C, then the following conditions are equivalent:

(i) The vector x̂ is the unique solution of the variational inequality

〈O f (x) − O f (x̂), x̂ − y〉 ≥ 0, ∀ y ∈ C,

(i) The vector x̂ is the unique solution of the inequality

D f (y, x̂) + D f (x̂, x) ≤ D f (y, x), ∀ y ∈ C,

(iii) The vector x̂ is the Bregman projection of x onto C with respect to f , i.e., x̂ = P f
C(x).

Lemma 1.3. [3] Let f : E → R be a Gâteaux differentiable and totally convex function. If x0 ∈ E and the sequence
{D f (xn, x0)} is bounded, then the sequence {xn} is bounded too.

Lemma 1.4. [3] Suppose x ∈ E and y ∈ int dom f . If f is essentially strictly convex, then D f (x, y) = 0 ⇔ x = y.
Function f is sequentially consistent if and only if f is totally convex on bounded sets.

Lemma 1.5. [3] Let f : E → R be a convex function which is bounded on bounded subsets of E. f ∗ is Fréchet
differentiable and ∇ f ∗ is uniformly norm-to-norm continuous on bounded subsets of dom f ∗=E∗ if and only if f is
strongly coercive and uniformly convex on bounded subsets of E.

Lemma 1.6. Let f : E→ R be a Legendre function which is uniformly Fréchet differentiable and bounded on subsets
of E. Let C be a nonempty, closed, and convex subset of E and let T : C → CB(C) be a multi-valued Bregman
quasi-strictly pseudocontractive mapping with respect to f . Then, for any x ∈ C, u ∈ Tx, p ∈ F(T) and k ∈ [0, 1) the
following hold:

D f (x,u) ≤
1

1 − k
〈x − p,∇ f (x) − ∇ f (u)〉.

Proof. Let x ∈ C, u ∈ Tx, p ∈ F(T) and k ∈ [0, 1), by the definition of T, we have

D f (p,u) ≤ D f (p, x) + kD f (x,u).
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This implies that
D f (p, x) + D f (x,u) + 〈p − x,∇ f (x) − ∇ f (u)〉 ≤ D f (p, x) + kD f (x,u).

Hence, one has

D f (x,u) ≤
1

1 − k
〈x − p,∇ f (x) − ∇ f (u)〉.

This completes the proof.

Lemma 1.7. Let f : E→ R be a Legendre function which is uniformly Fréchet differentiable on bounded subsets of E.
Let C be a nonempty, closed, and convex subset of E and let T : C→ CB(C) be a multi-valued Bregman quasi-strictly
pseudocontractive mapping with respect to f . Then F(T) is a convex and closed set.

Proof. Let x, y ∈ F(T) and p = tx + (1 − t)y for t ∈ (0, 1). For all w ∈ Tp, one has

D f (p,w) ≤
1

1 − k
〈p − y,∇ f (p) − ∇ f (w)〉 (3)

and

D f (p,w) ≤
1

1 − k
〈p − x,∇ f (p) − ∇ f (w)〉 (4)

respectively. Multiplying (3) by (1 − t) and (4) by t, we have

D f (p,w) ≤
1

1 − k
〈p − p,∇ f (p) − ∇ f (w)〉,

which implies D f (p,w) = 0. From Lemma 1.4, we have p = w, that is, F(T) is convex.
Next, we show that F(T) is closed. Let {xn}n∈N be a sequence in F(T) such that xn → x∗ as n → ∞. We

prove that x∗ ∈ F(T). In fact, for all u ∈ Tx∗, we have

D f (x∗,u) ≤
1

1 − κ
〈x∗ − xn,∇ f (x∗) − ∇ f (u)〉, (5)

which implies D f (x∗,u) = 0 by taking limit n → ∞ in (5). Using Lemma 1.4 we obtain x∗ = u, that is,
x∗ ∈ F(T). So F(T) is closed. This completes the proof.

2. Main results

In this section, we state and prove our main theorem.

