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A MONOTONE FINITE ELEMENT SCHEME
FOR CONVECTION-DIFFUSION EQUATIONS

JINCHAO XU AND LUDMIL ZIKATANOV

Abstract. A simple technique is given in this paper for the construction and
analysis of a class of finite element discretizations for convection-diffusion prob-
lems in any spatial dimension by properly averaging the PDE coefficients on
element edges. The resulting finite element stiffness matrix is an M -matrix
under some mild assumption for the underlying (generally unstructured) finite
element grids. As a consequence the proposed edge-averaged finite element
scheme is particularly interesting for the discretization of convection domi-
nated problems. This scheme admits a simple variational formulation, it is
easy to analyze, and it is also suitable for problems with a relatively smooth
flux variable. Some simple numerical examples are given to demonstrate its
effectiveness for convection dominated problems.

1. Introduction

Convection-diffusion equations, especially the convection dominated ones, are
known to have many important applications. Standard finite element and/or finite
difference methods are in general not suitable for these problems, in the sense that
the numerical solution often contains spurious oscillations if the mesh size is not
small enough. Many special techniques have been developed, including upwinding
finite difference and/or finite volume methods (see [3], and [4]), finite volume meth-
ods (see [13]), streamline diffusion finite element methods [17], the Petrov-Galerkin
method (see [16]), and (the hybrid) streamline-upwinding-Petrov-Galerkin (SUPG)
method (see [11] and [16]). For a detailed description of numerical techniques
and analytical tools in investigating convection-diffusion equations we refer to the
monographs [23] and [24].

Many convection-diffusion problems satisfy a maximum principle on the continu-
ous level. In view of numerical stability (i.e., no spurious oscillations), it is desirable
that the resulting discrete equation also satisfy a maximum principle that is similar
to the continuous case. Such a scheme that satisfies a maximum principle is often
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1430 JINCHAO XU AND LUDMIL ZIKATANOV

known as a monotone scheme. A well-known sufficient condition for a scheme to be
monotone is that the corresponding stiffness matrix is an M -matrix. Among the
several aforementioned schemes, upwinding schemes are often monotone.

A linear monotone scheme usually has only first order accuracy. This is a rather
undesirable drawback, and it certainly limits its usefulness in practical computa-
tions. Nevertheless, linear monotone schemes are still significant in many ways. Our
primary interest in this type of schemes is hopefully to use this scheme as a tool to
design efficient iterative and preconditioning techniques for solving other more so-
phisticated schemes (such as streamline diffusion methods and nonlinear monotone
schemes). A linear system with an M -matrix from convection dominated problems
can be efficiently solved, for example, by Gauss-Seidel method, and the convergence
of Gauss-Seidel iteration can be dramatically speeded up with a proper ordering
of the unknowns (cf. Hackbusch and Probst [7], Bey and Wittum [8], Wang and
Xu [29], Xu [30]).

The existing monotone schemes are mostly derived by either a finite difference
or a finite volume approach. One inconvenience of these approaches is that it is
often not clear how to analyze theoretically the schemes derived in this way. Thus
we were motivated to look for monotone schemes that fall into the standard finite
element variational framework, and its theoretical analysis is more straightforward.
This paper is to report our finding in this effort. The new scheme that we shall
describe here has several interesting features. It is a finite element scheme with a
standard variational formulation (but with a modified bilinear form) by means of the
usual piecewise linear functions for both the trial and test spaces; its derivation is
completely different from the other known approaches, and it does not (explicitly)
use the standard upwinding techniques (such as checking the flow directions); it
can be applied to very general unstructured grid in any spatial dimension; and its
theoretical analysis is more transparent.

Our scheme was partially motivated by the work of Markowich and Zlamal [19]
and Brezzi, Marini and Pietra [9]. In particular, a Scharfetter–Gummel type
(see [25]) finite element scheme is derived in [19] for symmetric positive defi-
nite equations in two space dimensions (also with application to symmetrizable
convection-diffusion equations). For the special cases considered in [19] our scheme
pretty much coincides with that in [19], but our derivation is much simpler and
can be applied in more general situations. For other relevant work, let us mention
Mock [22], Brezzi, Marini and Pietra [10], Marini and Pietra [18], Miller, Wang and
Wu [21], Miller and Wang [20], and also Babuška and Osborn [2].

In all the papers quoted here (with only one exception, [20]) the monotonicity
property depends on the assumption that the triangulation is not obtuse (or weakly
acute type, as it is called sometimes). A possible alternative might be quadrilateral
meshes in two dimensions, where some obtuse angles can be allowed (cf. [33]) at
the cost of adding other restrictive geometrical conditions. But in practice, the
construction of a non-obtuse triangulation is not a simple task (see [6] for the
relevant algorithmic difficulties). The monotonicity of the scheme in this paper
depends on a much weaker and more practical assumption which, in two dimensions,
means that the triangulation needs to be assumed to be Delaunay.

