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ABSTRACT

Knowledge of the probability distribution of initial conditions is central to almost all practical studies of
predictability and to improvements in stochastic prediction of the atmosphere. Traditionally, data assimilation
for atmospheric predictability or prediction experiments has attempted to find a single ‘‘best’’ estimate of the
initial state. Additional information about the initial condition probability distribution is then obtained primarily
through heuristic techniques that attempt to generate representative perturbations around the best estimate.
However, a classical theory for generating an estimate of the complete probability distribution of an initial state
given a set of observations exists. This nonlinear filtering theory can be applied to unify the data assimilation
and ensemble generation problem and to produce superior estimates of the probability distribution of the initial
state of the atmosphere (or ocean) on regional or global scales. A Monte Carlo implementation of the fully
nonlinear filter has been developed and applied to several low-order models. The method is able to produce
assimilations with small ensemble mean errors while also providing random samples of the initial condition
probability distribution. The Monte Carlo method can be applied in models that traditionally require the appli-
cation of initialization techniques without any explicit initialization. Initial application to larger models is
promising, but a number of challenges remain before the method can be extended to large realistic forecast
models.

1. Introduction

The production of ensemble forecasts of the state of
the atmosphere has become common-place at the
world’s operational prediction centers during the past
decade (Molteni et al. 1996; Tracton and Kalney 1993;
Harrison et al. 1995). These ensemble forecasts are pred-
icated on the notion that the state of the atmosphere as
derived from all available observations is not known
precisely, but can be represented in terms of a proba-
bility distribution. Operational ensemble forecast sys-
tems attempt to sample this initial state probability dis-
tribution and then produce samples of the resulting fore-
cast probability distribution by integrating each indi-
vidual member of the sample independently in a forecast
model, usually a model developed for use in producing
more traditional single discrete forecasts.

The operational prediction centers now routinely de-
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liver a variety of ensemble-based products to forecast-
ers. In general, reasonable interpretation of these prod-
ucts requires an assumption that individual ensemble
forecasts are equally likely realizations of the forecast
probability distribution. For example, the National Cen-
ters for Environmental Prediction produces a number of
products that can be interpreted best in this context (Toth
et al. 1997). The most obvious examples are charts of
‘‘ensemble-based probability’’ of a particular event.

One instance of such a chart would display a map of
contours of the probability that precipitation amounts
exceeding 1 mm will fall during a given time interval.
These charts explicitly assume that the ensembles are
random samples; the estimated probability of an event
at a particular grid point is the number of ensemble
members that produce the event divided by the total
number of ensemble members.

Another example is the so-called spaghetti plot. An
example of such a plot might display the 5640-m con-
tour lines for 500-hPa heights from each member of the
ensemble forecast. Although there is no longer an ex-
plicit assumption that the ensemble is a random sample
of the probability distribution, such charts are nearly
impossible to interpret if one does not make such an
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assumption. Both the published descriptions (Toth et al.
1997) of the spaghetti plots and discussions with pro-
ducers and users of these products suggest an implicit
assumption that the ensemble is a random sample of the
forecast probability distribution.

A final example is the use of ensemble ‘‘spread’’ as
a predictor of expected forecast skill. This is probably
the most venerable of uses of forecast ensembles, and
again, an explicit assumption that the ensemble is a
random sample of the forecast distribution is required
(Barker 1991; Houtekamer 1993; Kalnay and Dalcher
1987; Wobus and Kalnay 1995). Ensembles in which
there is no notion of the relative likelihood of the dif-
ferent ensemble members (Brankovic et al. 1990; Buizza
et al. 1993; Hoffman and Kalnay 1983; Toth and Kalnay
1993) cannot be interpreted easily for any of these ap-
plications of ensembles.

In what follows, a formal context for the stochastic
prediction problem (Epstein 1969; Gleeson 1970), the
nonlinear filtering/prediction problem, is described. In
this context, the current and forecast states of the at-
mosphere are formally represented as probability dis-
tributions. Monte Carlo techniques are then applied to
produce approximations to the solutions of the nonlinear
filtering/prediction problem. These Monte Carlo tech-
niques can be applied directly in low-order models;
however, additional heuristic methods are required for
application to large systems such as atmospheric fore-
cast models. The result is a complete ensemble predic-
tion system including an ensemble data assimilation that
is designed to produce random samples of the initial
state probability distribution, which can in turn be used
to produce forecasts that are random samples of the
forecast probability distribution. The ensemble mean of
these analyses and forecasts should be competitive with
analyses made by more traditional discrete data assim-
ilation techniques.

Section 2 describes the nonlinear filtering/prediction
problem. Section 3 develops Monte Carlo techniques to
approximate the solution to the filtering/prediction prob-
lem. The result is an ensemble data assimilation/forecast
system. Section 4 discusses techniques that can be used
to evaluate performance of such a system. Section 5
presents results of the ensemble prediction system in a
low-order, perfect model context; additional low-order
results in section 6 address the system’s ability to work
in models that might require the application of ‘‘ini-
tialization’’ procedures to avoid spurious wave solu-
tions. Section 7 discusses the extension of the method
to realistic forecast models and observations, while sec-
tion 8 presents conclusions.