Theorem 2.1. Let E be a real reflexive Banach space and let C be a nonempty, closed and convex subset of E. Let
f : E → R be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of E. Let

∏
be a index set. Let Ti : C → CB(C) be a closed and multi-valued Bregman

quasi-strict pseudocontraction with fixed points. Let 1i be a bifunction with (R-1), (R-2), (R-3) and (R-4) for each
i ∈
∏

. Assume that Ω := ∩i∈
∏F(Ti)

⋂
∩i∈
∏EP(1i) , ∅. Let {xn}n∈N be a sequence generated by the following iterative

algorithm:

x0 ∈ E chosen arbitrarily,
C1,i = C,
C1 = ∩i∈

∏C1,i,

x1 = P f
C1

(x0),
yn,i = ∇ f ∗[αn∇ f (xn) + (1 − αn)∇ f (zn,i)], zn,i ∈ Tixn,

rn,i1i(un,i, y) + 〈y − un,i,∇ f (un,i) − ∇ f (yn,i)〉 ≥ 0, ∀ y ∈ C,
Cn+1,i = {z ∈ Cn,i : D f (z,un,i) ≤ D f (z, yn,i) ≤ D f (z, xn) + κ

1−κ 〈xn − z,∇ f (xn) − ∇ f (zn,i)〉},
Cn+1 = ∩i∈

∏Cn+i,i,

xn+1 = P f
Cn+1

(x1),

(6)
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where κ ∈ [0, 1), lim infn→∞ rn,i > 0, for ∀i ∈
∏

. Then {xn} converges strongly to p̂ = P f
Ω

(x1), where P f
Ω

is the
Bregman projection from E onto Ω.

Proof. From Lemma 1.1 and Lemma 1.7, we see that F(T)∩EP(1) is convex and closed. Hence P f
F(T)∩EP(1)(x1)

is well defined. Next, we prove that Cn is also convex and closed. It suffices to show that, for each fixed
but arbitrary i ∈

∏
, Cn,i is a convex and closed set. It is obvious that C1,i = C is convex and closed. We now

let Cm,i is a convex and closed set for some m ≥ 1. Letting z1 and z2 be two arbitrary points in Cm+1,i, we find
that z1, z2 ∈ Cm,i. Set z1,2 = λz1 + (1 − λ)z2, where λ is a real number in (0, 1). Since f is convex, we find that

D f (z1,2,um,i) ≤ D f (z1,2, ym,i) ≤ D f (z1,2, xm) +
κ

1 − κ
〈xm − z1,2,∇ f (xm) − ∇ f (zm,i)〉

In view of z1,2 ∈ Cn,i, we obtain that Cn,i ∈ Cm+1,i. This proves that Cm+1,i is a convex and closed set. Hence,
Cn,i is also a convex and closed set. This implies that ∩i∈

∏Cn,i is convex and closed. So, P f
Ω

(x0) is well
defined.

Next, we show that Ω ⊂ Cn. Ω ⊂ C1 = C is obvious. Let Ω ⊂ Cm,i. Note that um = Res1rm
ym. For any

w ∈ Ω ⊂ Cm,i, we derive that

D f (w,um) = D f (w,∇ f ∗[αm∇ f (xm) + (1 − αm)∇ f (zm)])
= f (w) − 〈w, αm∇ f (xm) + (1 − αm)∇ f (zm)〉

+ f ∗(αm∇ f (xm) + (1 − αm)∇ f (zm))
≤ αm f (w) − αm〈w,∇ f (xm)〉 + αm f ∗(xm)

+ (1 − αm) f (w) − (1 − αm)〈w,∇ f (zm)〉 + (1 − αm) f ∗(∇ f (zm))
= (1 − αm)D f (w, zm) + αmD f (w, xm)
≤ (1 − αm)[D f (w, xm) + kD f (xm, zm)] + αmD f (w, xm)

≤
(1 − αm)k

1 − k
〈xm − w,∇ f (xm) − ∇ f (zm)〉 + D f (w, xm)

≤
k〈xm − w,∇ f (xm) − ∇ f (zm)〉

1 − k
+ D f (w, xm),

that is, w ∈ Cm+1,i. This proves that Ω ⊂ Cn,i, which further implies that Ω ⊂ Cn = ∩i∈
∏Cn,i. Using Lemma

1.2 yields that
〈y − xn,∇ f (x1) − ∇ f (xn)〉 ≤ 0, ∀ y ∈ Cn,

It follows from Ω ⊂ Cn that

〈w − xn,∇ f (x1) − ∇ f (xn)〉 ≤ 0, ∀ w ∈ Ω. (7)