The rest of the paper is organized as follows: In Section 2 we discuss the prop-
erties of finite element discretization for the Poisson equation, which we consider
as basis for the derivation of our edge-averaged finite element (EAFE) scheme. In
Section 3 we derive the edge-averaged scheme for simplified convection-diffusion
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CONVECTION-DIFFUSION EQUATIONS 1431

equation—namely the coefficients are assumed to be continuous, and we consider
only the Dirichlet problem. In this section we also give the geometrical conditions
when the resulting matrix is an M -matrix. Bounds on the stiffness matrix entries
are also obtained in subsection 3.3, in order to give a way of implementating this
scheme. The derivation of the EAFE scheme for more general case of piecewise
smooth coefficients is presented in Section 5. In Section 4, we also discuss the prac-
tically important case when the diffusion coefficient approaches zero. In Section 6
we obtain a natural convergence result, which is stated in Theorem 6.3.

2. Preliminaries

In this section, we shall introduce some notation and describe some basic prop-
erties of finite element triangulations and finite element spaces. In particular, we
shall discuss some special properties of the finite element discretization for the sim-
ple Poisson equation which, as we shall see late, will be the basis of the derivation
of the EAFE scheme for convection-diffusion problems.

Let Ω ⊂ Rn (n ≥ 1) be a bounded Lipschitz domain. Given p ∈ [1,∞] and an
integer m ≥ 0, we use the usual notation Wm,p(Ω) to denote the Sobolev space of
Lp functions whose derivatives up to order m also belong to Lp, with the standard
semi-norm and norm denoted by | · |m,p,Ω and ‖ · ‖m,p,Ω respectively. When p = 2,
Hm(Ω) ≡Wm,p(Ω) with | · |m,Ω = | · |m,2,Ω and ‖ · ‖m,Ω = ‖ · ‖m,2,Ω.

Let Th be a family of simplicial finite element triangulations of Ω that are shape
regular and satisfy the usual conditions (see [12]). For simplicity of exposition,
we assume that the triangulation covers Ω exactly. Associated with each Th, let
Vh ⊂ H1

0 (Ω) be the piecewise linear finite element space. As usual the space H1
0 (Ω)

is defined as the space of u ∈ H1(Ω) such that u = 0 on ∂Ω.
Given T ∈ Th, we introduce the following notation (see Figure 2.1):
• qj (1 ≤ j ≤ n+ 1): the vertices of T ;
• Eij or simply E: the edge connecting two vertices qi and qj ;
• Fj : the (n− 1)-dimensional simplex opposite to the vertex qj ;
• θTij or θTE : the angle between the faces Fi and Fj ;
• κTE : Fi ∩ Fj , the (n− 2)-dimensional simplex opposite to the edge E;
• δEφ = φ(qi)− φ(qj), for any continuous function φ on E = Eij ;
• τE = δE x = qi − qj , a directional vector of E.

Fj

κE

θE

Fi

qi

qj

Figure 2.1
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1432 JINCHAO XU AND LUDMIL ZIKATANOV

We shall denote the nodes in Th by xj , j = 1, . . . , Nh. This is a “global” notation
for all the vertices on the grid. Thus, we shall use qj (= qTj ), j = 1, . . . , n+ 1, in
a fixed element T ∈ Th and xj (j = 1, . . . Nh) for all the nodes. The edges Eij will
denote either the edge (qi, qj) in an element T , or the edge (xi, xj) living somewhere
on the grid. This slight abuse of notation should not be a source of confusion.

We denote nodal basis functions in Vh by ϕi, i = 1, . . .Nh, which are continuous
in Ω, linear in each T and

ϕi(xi) = 1, ϕi(xj) = 0, j 6= i.

As we have already pointed out, we first consider the simplest and important
case of the Poisson equation:

−∆u = f, x ∈ Ω,
u = 0, x ∈ ∂Ω.

Given T ∈ Th, let (aTij) be the element stiffness matrix on T . Then, for uh, vh ∈ Vh,
we have ∫

T

∇uh · ∇vhdx =
∑
i,j

aTijuh(qi)vh(qj).(2.1)

Since aTii = −
∑
j 6=i a

T
ij , we can easily obtain the simple but important identity∫

T

∇uh · ∇vhdx = −
∑
i<j

aTij(uh(qi)− uh(qj))(vh(qi)− vh(qj)), uh, vh ∈ Vh.(2.2)

Using (2.2), we can rewrite the bilinear form in the following way:∫
Ω

∇uh · ∇vhdx =
∑
T∈Th

∑
E⊂T

ωTEδEuhδEvh,(2.3)

where ωTE = −aTij with E connecting the vertices qi and qj . For the weights ωTE the
following simple identity holds:

ωTE =
1

n(n− 1)
|κTE | cot θTE ,(2.4)

where θTE is the the angle between the faces not containing edge E (see Figure 2.1),
and their intersection forms κTE (the (n − 2)-dimensional simplex opposite to the
edge E). The identity (2.4) can be found, for example, in [28] for n = 2 and in [5]
for n = 3. Because of its importance in our presentation we shall include a proof
for any space dimension n in the Appendix.