2. The nonlinear filter

Observations of the atmosphere are sparse in both
space and time and noisy. Traditional data assimilation
systems for the atmosphere attempt to find a single rep-
resentation of the atmospheric state that is the most

likely given all the available observations (Parrish and
Derber 1992). In the stochastic prediction problem, one
seeks the probability distribution of the atmospheric
state that is determined by all the available observations.
Adopting a probabilistic approach, the state of the at-
mosphere, xt, at a particular time, t, has the conditional
probability density function

p(x t | Yt), (1)

where Yt is the set of all observations of the atmosphere
that are taken at or before time t.

The rest of the development in this section is pri-
marily drawn from the text of Jazwinski (1970). To
proceed with the development of a nonlinear filter, it is
necessary to introduce a discrete representation of the
atmospheric state and stochastic model equations to rep-
resent the time evolution of this state:

dxt/dt 5 f(xt, t) 1 G(xt, t)wt. (2)

Here, xt is an n-dimensional vector that represents the
state of the model system at time t, f is a deterministic
forecast model, and w t is a white Gaussian process of
dimension r with mean 0 and covariance matrix S(t)
while G is an n 3 r matrix. The second term on the
right represents a stochastic component of the complete
forecast model (2). For the time being, the stochastic
term will be neglected; however, its inclusion is essential
when one is attempting to apply a filter to data from a
continuous system like the atmosphere. For the rest of
this paper, the filter will be applied in a perfect model
context in which

dxt/dt 5 f(xt, t) (3)

exactly represents the evolution of the system of interest.
Again, assume that a set of discrete observations, Yt

5 {y1, . . . , yt}, is available at time t. The observations
are functions of the model state variables and include
some observational error (noise), which is assumed to
be Gaussian here (although the method developed can
be extended to deal with non-Gaussian observational
error distributions):

yt 5 h(xt, t) 1 vt. (4)

Here, h is an m-vector function of the model state and
time and vt is an m-vector Gaussian observational noise;
m, the number of observations, can itself vary with time.
It is assumed below that the vt for different times are
uncorrelated. This is probably a reasonable assumption
for many traditional ground-based observations al-
though some newer types of observations, for instance,
satellite radiances, may have significant temporal cor-
relations in observational error.

As in the continuous case above, the conditional prob-
ability density of the model state at time t,

p(xt | Yt), (5)

is the complete solution to the filtering problem. The
probability distribution (5) will be referred to as the
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analysis probability distribution or initial condition
probability distribution. The forecast model (3) allows
the computation of the conditional probability density
at any time after the most recent observation time:

p(xt | Yt ) t . t . (6)

This predicted conditional probability density can be
used to make forecasts of the state of the model, or to
provide the prior distribution at the time of the next
available observations for the assimilation problem. The
temporal evolution of this probability distribution is de-
scribed by the Liouville equation as discussed in Eh-
rendorfer (1994). The probability distribution (6) will
be referred to as the first guess probability distribution
or prior probability distribution when it is being used
to assimilate additional data, or the forecast probability
distribution when a forecast is being made.

Assume that the conditional probability distribution
(5) at time t 2 1 is known and (6) is used to compute
the distribution at time t, when a new observation yt

becomes available. The conditional distribution after
making use of the new observation is

p(xt | Yt) 5 p(xt | yt, Y t21). (7)

Applying Bayes’ rule gives

p(xt | Yt) 5 p(yt | xt, Y t21)p(xt | Yt21)/p(yt | Yt21). (8)

Since the observational noise vk is assumed uncorrelated
for different observational times, the observational error
distribution at one time does not depend directly on the
observational error at a previous time, so

p(yt | xt, Yt21) 5 p(yt | xt). (9)

It is also straightforward to compute the denominator
in (8) as

p(y | Y ) 5 p(y | x)p(x | Y ) dx. (10)t t21 E t t21

Incorporating (9) and (10) in (8) gives

p(x |Y ) 5 p(y |x )p(x |Y ) p(y |j)p(j |Y ) dj.t t t t t t21 E t t21@
(11)

This equation expresses the way in which new obser-
vations are incorporated to modify the prior conditional
probability distribution (first guess distribution) avail-
able from predictions based on earlier observations. The
denominator is a normalization that guarantees that the
total probability of all possible model states is 1. The
numerator involves a product of two terms, the first
representing new information from observations at time
t and the second representing the prior constraints. The
prior term gives the probability that a given model state,
say xt, occurs at time t given information from all pre-
vious observations. The first term in the numerator of
(11) then evaluates how likely it is that the observation

yt would be taken given that the state really was xt. If
the relative probability of yt being observed given that
the true state is xt is small, then the final probability of
xt being the truth is reduced. If the relative probability
of yt being observed given that the truth is xt is high,
then the final probability of xt being the truth is in-
creased. This computation is repeated for every possible
value of the prior state in the (pointwise) product in the
numerator of (11) to give the updated conditional dis-
tribution for the model state. This algorithm can be re-
peated recursively until the time of the latest observa-
tion, at which point (6) can be used to produce the
forecast probability distribution at any desired time in
the future.

