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Abstract Binary data latent class analysis is a form of model-based clustering

applied in a wide range of fields. A central assumption of this model is that of con-

ditional independence of responses given latent class membership, often referred to

as the “local independence” assumption. The results of latent class analysis may

be severely biased when this crucial assumption is violated; investigating the de-

gree to which bivariate relationships between observed variables fit this hypothesis

therefore provides vital information. This article evaluates three methods of doing

so. The first is the commonly applied method of referring the so-called “bivariate

residuals” to a chi-square distribution. We also introduce two alternative methods

that are novel to the investigation of local dependence in latent class analysis:

bootstrapping the bivariate residuals, and the asymptotic score test or “modifi-

cation index”. A Monte Carlo simulation indicates that the latter two methods

perform adequately, while the first method does not perform as intended.
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1 Introduction

Latent class models for binary (dichotomous) variables are discrete finite mix-

tures of binomials, in which a key assumption is that of conditional independence

given the latent class or mixture component (Agresti, 2002). These models have

found applications in a broad range of fields including the social sciences (Hage-

naars and McCutcheon, 2002), machine learning (Hofmann, 2001), psychological

measurement (Heinen, 1996), and the biomedical sciences (Faraone and Tsuang,

1994). Violations of the crucial conditional independence assumption are known

to severely bias outcomes of interest; an issue noted particularly in the biomedical

context of estimation of sensitivity and specificity of diagnostic tests by Vacek

(1985), Torrance-Rynard and Walter (1998), Walter and Irwig (1988), Albert and

Dodd (2004), and Hadgu et al. (2005). It is therefore important in latent class

analysis to monitor model fit; particularly useful is the possibility of assessing the

source of the misfit in terms of the residual dependence between observed variables.

One measure of such residual dependence between observed variables is the

bivariate residual (BVR). The BVR for a pair of observed variables is defined as

the Pearson residual in their bivariate cross-table (Vermunt and Magidson, 2005,

pp. 72-3). The BVR is used as an overall measure of model fit, or as a flag of

potentially problematic restrictions; see, for example, the application to item bias

in psychological measurement described by Tay et al. (2011). The idea behind

this measure is then that a “high” BVR value for a pair of variables indicates

residual local dependency that causes model misfit. Though intuitively appealing

and straightforward to compute, the BVR has the drawback that its asymptotic

distribution is not known. While Vermunt and Magidson claim that BVR’s are

“Lagrange-type chi-squared statistics” (p. 73), the BVR will not typically follow

a chi-squared distribution.

In spite of the fact that the BVR is not asymptotically distributed as chi-square,

in applied research it is frequently interpreted as though it were, so that “high”

BVR’s are judged to be those exceeding the quantiles of a chi-square distribution.
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See, for example, Nyholt et al. (2004, p. 235); Gaffikin et al. (2007, p. 3); Chen et al.

(2007, p. 4); Baughman et al. (2008, p. 110); Hybels et al. (2009, p. 5); and Gallego

and Oberski (2012, p. 440). To our knowledge, not much is known about the

practical consequences of this practice. As a more principled alternative, one might

consider the parametric bootstrap (Efron, 1982; Langeheine et al., 1996) to obtain

p-values for the BVR. Alternatively, Rao (1948)’s classical score (or “Lagrange

multiplier”) test, sometimes called “modification index” (MI), also provides a test

for local dependence that is asymptotically chi-square distributed under the null

hypothesis.

This article evaluates three approaches to the evaluation of local dependencies

in binary data latent class models: 1) referring the BVR to a chi-square distribution

with one degree of freedom, 2) obtaining a p-value for the BVR by a parametric

bootstrap, and 3) the score test (MI). The latter two methods are novel to the

investigation of local dependence in latent class analysis. We evaluate the behavior

of these three methods by Monte Carlo simulation under the null hypothesis and

under various conditions that violate conditional independence. The results of

the simulation provide guidance for applied researchers on appropriate ways of

applying the BVR or MI to evaluate the model assumptions of latent class analysis.