Let A = (∇ϕi,∇ϕj) be the stiffness matrix for the Poisson equation. We are
interested in conditions for A to be an M -matrix. We recall that A is an M -matrix
if it is irreducible (i.e., the graph corresponding to A is connected) and

Ajj > 0 ∀j; Aij ≤ 0 ∀i, j : i 6= j;

Ajj ≥
Nh∑

i=1:i6=j
|Aij | ∀j; Ajj >

Nh∑
i=1:i6=j

|Aij | for at least one j .

Lemma 2.1. The stiffness matrix for the Poisson equation is an M -matrix if and
only if for any fixed edge E the following inequality holds:

ωE ≡
1

n(n− 1)

∑
T⊃E

|κTE | cot θTE ≥ 0,(2.5)

where
∑

T⊃E means summation over all simplexes T containing E.
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For n = 2, the condition (2.5) means that the sum of the angles opposite to
any edge is less than or equal to π, i.e., if T1 ∩ T2 = {E} then θT1

E + θT2
E ≤ π.

This condition implies that the triangulation is a so-called Delaunay triangulation.
It follows therefore that in R2 the stiffness matrix for the Poisson equation is an
M -matrix if (and only if, with some possible rare exceptions near the boundary)
the triangulation is a Delaunay triangulation.

In the literature it seems to be better known that the stiffness matrix for the
Poisson equation is an M -matrix if the triangulation is not obtuse, i.e., if all the
interior angles in each triangle are less than or equal to π

2 (below we refer to
this type of triangulations as non-obtuse triangulations). Of course, a non-obtuse
triangulation is a very special Delaunay triangulation. But Delaunay triangulations
are certainly more general and more practical (see [5]).

3. The EAFE scheme and its basic properties

In this section we give a derivation of the edge-averaged finite element (EAFE)
scheme and then discuss some of its basic properties.

3.1. Model problem. To present the main idea more clearly, we shall first derive
the discrete scheme for a simplified model problem with simplified assumptions.
We shall discuss the more general case later (Section 5). Specifically, we consider{

Lu ≡ −∇ · (α(x)∇u + β(x)u) = f(x), x ∈ Ω,
u = 0, x ∈ ∂Ω.(3.1)

We assume that α ∈ C0(Ω̄) with 0 < αmin ≤ α(x) ≤ αmax for every x ∈ Ω,
β ∈

(
C0(Ω̄)

)2
, and f ∈ L2(Ω).

The weak formulation of the problem (3.1) is: Find u ∈ H1
0 (Ω) such that

a(u, v) = f(v), for every v ∈ H1
0 (Ω),(3.2)

where

a(u, v) =
∫

Ω

(α(x)∇u + β(x)u) · ∇vdx, f(v) =
∫

Ω

f(x)vdx.(3.3)

It can be shown (see [14]) that (3.2) is uniquely solvable and there exists a
constant c0 > 0 such that for every v ∈ H1

0 (Ω)

sup
φ∈H1

0(Ω)

a(φ, v)
‖φ‖1,Ω

≥ c0‖v‖1,Ω; sup
φ∈H1

0 (Ω)

a(v, φ)
‖φ‖1,Ω

≥ c0‖v‖1,Ω.(3.4)

Another important property of L is that its inverse is nonnegative. More pre-
cisely (see [14]),

If (Lu)(x) ≥ 0 for all x ∈ Ω then u(x) ≥ 0 for all x ∈ Ω.(3.5)

The above condition will be referred to as the monotonicity property, and it holds
regardless of the size of |β(x)|/α(x). What is interesting for applications is the
convection dominated case, namely |β(x)|/α(x) � 1, ∀x ∈ Ω. Our goal is to
construct a scheme that has a monotonicity property analogous to (3.5), namely,
if Vh ⊂ H1

0 (Ω) is a finite element space and Lh is the corresponding discretization
for L, then

(L−1
h fh)(x) ≥ 0 for all x ∈ Ω, if f (i)

h = f(ϕi) ≥ 0 for all i = 1, . . . , Nh.(3.6)
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1434 JINCHAO XU AND LUDMIL ZIKATANOV

A finite element scheme satisfying the above condition will be called a monotone
finite element scheme in this paper. It is known that if the stiffness matrix corre-
sponding to Lh is an M -matrix, then (3.6) holds.

3.2. Derivation of the scheme. Given any edge E, we introduce a function ψE
defined locally on E (up to an arbitrary constant) by the relation

∂ψE
∂τE

=
1
|τE |

α−1(β · τE).(3.7)

Here and also in the proof of the next lemma, with an abuse of notation ∂/∂τE
denotes the tangential derivative along E. As a basis for our derivation we shall
use the following result.

Lemma 3.1. Let u ∈ H1
0 (Ω) ∩ C0(Ω̄). Then

δE(eψEu) =
1
|τE |

∫
E

α−1eψE (J(u) · τE)ds,(3.8)

where J(u) = α∇u+ βu.

Proof. After multiplying both sides of J(u) = α∇u + βu by α−1, and taking the
Euclidean inner product with the directional vector τE , we obtain

(∇u · τE) + α−1(β · τE)u = α−1(J(u) · τE).