From Lemma 1.2, one has

D f (xn, x1) = D f (P
f
Cn

(x1), x1) ≤ D f (w, x1) −D f (w,P
f
Cn

(x1)) ≤ D f (w, x1),

for each w ∈ Ω. Therefore, {D f (xn, x1)} is bounded. An application of Lemma 1.3 yields that {xn} is
a bounded sequence. In view of the fact that xn+1 = P f

Cn+1
(x1) ∈ Cn+1 ⊂ Cn, and Since xn = P f

Cn
(x1),

one has D f (xn, x1) ≤ D f (xn+1, x1). This implies that {D f (xn, x1)} is a nondecreasing sequence. Therefore
limn→∞D f (xn, x1) exists. Since {xn} is a bounded sequence and space E is a reflexive space, there exists a
subsequence {xn j } ⊂ {xn} such that xn j ⇀ p̂. Since Cn is closed and convex, we find that p̂ ∈ Cn. On the other
hand, one has

D f (xn j , x1) ≤ D f (̂p, x1), ∀ n j ∈N ∪ {0}. (8)
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On the other hand, one has

lim inf
j→∞

D f (xn j , x1) = lim inf
j→∞

{ f (xn j ) − f (x1) − 〈∇ f (x1), xn j − x1〉}

≥ f (̂p) − f (x1) − 〈∇ f (x1), p̂ − x1〉

= D f (̂p, x1).

(9)

It follows from (8) and (9) that

D f (̂p, x1) ≤ lim inf
j→∞

D f (xn j , x1) ≤ lim sup
j→∞

D f (xn j , x1) ≤ D f (̂p, x1).

Hence, lim j→∞D f (xn j , x1) = D f (̂p, x1). Employing Lemma 1.2, one obtains that D f (̂p, xn j ) ≤ D f (̂p, x1) −
D f (xn j , x1). Hence, lim j→∞D f (̂p, xn j ) = 0. Using Lemma 1.4 that lim j→∞ xn j = p̂. Since {D f (xn, x0)} is a
convergent sequence, one obtains that

lim
n→∞

D f (xn, x1) = D f (̂p, x1). (10)

Using Lemma 1.2, one has

D f (̂p, xn) ≤ D f (̂p, x1) −D f (xn, x1). (11)

Letting n→∞ in (11), one finds from Lemma 1.4 that

lim
n→∞

xn = p̂. (12)

On the other hand, one has

D f (xn+1,un,i) ≤ D f (xn+1, yn,i) ≤ D f (xn+1, xn) +
κ

1 − κ
〈xn − xn+1,∇ f (xn) − ∇ f (zn,i)〉,

which together with (12) implies that

lim
n→∞

D f (xn+1,un,i) = lim
n→∞

D f (xn+1, yn,i) = 0.

Since f is totally convex on bounded subsets of E, and sequentially consistent, one sees that

lim
n→∞
‖xn+1 − yn,i‖ = 0, lim

n→∞
‖xn+1 − un,i‖ = 0. (13)

From (12) and (13), one obtains that

lim
n→∞
‖xn − yn,i‖ = 0, lim

n→∞
‖xn − un,i‖ = 0. (14)

Since ∇ f is uniformly continuous on each bounded subset of E, one has

lim
n→∞
‖∇ f (xn) − ∇ f (yn,i)‖ = 0. (15)

It follows that

lim
n→∞
‖∇ f (xn) − ∇ f (zn,i)‖ = lim

n→∞

1
1 − αn

‖∇ f (xn) − ∇ f (yn,i)‖ = 0. (16)

Using Lemma 1.6, we find from (16) that limn→∞ ‖xn − zn,i‖ = 0. Therefore limn→∞ zn,i = limn→∞ xn = p̂. In
view of zn,i ∈ Tixn, and from the closedness of Ti, it follows p̂ ∈ F(Ti). Hence, p̂ ∈ ∩i∈

∏F(Ti).
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Next, we prove p̂ ∈ ∩i∈
∏EP(1i). Since ‖un,i − yn,i‖ ≤ ‖xn − yn,i‖+ ‖un,i − xn‖, we find from (14), one obtains

that limn→∞ ‖un,i − yn,i‖ = 0. Since ∇ f is uniformly norm-to-norm continuous on bounded subsets of E, one
has

lim
n→∞

‖∇ f (un,i) − ∇ f (yn,i)‖
rn,i

= 0, (17)

which together with un = Res1rn,i
yn,i implies that

rn,i1i(un,i, y) + 〈y − un,i,∇ f (un,i) − ∇ f (yn,i)〉 ≥ 0, ∀ y ∈ C.