The remainder of this article is structured as follows. The following section

introduces the latent class model. Subsequently, the BVR as a measure of the

fit of bivariate observed cross-tables to the hypothesis of local independence is

introduced. We propose two additional methods of assessing the source of model

misfit: parametric bootstrap p-values for the BVR, and the modification index

(score test). The three methods are then evaluated under a range of conditions

using Monte Carlo simulation. The final section provides concluding remarks.
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2 The latent class model

Suppose an i.i.d. sample of size N is obtained on J observed binary variables,

aggregated by the R response patterns into Y. Let n be the R-vector of observed

response pattern counts. The log-likelihood for the latent class model with T classes

for the unobserved discrete variable ξ can then be formulated (Formann, 1992) as

the discrete mixture GLM

`(θ) = n′ log Pr(Y) = n′ log

[
T∑
t=1

Pr(ξ = t)

(
exp(ηt)

1′R exp(ηt)

)]
, (1)

where log and exp denote elementwise operations, Pr(ξ = t) = exp(αt)/1
′
T exp(α),

and

ηt = X(Y )τ + X(Y Y )ψ + X(Y ξt)λ, (2)

where X(Y ), X(Y Y ) and X(Y ξt) are design matrices for the observed variables’ main

effects τ , bivariate associations ψ, and associations with the latent class variable

λ, respectively (Evers and Namboodiri, 1979). The vector α contains the logistic

main effect parameters for the latent class proportions. This parameterization of

the local dependence latent class model is similar to that adopted by Hagenaars

(1988) and Formann (1992, section 4.3). The q-vector of parameters θ can be

defined as θ′ := (α′, τ ′,λ′,ψ′). The standard local independence latent class model,

however, has as its key assumption that ψ = 0, so that θ′ := (α′, τ ′,λ′) constitutes

the free parameter vector.

Maximum likelihood estimates of the parameters of the model are usually ob-

tained as θ̂ = arg maxθ∈Rq `(θ) by expectation-maximization (see Formann, 1992),

quasi-Newton methods, or a combination of both (Vermunt and Magidson, 2005).

Goodman (1974) showed that the parameters of the model are locally identifiable

when the Jacobian S := ∂Pr(Y)/∂θ is of full column rank. A necessary but not

sufficient condition for this is that the number of unique response patterns R at

least equal the number of parameters q. Thus, for instance, the two-class model

for two binary observed variables is not identified, nor is the three class model for
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three binary observed variables. That the condition is not sufficient is evidenced

by the three class model for four binary observed variables, which has one de-

gree of freedom but is nevertheless not identified. In practice, local identifiability

can be evaluated empirically by examining the rank of the information matrix at

the maximum likelihood solution, or by randomly sampling many parameter val-

ues in the parameter space and evaluating the information matrix at each point

(Forcina, 2008). For a more detailed discussion of identification, we refer to Huang

and Bandeen-Roche (2004).

3 Evaluating the source of model misfit

Goodness-of-fit of the latent class model to the data is often evaluated with statis-

tics based on or derived from the χ2 statistic

χ2 :=
∑
r∈1..R

(nr − µ̂r)2

µ̂r
, (3)

where R is the number of unique response patterns, nr is the number of obser-

vations for a response pattern r, and µ̂r := N · Pr(Yr|θ = θ̂) is the model-based

expectation of nr evaluated at the maximum likelihood solution. As suggested

by the name of this statistic, when the model holds, its asymptotic distribution

(as the sample size N approaches infinity) converges to a chi-square distribution

with R− q degrees of freedom (e.g. Maydeu-Olivares and Joe, 2005). Among other

statistics in common use are the likelihood ratio, AIC, and BIC (e.g. McLachlan

and Peel, 2000).

The χ2 statistic gives an indication of overall model misfit, but it does not aid

the researcher in detecting the source of the misfit. Since the key assumption is

that of local independence, an intuitively attractive fit index measuring the degree

to which the bivariate cross-table between a pair of observed variables fits the
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model is the “bivariate residual” (BVR),

BVRjj′ :=
∑

k∈{0,1}

∑
l∈{0,1}

(nkl − µ̂kl)2

µ̂kl
=

∑
k∈{0,1}

∑
l∈{0,1}

r2kl
µ̂kl

(4)

where the raw residuals rkl := nkl−µ̂kl, and nkl and µ̂kl now indicate observed and

expected frequencies in the bivariate 2× 2 cross-table of the observed variables yj

and yj′ (j 6= j′). Since the marginals are perfectly reproduced by the latent class

model, all residuals are equal in absolute value, so that the BVR reduces to

BVRjj′ = r211
∑

k∈{0,1}

∑
l∈{0,1}

1

µ̂kl
. (5)

A BVR can be obtained for each of the (J2) pairs of observed variables; in this

way, for each pair it can be investigated whether the cross-table between this pair

appears to fit the hypothesis of local independence or not.