Now using the definition of ψE in (3.7) we get

e−ψE
∂(eψEu)
∂τE

=
1
|τE |

α−1(J(u) · τE).(3.9)

The equality (3.8) follows from (3.9) after integration over edge E.

Let α̃E(β) be the harmonic average of αe−ψE over E, defined as follows:

α̃E(β) =
[

1
|τE |

∫
E

α−1eψEds

]−1

.(3.10)

First we approximate J(u) over each simplex T by a constant vector JT (u). Then
from (3.8) we have that

JT (u) · τE ≈ α̃E(β)δE(eψEu).(3.11)

By (2.3) and (2.4), for any vh ∈ Vh we get

∫
T

JT (u) · ∇vhdx =
∑
E

ωTE(JT (u) · τE)δEvh ≈
∑
E⊂T

ωTEα̃E(β)δE(eψEu)δEvh.

(3.12)

Thus the approximating bilinear form can be defined as

ah(uh, vh) =
∑
T∈Th

{ ∑
E⊂T

ωTEα̃E(β)δE(eψEuh)δEvh

}
.(3.13)

Apparently, (3.13) can be rewritten as follows:

ah(uh, vh) =
∑
E∈Th

ωEα̃E(β)δE(eψEuh)δEvh,(3.14)
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where ωE is given by (2.5). Our finite element discretization is: Find uh ∈ Vh such
that

ah(uh, vh) = f(vh) for any vh ∈ Vh.(3.15)

From the above derivation we can easily obtain the identity

ah(uI , vh) =
∑
T∈Th

{ ∑
E⊂T

ωTE

[
α̃E(β)
|τE |

∫
E

eψE

α
J(u) · τEds

]
δEvh

}
(3.16)

for all u ∈ H1
0 (Ω) ∩C0(Ω̄), where uI ∈ Vh is the nodal value interpolant of u. This

identity will be useful in error analysis.

Remark 3.1. We have pointed out that ψE is defined up to an arbitrary constant
on E (by (3.7)), but this has no effect on the definition of the bilinear form, since
(3.13) is invariant if we take ψE + ψ0

E in place of ψE for any constant ψ0
E on each

edge.

We shall prove that the EAFE discretization is monotone.

Lemma 3.2. The stiffness matrix corresponding to the bilinear form (3.13) is an
M -matrix for any continuous functions α > 0 and β if and only if the stiffness
matrix for the Poisson equation is an M -matrix, namely if and only if the condition
(2.5) holds.

Proof. Given j ∈ {1, . . . , Nh}, consider the corresponding node xj . Obviously, if
xi is a neighbor of xj ,

Aij =
∑
E3xj

ωEα̃E(β)δE(eψEϕj)δEϕi = −ωEα̃E(β)(eψj,E ) ≤ 0.(3.17)

Here E 3 xj means all the edges having xj as an endpoint, and ψj,E = ψE(xj).
Now, if xj has no neighboring node on the boundary, then the j-th column sum

of A is zero:∑
i

Aij =
∑
E3xj

ωEα̃E(β)δE(eψEϕj)δE
∑
i

ϕi =
∑
E3xj

ωEα̃E(β)δE(eψEϕj)δE1 = 0,

which means that Ajj =
∑
i6=j |Aij |. And if xj has a neighboring node on the

boundary, it is easy to see that
∑

iAij > 0, or Ajj >
∑

i6=j |Aij |. This completes
the proof.

Remark 3.2. In some applications such as semiconductor device simulation, the
following equation is of special interest:

−∇ · (∇u+∇ψu) = f, x ∈ Ω.(3.18)

This can be viewed as a special case of our model problem (3.1) with α = 1 and
β = ∇ψ. In this case, the function ψE defined by (3.7) can be chosen independent
of E:

ψE = ψ ∀E.
A very special feature of this equation is that it is symmetrizable, since it can
obviously be written as

∇ · (e−ψ∇(eψu)) = f, x ∈ Ω.(3.19)
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1436 JINCHAO XU AND LUDMIL ZIKATANOV

This equation has been studied by many authors, see for example [19], [9], [10],
[18], [21]. Technically speaking, the symmetrizability this equation plays an impor-
tant role in the aforementioned works. The one that is most closely related to our
work is the paper by Markowich and Zlamal [19]. In fact, in this special case, our
finite element scheme coincides with their scheme (which is only for symmetrizable
equations in two dimensions). We note that our derivation and analysis are quite
different and also much simpler. As another example of related work, let us briefly
mention a hybrid finite element scheme in [9] (again only for (3.18) in two dimen-
sions). This scheme amounts to the use of a harmonic average of coefficients over
each element, and the corresponding stiffness matrix is an M -matrix provided that
each triangle is non-obtuse.