Hence, one has

‖y − un,i‖
‖∇ f (un,i) − ∇ f (yn,i)‖

rn,i
≥
〈y − un,i,∇ f (un,i) − ∇ f (yn,i)〉

rn,i
≥ 1i(y,un,i), ∀y ∈ C.

Using (17), one sees that 1i(y, p̂) ≤ 0, ∀y ∈ C. For ti ∈ (0, 1) and y ∈ C, letting yti = tiy + (1 − ti )̂p, we have
1i(yti , p̂) ≤ 0. Hence

0 = 1i(yti , yti ) ≤ (1 − ti)1i(yti , p) + ti1i(yti , y) ≤ ti1i(yti , y).

Dividing by ti, one has 1i(yt, y) ≥ 0, ∀y ∈ C. Letting t ↓ 0, one finds that 1i(̂p, y) ≥ 0, ∀y ∈ C. Hence
p̂ ∈ ∩i∈

∏EP(1i). This proves that p̂ ∈ Ω.
Finally, we take n→∞ in (7) and obtain that

〈w − p̂,∇ f (x1) − ∇ f (xn)〉 ≤ 0, ∀ w ∈ Ω.

Using Lemma 1.2, one has p̂ = P f
Ω

(x1). This completes the proof.

For the class of multi-valued Bregman quasi-nonexpansive mappings, we find the following result
easily.

Corollary 2.2. Let E be a real reflexive Banach space and let C be a nonempty, closed and convex subset of E. Let
f : E → R be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of E. Let

∏
be a index set. Let Ti : C → CB(C) be a closed and multi-valued Bregman

quasi-nonexpansive mapping with fixed points. Let 1i be a bifunction with (R-1), (R-2), (R-3) and (R-4) for each
i ∈
∏

. Assume that Ω := ∩i∈
∏F(Ti)

⋂
∩i∈
∏EP(1i) , ∅. Let {xn}n∈N be a sequence generated by the following iterative

algorithm: 

x0 ∈ E chosen arbitrarily,
C1,i = C,
C1 = ∩i∈

∏C1,i,

x1 = P f
C1

(x0),
yn,i = ∇ f ∗[αn∇ f (xn) + (1 − αn)∇ f (zn,i)], zn,i ∈ Tixn,

rn,i1i(un,i, y) + 〈y − un,i,∇ f (un,i) − ∇ f (yn,i)〉 ≥ 0, ∀ y ∈ C,
Cn+1,i = {z ∈ Cn,i : D f (z,un,i) ≤ D f (z, yn,i) ≤ D f (z, xn)},
Cn+1 = ∩i∈

∏Cn+i,i,

xn+1 = P f
Cn+1

(x1),

where lim infn→∞ rn,i > 0, for ∀i ∈
∏

. Then {xn} converges strongly to p̂ = P f
Ω

(x1), where P f
Ω

is the Bregman
projection of E onto Ω.

If f (x) = ‖x‖2, ∀x ∈ E, then the class of multi-valued Bregman quasi-strict pseudo-contractions is reduced
to the class of multi-valued quasi-φ-strict pseudo-contractions. We have the following result.
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Corollary 2.3. Let E be a real reflexive Banach space and let C be a nonempty, closed and convex subset of E. Let
f : E → R be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of E. Let

∏
be a index set. Let Ti : C → CB(C) be a closed and multi-valued Bregman

quasi-strict pseudocontraction with fixed points. Let 1i be a bifunction with (R-1), (R-2), (R-3) and (R-4) for each
i ∈
∏

. Assume that Ω := ∩i∈
∏F(Ti)

⋂
∩i∈
∏EP(1i) , ∅. Let {xn}n∈N be a sequence generated by the following iterative

algorithm: 

x0 ∈ E chosen arbitrarily,
C1,i = C,
C1 = ∩i∈

∏C1,i,

x1 = P f
C1

(x0),
yn,i = J−1[αn J(xn) + (1 − αn)J(zn,i)], zn,i ∈ Tixn,

rn,i1i(un,i, y) + 〈y − un,i, J(un,i) − J(yn,i)〉 ≥ 0, ∀ y ∈ C,
Cn+1,i = {z ∈ Cn,i : φ(z,un,i) ≤ φ(z, yn,i) ≤ φ(z, xn) + κ

1−κ 〈xn − z, J(xn) − J(zn,i)〉},
Cn+1 = ∩i∈

∏Cn+i,i,

xn+1 = P f
Cn+1

(x1),

where κ ∈ [0, 1), lim infn→∞ rn,i > 0, for ∀i ∈
∏

. Then {xn} converges strongly to p̂ = P f
Ω

(x1), where P f
Ω

is the
generalized projection of E onto Ω.