The BVR has the same form as a Pearson residual and is often treated in

applied research as though its asymptotic distribution (as the sample size N ap-

proaches infinity) converged to a chi-square distribution. However, this is not the

case because the expected frequencies are not independent; the conditioning of the

µ̂kl on parameters not used in the estimation of the bivariate cross-table is disre-

garded. Most applied studies ignore this issue and refer the BVR to a chi-square

distribution. An alternative method is to instead refer the BVR to its empirical

distribution as obtained from a parametric bootstrap (Efron, 1982; Langeheine

et al., 1996). We propose using the parametric bootstrap as a better approach to

obtaining p-values for the BVR statistic.

A different approach to evaluating the hypothesis of local independence is the

classical score test (Rao, 1948). This approach was discussed in the context of item

response theory by Glas (1999) and van der Linden and Glas (2010). Define the

score sjj′ for a local dependence between the observed variables yj and yj′ (j 6= j′)

as sjj′ := ∂`(θ)/∂ψjj′ , where ψjj′ is the element of ψ corresponding to the two-way

interaction between yj and yj′ . Let the hessian H := ∂2`(θ)/∂(ψjj′ ,θ
′)′∂(ψjj′ ,θ

′).
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Then the “modification index” (MI) allowing a test for the presence of a local

dependence between yj and yj′ conditional on the latent class is the statistic

MI :=
s2jj′

Var(sjj′)
=

s2jj′

hψψ −HψθH−1
θθ H′ψθ

, (6)

where hψψ, Hψθ, and Hθθ denote submatrices of the hessian (e.g. Sörbom, 1989),

and it is assumed that there is at least one degree of freedom. A score test can

be constructed by replacing θ by consistent estimates such as θ̂. Under the null

hypothesis that ψjj′ = 0, the MI then asymptotically (as N → ∞) approaches a

chi-square distribution with one degree of freedom. Furthermore, as long as the

alternative model is not strongly misspecified, when ψjj′ 6= 0 so that local inde-

pendence is violated, the MI approaches a noncentral chi-square distribution with

noncentrality parameter (ncp) equal to the population improvement in χ2 (equa-

tion 3) obtained by freeing ψjj′ (Satorra, 1989). An advantage of the score test

based on the MI relative to bootstrapping the BVR is that its computation does

not require resampling methods and is therefore preferable when computational

convenience is an issue.

The MI statistic defined in equation 6 may appear rather different from the

BVR defined in equation 4. However, there is a strong connection between these

two statistics since sjj′ = 4r11. To see this, let x(yjyj′) be the design vector

corresponding to ψjj′ , i.e. an R-vector that equals +1 when yrj = yrj′ and -1

when yrj 6= yrj′ . Then, by differentiating equation 1, we obtain

sjj′ =
∂`(θ)

∂ψjj′
= n′

∑
t∈1..T

Pr(ξ = t|Y)[x(yjyj′ )
− x′(yjyj′ )Pr(Y|ξ)]

= n′[x(yjyj′ )
− x′(yjyj′ )Pr(Y)]

=
∑
k=l

(nkl − µ̂kl)−
∑
k 6=l

(nkl − µ̂kl) = 4r11

(7)

where the second step is due to the fact that ψjj′ is class-independent, and the last

step follows because the off-diagonal residuals have a sign opposite to the diagonal

residuals. If dummy coding is chosen instead of effect coding, sjj′ = r11 and the
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variance Var(sjj′) is scaled accordingly. The difference between the BVR and the

MI for introducing a class-independent local dependence parameter is therefore

that the BVR does not take the dependency between the expected cell frequencies

into account, while the MI uses the correct asymptotic variance. This makes the

MI an attractive alternative to the more intuitively defined BVR statistic.

4 Monte Carlo simulation

4.1 Study design

The performance of the three procedures was evaluated by Monte Carlo simulation

under the conditions resulting from fully crossing the following factors:

– Loglinear effect of latent on observed variables (“loadings”) λ ∈ {.50, .80};

– Local dependence between last two items ψ ∈ {−0.4,−0.2,−0.05, 0,+0.05,+0.2,+0.4};

– Sample size N ∈ {200, 500, 1000, 5000}.

This 2× 7× 4 design yields 56 conditions, in 8 of which the null hypothesis holds

(ψ = 0), and 48 of which violate local independence to various degrees (ψ 6= 0).

Under each condition, 200 samples of size N were drawn from a two-class

population with five binary observed variables. The latent and observed variable

intercepts were set to zero, meaning 50% of the observations fell in either class.