3.3. Implementation issue. In this section we shall discuss the bounds for the
stiffness matrix entries. In particular we shall show that the off-diagonal elements
might have exponential decay, but they have slower growth (like h|β|). This prop-
erty is important for actual implementations. By (3.7) we have

ψE − ψj,E =
∫ s

0

(β · τE)
α

(t(xi − xj) + xj)dt(3.20)

with τE = xi − xj . Hence

α−1e(β·τE)min

∫
s
0

1
αdt ≤ α−1eψE−ψj,E ≤ α−1e(β·τE)max

∫
s
0

1
αdt,(3.21)

where (β · τE)min = min
x∈E

{β(x) · τE}, (β · τE)max = max
x∈E

{β(x) · τE}. We integrate

over E in (3.21) and use the fact that for a given constant b

bα−1 exp
(
b

∫ s

0

1
α
dt

)
=

d

ds
exp

(
b

∫ s

0

1
α
dt

)
.

A simple application of the fundamental theorem of calculus then yields

α̃EB

(
(β · τE)min

α̃E

)
≥ α̃E(β)eψj,E ≥ α̃EB

(
(β · τE)max

α̃E

)
,(3.22)

where α̃E = α̃E(0) is the harmonic average of α(x) on the edge and B(s) is the
Bernoulli function, defined as follows:

B(s) =

{ s

es − 1
, s 6= 0,

1, s = 0.

By the mean-value theorem, there exists a tE such that

(β · τE)min ≤ tE ≤ (β · τE)max, α̃E(β)eψj,E = α̃EB(tE/α̃E).(3.23)

Note that −h‖β‖0,∞,Ω ≤ tE ≤ h‖β‖0,∞,Ωfor all edges E.
Let us first assume that β is a constant. For i = 1, . . . , Nh in accordance with

(3.23), the resulting system of linear equations for the nodal values of the discrete
solution uh has the form∑

E=(xi,xj)

ωEα̃E

[
B(
−β · τE
α̃E

)u(xi)−B(
β · τE
α̃E

)u(xj)
]

= Gi,(3.24)

where Gi =
∑
T⊃xi

∫
T fϕidx and τE = xi−xj . The summation is over all xj 6= xi,

such that (xi, xj) is an edge.
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Through this example one can easily see the advantages of the proposed scheme.
In the case when α is rapidly varying the entries of the matrix are smooth quantities.
For example, if s → +∞, then B(s) approaches zero exponentially, and B(−s)
behaves like s.

Related schemes based on finite differences are widely used in semiconductor
device modeling. The one-dimensional derivation is due to Scharfetter and Gum-
mel [25] (see also [27] and the references given therein). It is shown by special ex-
amples in [15] that for current continuity equations in two dimensions, the schemes
based on the constant flux approximations appear to be the only ones which work
successfully and give non-oscillatory solutions.

Regarding the case when β is a more general continuous function, we would like
to point out that the moderate behavior of the stiffness matrix entries is preserved
when β(x) 6= 0, x ∈ Ω, although, if β has a stagnation point, then a diagonal entry
in the stiffness matrix might be very small compared to the off-diagonal entries in
the same row. This phenomenon occurs if β = 0 near xj , and all the scalar products
(β · τE) are negative and |β| is “large” with respect to α. We will give a simple
example. Let j be fixed, and let α = ε > 0 and (β · τE) = −1 ∀E 3 xj . Then

Ajj = ε|ϕj |21,ΩB
(

1
ε

)
.

More comments concerning similar behavior of the matrix entries in the hybrid and
mixed finite element methods can be found in [9], [10]. To the authors’ knowledge,
this is an issue in any monotone, linear discrete scheme for convection dominated
problems.

4. Limiting case for vanishing diffusion coefficient

In this section we shall briefly discuss the limiting case when the diffusion coef-
ficient approaches zero. The resulting scheme is a special upwinding scheme. The
following simple lemma is a useful tool in investigating the limiting case.

Lemma 4.1. Let η ∈ C1([0, 1]) and η(0) = 0. Then

lim
ε↘0

1
ε

∫ 1

0

eη(s)/εds =

 ∞, if η(s) > 0, 0 < s ≤ 1,
−1
η′(0)

if η(s) < 0, 0 < s ≤ 1 and η′(0) < 0.(4.1)

Proof. Since the first identity is trivial, we shall only prove the second one. Let
ξ(s) = 1 − η′(s)/η′(0). We observe that η(s) ≤ −c0s for s ∈ [0, 1] with some
constant c0 > 0. It follows that∣∣∣∣1ε

∫ 1

0

eη(s)/εξ(s)ds
∣∣∣∣ ≤ max

0≤s≤
√
ε
|ξ(s)|1

ε

∫ √
ε

0

e−c0s/εds

+ max√
ε≤s≤1

|ξ(s)|1
ε

∫ 1

√
ε

e−c0s/εds.

A straightforward integration then gives∣∣∣∣1ε
∫ 1

0

eη(s)/εξ(s)ds
∣∣∣∣ ≤ max

0≤s≤√ε
|ξ(s)| 1

c0
(1− e−c0/

√
ε)

+ max
0≤s≤1

|ξ(s)| 1
c0

(e−c0/
√
ε − e−c0/ε).
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This proves that

lim
ε→0

1
ε

∫ 1

0

eη(s)/εξ(s)ds = 0,

which leads to the desired result.