Let E be a real Banach space and let E∗ be the dual space of E. Let C be nonempty closed and convex
subset of E and let A : C ⊆ E→ E∗ be a nonlinear mapping. The variational inequality problem for mapping
A and its domain C is to find x̄ ∈ C such that

〈Ax̄, y − x̄〉 ≥ 0, ∀ y ∈ C. (18)

The set of solutions of the variational inequality problem is denoted by VI(C,A).
Recall that a mapping A : C→ E∗ is called monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀ x, y ∈ C.

A mapping A : C→ E∗ is said to be γ-inverse strongly monotone if there exists γ > o such that

〈Ax − Ay, x − y〉 ≥ γ‖Ax − Ay‖2, ∀ x, y ∈ C.

Lemma 2.4. Let f : E → (−∞,+∞] be a coercive Legendre function and let C be a nonempty, closed and convex
subset of E. Let A : C→ E∗ be a continuous monotone mapping. For s > 0 and x ∈ E, define a mapping Res f

s : E→ C
as follows: for all x ∈ E,

ResA
s := {z ∈ C : 〈∇ f (z) − ∇ f (x), y − z〉 + s〈Az, y − z〉 ≥ 0, ∀y ∈ C}

Then the following hold:
(1) ResA

s is single-valued;
(2) F(ResA

s ) = VI(C,A);
(3) D f (p,ResA

s x) + D f (ResA
s x, x) ≤ D f (p, x), for p ∈ F(ResA

s );
(4) VI(C,A) is closed and convex.

Based on above lemma and Theorem 2.1, the following result is not hard to derive.

Corollary 2.5. Let E be a real reflexive Banach space and let C be a nonempty, closed and convex subset of E. Let
f : E → R be a strongly coercive Legendre function which is bounded, uniformly Fréchet differentiable, and totally
convex on bounded subsets of E. Let

∏
be a index set. Let 1i be a bifunction with (R-1), (R-2), (R-3) and (R-4) for

each i ∈
∏

. Let Ai : C→ E∗ be a continuous monotone mapping with a mapping ResAi
si

: E→ C is defined by

ResAi
si

:= {z ∈ C : si〈Aiz, y − z〉 + 〈∇ f (z) − ∇ f (x), y − z〉 ≥ 0, ∀y ∈ C}, ∀x ∈ E
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Assume that Ω := ∩i∈
∏EP(1i)

⋂
∩i∈
∏VI(C,Ai) , ∅. Let {xn}n∈N be a sequence generated by the following iterative

algorithm: 

x0 ∈ E chosen arbitrarily,
C1,i = C,
C1 = ∩i∈

∏C1,i,

x1 = P f
C1

(x0),
yn,i = ∇ f ∗[αn∇ f (xn) + (1 − αn)∇ f (ResAi

si
xn)],

rn,i1i(un,i, y) + 〈y − un,i,∇ f (un,i) − ∇ f (yn,i)〉 ≥ 0, ∀ y ∈ C,
Cn+1,i = {z ∈ Cn,i : D f (z,un,i) ≤ D f (z, yn,i) ≤ D f (z, xn)},
Cn+1 = ∩i∈

∏Cn+i,i,

xn+1 = P f
Cn+1

(x1),

where {si} is a sequence of positive real numbers, lim infn→∞ rn,i > 0, for ∀i ∈
∏

. Then {xn} converges strongly to
p̂ = P f

Ω
(x1), where P f

Ω
is the Bregman projection of E onto Ω.

Remark 2.6. In this paper, we proposed a monotone Bregan projection algorithm for solving equilibrium problems
and common fixed point problems of a family of closed multi-valued Bregman quasi-strict pseudocontractions. Our
algorithm is strongly convergent wihtout any compact assumption. It deserve mentioning that our algorithm is valid
for a family of uncountable many bifunctions and quasi-strict pseudocontractions in the framework of reflexive Banach
spaces.
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