Conditional on the latent class, the last two observed variables were locally de-

pendent (except when ψ = 0). In each of the 200 samples, the MI and BVR were

calculated. Subsequently, a parametric bootstrap of the BVR with 500 replicates

was performed conditional on the sample parameter estimates. We then obtained

p-values for the BVR by 1) Referring the sample BVR to a chi-square distribution

(“naive” p-value), 2) Referring the sample BVR to its bootstrapped empirical dis-

tribution, and 3) Referring the MI to a chi-square distribution. All analyses used R

version 2.15.2 (R Core Team, 2012), while an experimental version of the software

Latent Gold (Vermunt and Magidson, 2005) was used to obtain the bootstrapped

p-values and check the results.
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4.2 Results

We first consider the performance of the BVR and MI under the eight conditions

in which the null hypothesis holds.

Condition α for nominal 5% Empirical distribution

BVR MI BVR
λ ψ n Naive Boot MI Mean Var Mean Var

0.5 0 200 0.000 0.050 0.051 0.97 1.7 0.33 0.2
0.5 0 500 0.000 0.020 0.050 1.06 2.3 0.36 0.2
0.5 0 1000 0.000 0.060 0.065 0.96 1.9 0.33 0.2
0.5 0 5000 0.000 0.085 0.055 0.97 2.0 0.34 0.2
0.8 0 200 0.000 0.065 0.040 1.04 1.7 0.25 0.1
0.8 0 500 0.000 0.070 0.060 1.05 2.0 0.25 0.1
0.8 0 1000 0.000 0.060 0.090 1.22 2.6 0.30 0.2
0.8 0 5000 0.000 0.035 0.060 1.16 3.1 0.28 0.2

Table 1 Rejection rates with a nominal α-level of 5%, and empirical distribution of BVR and
MI under the null hypothesis.

Under the null hypothesis and choosing a nominal α-level (probability of type-I

error) of 5%, approximately 5% of the 200 simulated p-values should be smaller

than 0.05. Table 1 shows that this is approximately the case for the bootstrap

p-values for the BVR and the asymptotic p-value of the MI. The naive p-value

which refers the BVR to a chi-square distribution, however, does not provide the

nominal α-level; in fact, the null hypothesis was not rejected in any of the 200

simulated samples.

The last four columns of Table 1 compare the empirical distribution of the BVR

and MI to that of a chi-square distribution with one degree of freedom, which has

mean equal to unity and variance 2. Table 1 clearly shows that the empirical

distribution of the MI conforms to this expectation but the BVR uniformly has

both mean and variance that are too low. For each of the eight conditions, a

Kolmogorov-Smirnoff test of the hypothesis that the MI’s are sampled from a

central chi-square distribution with one degree of freedom produces p-values larger

than 0.15, while the same test for the BVR yields p-values smaller than 10−10.

It is therefore clear that under the null hypothesis, the MI appears to follow this
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asymptotic distribution closely under all conditions, while the BVR does not follow

this distribution under any condition.

The null hypothesis did not hold in the 48 conditions with local dependencies

ψ not equal to zero. Figure 1 plots the power to reject the null hypothesis under

these conditions as a function of the (log) sample size. In each plot, the three

lines correspond to the three methods studied here: the solid red line indicates the

power of the naive BVR p-values, the dotted green line the power of the bootstrap

p-values, and the dashed blue line the power of the asymptotic p-values for the

MI. The twelve different plots correspond to the twelve conditions resulting from

crossing the local dependence size (rows) with the loadings (columns).

A striking feature of Figure 1 is that all three procedures have a rather low

power to detect small (±0.05) to medium (±0.2) local dependencies, especially

when the loadings are large. The MI and bootstrap provide adequate power to

detect dependencies of ±0.2 or stronger when the sample size is 1000 or above (here

we define adequate power to mean a power larger than 0.8). The figure shows that

the power of the naive BVR p-values to detect the varying sizes of local dependence

is uniformly lower than that of the other two procedures. Furthermore, this power

is only satisfactory when the local dependence is -0.4. When the local dependence

is -0.2, +0.2, or +0.4, a sample of at least 5000 is needed to attain adequate power.

The smaller local dependencies of ±0.05 are almost never detected by the naive

BVR p-value.

Both the bootstrap p-values for the BVR and the asymptotic p-values for the

MI perform much better than the naive BVR p-values. As shown in Figure 1, these

two alternative procedures generally yield similar power, except in the case of low

loadings and large local dependencies. In these conditions the MI test appears to

be more powerful than a parametric bootstrap of the BVR. This difference is most

pronounced in the condition with a large positive local dependence of +0.4 and

low loadings (lower-left graph in Figure 1): with a sample size of 200, the power

of the bootstrap is about 0.25 while the MI test yields a power of about 0.50.