Let α(x) ≡ ε > 0. By (3.17) and (3.20) the (i, j) entry of the stiffness matrix is
given by

Aεij =
[
1
ε

∫ 1

0

eη(s)/εds

]−1

,

where η(s) =
∫ s

0

(β ·τE)(txj+(1−t)xi)dt. For simplicity let us assume that (β ·τE)

does not change sign on E. From an application of Lemma 4.1 we get

A0
ij = lim

ε↘0
Aεij =

{
−(β · τE)(xi), (β · τE) < 0 on E,
0, (β · τE) > 0 on E.(4.2)

Let us denote ωij = ωE , N(i) = {j : (xi, xj) is an edge},

xβij =
{
xi, (xj − xi) · β < 0,
xj , (xj − xi) · β > 0.

Then the i-th equation in the resulting scheme can be written as∑
j∈N(i)

ωij(xj − xi) · β(xβij)uh(x
β
ij) = Gi,

where Gi =
∫

Ω

fϕidx and the summation takes only the edges E = (xi, xj).

5. The EAFE scheme for more general equations

In the rest of the paper, we shall study the following more general model problem:
Lu ≡ −∇ · (α(x)∇u + β(x)u) + γ(x)u = f(x), x ∈ Ω,
u = 0, x ∈ Γ̄D,

α
∂u

∂ν
+ (β · ν)u = 0, x ∈ ΓN .

(5.1)

We assume that α, β and γ are piecewise smooth functions on Ω̄ and α(x) ≥
α0 > 0, γ(x) ≥ 0. We introduce the space of functions vanishing on ΓD: H1

D(Ω) =
{v ∈ H1(Ω) : v(x) = 0, x ∈ ΓD}. Then the variational formulation of the above
problem is: Find u ∈ H1

D(Ω) such that

a(u, v) = f(v) for every v ∈ H1
D(Ω),(5.2)

where

a(u, v) =
∫

Ω

(α∇u + βu) · ∇vdx +
∫

Ω

γuvdx, f(v) =
∫

Ω

fvdx.(5.3)

This problem is well posed and has a unique solution (see [14]).
Given T ∈ Th and an edge E ∈ T , we define a function ψTE by

∂ψTE
∂τE

=
1
|τE |

α−1(β · τE).(5.4)

We note that the superscript “T ” in ψTE indicates that ψTE may be different on
different elements because of possible discontinuity in α and β. We also note that
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the trace of α and β on E from T is well defined. Let α̃TE(β) be the corresponding
harmonic average of αe−ψ

T
E ,

α̃TE(β) =
[

1
|τE |

∫
E

α−1eψ
T
Eds

]−1

.(5.5)

Let us also assume that if the boundary condition changes its type at some node in
∂Ω, this node is a vertex of a triangle T ∈ Th. We set Vh to be the usual piecewise
linear finite element space: Vh ⊂ H1

D(Ω). With an argument completely analogous
to that in Section 3 we can obtain the discrete bilinear form (approximation to the
one in (5.3)) as follows:

ah(uh, vh) =
∑
T∈Th

{ ∑
E⊂T

ωTEα̃
T
E(β)δE(eψ

T
Euh)δEvh + γT (uhvh)

}
.(5.6)

The last term in the above equation comes from a standard “mass-lumping” quad-
rature on each triangle:

γT (uhvh) =
|T |
n+ 1

n+1∑
i=1

γ(qi)uh(qi)vh(qi),

where we recall that qi are vertices of T . The resulting finite element scheme is
then: Find uh ∈ Vh such that

ah(uh, vh) = f(vh) for any vh ∈ Vh.(5.7)

It is worth noting that (3.14) is no longer valid. But the analogue of (3.16)
remains true, namely

ah(uI , vh)

=
∑
T∈Th

{ ∑
E⊂T

ωTE

[
α̃TE(β)
|τE |

∫
E

eψ
T
E

α
J(u) · τEds

]
δEvh + γT (uIvh)

}
(5.8)

for u ∈ H1
D(Ω) ∩ C0(Ω̄).

The M -matrix property also holds under some slightly stronger assumptions
when the coefficients are only piecewise smooth. In fact, by an argument analogous
to that in the proof of Lemma 3.2 we have the following result.

Lemma 5.1. Let γ ≥ 0. The stiffness matrix corresponding to the bilinear form
(5.6) is an M -matrix for any piecewise smooth functions α > 0 and β, if for any
edge E where the coefficients α and β have discontinuity, the angles θE satisfy
0 < θTE ≤ π

2 for all T ⊃ E and (2.5) is satisfied for all other edges.

6. Error analysis

In this section we present some error estimates for the EAFE scheme using
the more general problem in Section 5. As we shall see, in comparison with other
upwinding type schemes, one distinctive feature of our EAFE scheme is that its error
analysis appears to be completely straightforward. Of course the error analysis we
are talking about here is a standard formal analysis if we assume that the solution
has a certain regularity.