The bivariate residual to detect local dependence in latent class models 11

0.5 0.8

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

−
0.4

−
0.2

−
0.05

0.05
0.2

0.4

200

500

1000

5000
200

500

1000

5000

Log(sample size)

P
ow

er

p−value type

BVR

BVR_bootstrap

MI
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12 Daniel L. Oberski et al.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●
●●●●
●●●●●●

●●●●●
●●●●

●
●

●●

●

●

Sample size: 200
Q−Q plot, noncentral  χ1

2(4.7)

Theoretical quantiles

M
I

0

10

20

30

40

0 5 10 15 20 25

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●

●●●●
●●●●
●●
●●●
●●
●●
●●●

●●
●

● ●

Sample size: 500
Q−Q plot, noncentral  χ1

2(11.8)

Theoretical quantiles

M
I

0
10
20
30
40
50
60
70

0 10 20 30 40

●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●

●●●
●●●●

●●
●●●

●

Sample size: 1000
Q−Q plot, noncentral  χ1

2(23.7)

Theoretical quantiles

M
I

0

20

40

60

80

10 20 30 40 50 60

●
●●●●●

●
●●●●●●●●●

●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●

●

Sample size: 5000
Q−Q plot, noncentral  χ1

2(118)

Theoretical quantiles

M
I

50

100

150

200

80 120 160

Fig. 2 Quantile-quantile plots of the MI under the simulation condition λ = 0.8, ψ = 0.4.

When local independence is violated, the MI asymptotically follows a noncen-

tral chi-square distribution with one degree of freedom and noncentrality param-

eter (ncp) equal to the population shift in the χ2 goodness-of-fit measure relative

to the true model. To investigate whether this asymptotic result holds in finite

samples, we applied Kolmogorov-Smirnoff (KS) tests of the hypothesis that the

sample test statistics in each condition indeed followed a noncentral chi-square

distribution with ncp corresponding to the population χ2 of that condition. Per-

forming this test for the BVR leads to a rejection (p < 10−14) in all cases. For

the MI, in contrast, the resulting p-values were larger than 0.01 for all but seven

out of the 48 conditions, the average p-value for the KS test being 0.27. The most

problematic condition in this regard is the condition in which the loading is 0.8

and the local dependence equals +0.4. Figure 2 demonstrates the fit of the sam-

ple MI values to their theoretical noncentral chi-squared distributions under this

condition. For small sample sizes, the theoretical distribution does not appear to

hold in this particular case. Figure 2 does demonstrate how increasing the sample

size leads to a convergence to the theoretical distribution, as the fit improves with

the sample size. Thus, in the exceptional case of small sample sizes, large positive

local dependence, and large loadings, caution is warranted. In all other cases the

MI appears to follow its theoretical distribution quite closely.
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5 Concluding remarks

Binary data latent class analysis is a commonly applied model-based clustering

method, in which a key assumption is that of local independence. We evaluated

three methods to investigate the source of model misfit to this hypothesis by ex-

amining residuals in the bivariate cross-tables between observed variables. These

methods were: 1) referring the bivariate residual (BVR) to a chi-square distribu-

tion, 2) referring the BVR to its parametric bootstrap distribution, and 3) referring

the modification index (MI) to a chi-square distribution, also known as the score

(or “Lagrange multiplier”) test. The latter two methods are novel to the field of

latent class analysis.

A Monte Carlo simulation study under various conditions demonstrated that

judging the size of the BVR as though it were a chi-square variate (method 1) will

yield α-levels lower than the nominal rate, and leads to inadequate power. The

bootstrap and MI (methods 2 and 3) performed very similarly, showing adequate

power and reproducing the nominal alpha levels. In the few cases where differences

occurred, the MI appeared to be more powerful than the bootstrap BVR test. Fur-

thermore, except in one condition, the MI approached its theoretical distribution.

This suggests that when computational convenience is an issue, the MI provides

an attractive alternative to the bootstrap for assessing the source of misfit to the

hypothesis of local independence in latent class models.

Although it was already known theoretically that the BVR should not be

regarded as a chi-square variate, method 1 is often encountered in applied research,

possibly due to its intuitive appeal and convenience. The simulation study reported

here clearly demonstrates that this practice may not always work as intended, in

the sense that low BVR values cannot not be seen as indicative of good fit of the

bivariate cross-tables to the hypothesis of local independence.
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