In the convection dominated case, like any other schemes, an analysis taking into
account some singular behavior of the solution is much more elaborate. We will
report such an analysis in our future work (cf. Xu and Ying [32]).
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6.1. An estimate for the discrete bilinear form. Our estimate will be based on
the assumptions made in Section 5. In addition, we also assume that, for all T ∈ Th,
the solution of the problem (5.1) satisfies J(u) ≡ α(x)∇u + β(x)u ∈

[
W 1,p(T )

]n
and γ(x) ∈ C(T̄ ), γu ∈W 1,r(T ) with r > n,

p = 2 for n = 1, 2 and p > n− 1 for n > 2.(6.1)

As a first step we give an estimate for the difference between continuous and
approximating bilinear forms.

Lemma 6.1. Let w ∈ C(Ω̄). If for any T ∈ Th we have J(w) ∈ [W 1,p(T )]n and
γw ∈W 1,r(T ), then the following inequality holds for every vh ∈ Vh:

|a(w, vh)− ah(wI , vh)| ≤ Ch

{ ∑
T∈Th

|J(w)|21,p,T +
∑
T∈Th

|γw|21,r,T

} 1
2

‖vh‖1,Ω(6.2)

for p satisfying (6.1)

Proof. By (5.8) we have

a(w, vh)− ah(wI , vh) =
∑
T∈Th

ET (J, vh) +QT (γw, vh),(6.3)

where

ET (J(w), vh) =
∫
T

J(w) · ∇vhdx

−
∑
E⊂T

ωTE

[
α̃E(β)
|τE |

∫
E

eψE

α
J(w) · τEds

]
δEvh,

(6.4)

and

QT (γw, vh) =
∫
T

(γwvh − (γwvh)I) dx.(6.5)

We first consider ET (J(w), vh) and apply the standard scaling from T to the
reference element T̂ . The scaled bilinear functional is properly bounded:

ÊT̂ (Ĵ(w), v̂h) ≤
{

C0(‖Ĵ(w)‖0,1,∂T̂ + ‖Ĵ(w)‖0,T̂ )‖v̂h‖1,T̂ ,
C1‖Ĵ(w)‖0,∞,T̂‖v̂h‖1,T̂ ,

where C0 might depend on α and β but C1 is independent of α, β. Let us first
assume that p > n. By the Sobolev embedding theorem (see [1]), W 1,p(T̂ ) ↪→
W 0,∞(T̂ ), we get

‖Ĵ(w)‖0,∞,T̂ ≤ C‖Ĵ(w)‖1,p,T̂ .

By the trace theorem, if p = 2 for n = 2 or p > n− 1 for n > 2, then

‖Ĵ(w)‖0,1,∂T̂ ≤ C‖Ĵ(w)‖1,p,T̂ .

From the derivation of the EAFE scheme, it is clear that ET (J(w), vh) = 0 if
J(w) ≡ const on T . With this simple fact in hand the rest of the analysis is
completely routine. By applying the Bramble-Hilbert lemma on T̂ and scaling
back to T , we get

|ET (J, vh)| ≤ Ch|J(w)|1,p,T |vh|1,T .(6.6)
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The estimate for QT can be done using the similar and simpler argument (note
that QT (γw, vh) = 0 if γw ≡ const). We have

QT (γw, vh) ≤ Ch|γw|1,r,T ‖vh‖1,T .
The proof is then completed by summing over all elements and using the Schwarz
inequality.

6.2. Well-posedness of the discrete problem. In this section we shall consider
the conditions for existence and uniqueness of the discrete solution. In what follows
we take γ = 0. The reason is that a positive lower order term does not add any
difficulties to the analysis.

Lemma 6.2. Let α ∈ W 1,∞(T ) and β ∈ [W 1,∞(T )]n for all T ∈ Th. Then for
sufficiently small h

sup
vh∈Vh

ah(wh, vh)
‖vh‖1,Ω

≥ c0‖wh‖1,Ω ∀wh ∈ Vh.(6.7)

Proof. It is well-known (see Schatz [26] or Xu [31]) that if the discrete problem is de-
fined by the original bilinear form, then the following estimates hold for sufficiently
small h:

sup
vh∈Vh

a(wh, vh)
‖vh‖1,Ω

≥ 2c0‖wh‖1,Ω, ∀wh ∈ Vh.(6.8)

Let vh, wh ∈ Vh. Then obviously

ah(wh, vh) = a(wh, vh) + [ah(wh, vh)− a(wh, vh)] .

The first term is estimated using the condition (6.8). By Lemma 6.1,

|a(wh, vh)− ah(wh, vh)| ≤ Ch

{ ∑
T∈Th

|J(wh)|21,p,T

} 1
2

‖vh‖1,Ω.

Observing that |wh|2,T = 0 for any wh ∈ Vh and T ∈ Th, we get

|J(wh)|1,p,T ≤ C(‖α‖1,∞,T + ‖β‖1,∞,T )‖wh‖1,T .
Summing over all the elements of the partition, we have

|a(wh, vh)− ah(wh, vh)| ≤ C max
T∈Th

(‖α‖1,∞,T + ‖β‖1,∞,T )h ‖wh‖1,Ω‖vh‖1,Ω.(6.9)

The desired result is easily obtained if

h ≤ h0 ≡ c0

[
C max
T∈Th

(‖α‖1,∞,T + ‖β‖1,∞,T )
]−1

As a consequence of the previous lemmata we get the following convergence
result.

Theorem 6.3. Let u be the solution of the problem (5.1). Assume that for all T ∈
Th we have α ∈W 1,∞(T ), β ∈ [W 1,∞(T )]n, J(u) ≡ α(x)∇u+β(x)u ∈

(
W 1,p(T )

)n,
γ(x) ∈ C(T̄ ) and γu ∈W 1,r(T ). Then the following estimate holds:

‖uI − uh‖1,Ω ≤ Ch

{ ∑
T∈Th

|J(u)|21,p,T +
∑
T∈Th

|γu|21,r,T

} 1
2

(6.10)

for sufficiently small h.
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Remark 6.1. It is clear that under the assumptions of Lemma 5.1 the discrete
problem has a unique solution without assuming h to be sufficiently small, since
the resulting stiffness matrix is an M -matrix. Therefore, we may conclude that,
under the assumptions in Lemma 5.1, (6.7) in fact holds for any feasible mesh size
h with a constant c0 independent of h. Indeed this conclusion can be rigorously
justified, but we will not get into the details here.

7. Numerical examples

Our EAFE scheme is a type of upwinding scheme, and hence its numerical be-
havior is similar to other upwinding schemes. Here we report two simple, but not
trivial examples of convection dominated problems. The computational domain is
the square Ω = (0, 1)× (0, 1). As our first example we consider the equation

−∇ · (ε∇u+ (y,−x)u) = 1,(7.1)

subject to the homogeneous Dirichlet boundary conditions.
As our second example we consider a symmetrizable convection diffusion prob-

lem, similar to the one presented in [9]. The differential equation is

−∇ · (ε∇u+∇ψ u) = 0, x ∈ Ω,
u = g, x ∈ Γ̄D,
∂u

∂ν
+
∂ψ

∂ν
u = 0, x ∈ ΓN .

(7.2)
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Figure 7.1. Surface plot of the discrete solution to (7.1)
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Figure 7.2. Surface plot of the EAFE solution to (7.2)

The potential function ψ is defined as

ψ =


0, 0 ≤ ρ+ x < 0.55,
2(ρ− 0.55), 0.55 ≤ ρ+ x < 0.65,
0.2, 0.65 ≤ ρ+ x,

where ρ = (x2 + y2)1/2. Dirichlet boundary conditions are prescribed on the part
of the boundary as follows

g =
{

0 {x = 0, y ∈ [0, 0.25]} ∪ {x ∈ [0, 0.25], y = 0} ,
−2.1 {x = 1, y ∈ [0.75, 1]} ∪ {x ∈ [0.75, 1], y = 1} .

In Figures 7.1 and 7.2 we have plotted the solutions. In both examples we have
taken ε = 10−6 and h = 2−6. Compared to the characteristic mesh size h, the ratio
h/ε = 15625 is rather large. In Figures 7.1 and 7.2, it is clearly seen that there are
no spurious oscillations or smearing near boundary or internal layers. Our second
numerical example also shows that in the subdomain where the gradient of ψ is
well behaved, namely, for ρ(x, y) + x > 0.65, the discrete solution is smooth, as
expected.

Appendix. A proof of (2.4)

We shall give a proof of (2.4). Let us introduce some notation (see Figure A.1).
Given an m-dimensional simplex simplex S, let S̃ denote the hyperplane containing
it. Let νk denote the outward unit normal vector to the face Fk, k = i, j. Define
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Fj

θE
Fi

qi

qi

qE
qm

qj



Figure A.1

the projections q∗i and q∗∗E as follows:

q∗i ∈ F̃ i : (q∗i − qi) · (s− qj) = 0, ∀s ∈ F̃ i, i = 1, . . . , n+ 1, j 6= i,

q∗∗E ∈ κ̃E : (q∗∗E − qi) · (s− qm) = 0, ∀s ∈ κ̃E .

By definition νi =
q∗i − qi
|qi − q∗i |

. The vectors νi, νj and νE =
q∗∗E − qi
|q∗∗E − qi|

are all orthog-

onal to κ̃E , which has dimension n − 2. Hence they must be linearly dependent.
It follows then that they are congruent with the sides of a planar right triangle.
Consequently

|qi − q∗i |
|qi − q∗∗E |

= sin θE .(A.1)

For ϕk we have

ϕk =
(x− q∗k) · (qk − q∗k)

|qk − q∗k|2
, k = i, j.

To prove (2.4) we apply the formula for the volume of the simplex |T | = 1
n |Fk||q∗k−

qk| twice (first for |T |, then for |Fj |) and we get∫
T

∇ϕi · ∇ϕjdx = −|T | cos θE
|qi − q∗i ||qj − q∗j |

= − cos θE
n|qi − q∗i |

|Fj | = − cot θE
n(n− 1)

|κE |.

In the last equality we have used (A.1). This completes the proof.
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