3. Monte Carlo implementation of nonlinear filter

a. Representing the conditional distribution

Equations (2) and (11) of the previous section, in
concert with some representation of the probability dis-
tribution at an initial time p(x0), define a nonlinear filter
that can be used to assimilate data in atmospheric pre-
diction models. However, a numerical implementation
of the filter necessitates some discrete representation of
probability distributions for the model state. The most
straightforward approach to the problem is to assume
that the probability distributions are approximately
Gaussian, representing the probability distribution of a
k-dimensional state by a k-vector of means and a k 3
k covariance matrix. As discussed below, using a Gauss-
ian representation for the model state conditional prob-
ability distribution leads to data assimilation algorithms
similar to the Kalman filter.

One could also choose to represent the conditional
probability distribution in terms of the mean, covari-
ance, and additional higher-order moments. While this
might lead to increased accuracy, it is computationally
challenging to perform the pointwise product in (11)
using representations of this sort.

A fundamentally different approach, using a finite
random sample of the conditional probability distribu-
tion as a discrete representation of the continuous dis-
tribution, is employed in the assimilation algorithm de-
veloped here. Such Monte Carlo algorithms can have a
number of nice properties that allow the computation
of approximate solutions to problems that may be in-
tractable by other methods. Here, the Monte Carlo ap-
proach has a number of advantages. The most apparent
is the ability of the method to represent probability dis-
tributions with non-Gaussian behavior. In addition, ap-
plying Monte Carlo solutions in conjunction with heu-
ristic simplifications can make the filtering problem trac-
table in very large models.

b. Monte Carlo sample of prior distribution

The basic filtering algorithm derived in the preceding
section is composed of two parts: advancing a condi-
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tional probability distribution from the end of one ob-
servation time to another to obtain the prior (first guess)
probability density [Eq. (2)] and doing the pointwise
product to incorporate the impact of new observations
[Eq. (11)]. Mechanisms for implementing both opera-
tions are requisite for the Monte Carlo approach.

Advancing a conditional distribution in time is
straightforward. Suppose one has a random sample, xi,
i 5 1, . . . , n of some (possibly vector) random variable
X and a (possibly vector) function, F. Then, if Y 5
F(X), the set yi 5 F(xi) is a random sample of the
random variable Y for all reasonable functions F (Cra-
mer 1966). For example, F could be a forecast model
in the form (2) or (3). Then, given a random sample of
the model state conditional probability p(xt | Y t) at time
t, one can generate a random sample of the prior dis-
tribution p(xt1 | Yt) at a later time t1 by integrating each
member of the sample in the forecast model. Similarly,
a random sample of the forecast probability distribution
can also be generated by integrating an ensemble of
initial conditions that are a random sample of the con-
ditional probability distribution at the time of the most
recent observation.

Another interesting case is when the function F is a
scalar function of X, for instance, a function that returns
the value of a single vector component, xi, of X or some
more complex scalar quantity, say the rainfall interpo-
lated to the location of a particular observing station.
Here F could also be a composite function that returns
a scalar function of a forecast field, or F could be the
observational operator h in (4). In any of these cases,
if one has a random sample of the model state condi-
tional probability, applying F individually to the sam-
ples results in a random sample of the function.

c. Monte Carlo implementation of the pointwise
product

The second step in the assimilation algorithm is to
compute the product of the prior probability distribution
with the observational error distribution. In the Monte
Carlo implementation, the prior is represented by a ran-
dom sample. For now, it is assumed that the observa-
tional error distribution is Gaussian, although it is pos-
sible to relax this constraint in a variant of the method
being described. To simplify the development of the
Monte Carlo algorithm, it is also assumed that the ob-
servational operator, h in (4), is the identity, that is,
observations are available for all state variables at every
observation time. Methods for relaxing this assumption
are discussed in section 7. Given these assumptions, a
pointwise product of a random sample and a Gaussian
must be computed, resulting in a random sample of the
product.

1) GAUSSIAN APPROXIMATION

One can proceed by using the Monte Carlo sample
of the prior to construct a continuous approximation to

the prior probability distribution. As noted in appendix
A, the pointwise product of a pair of Gaussians is an-
other Gaussian, and simple formulas exist for computing
the mean, covariance, and area under the product. Given
this, one way to compute the pointwise product is to
compute a Gaussian distribution that is the best fit to
the random sample

P(x) ø N(m, S), (12)

where m and S are the sample mean and covariance of
the prior, respectively.

The mean and covariance of the pointwise product
can then be computed by a single application of (A.2)–
(A.3), and a random sample of this product can be cre-
ated by standard methods. The denominator of (11) is
simply a normalization factor and hence has no impact
on the selection of the random sample of the product.
A Monte Carlo method that uses this single Gaussian
approximation of the prior probability distribution when
performing the pointwise product will be referred to as
a Gaussian filter in the following.

2) KERNEL APPROXIMATION

Using a Gaussian to represent the prior probability
distribution for the pointwise product can be viewed as
partially eliminating one of the fundamental advantages
of a Monte Carlo approach, namely, the ability to rep-
resent non-Gaussian probability distributions. Instead of
using a single Gaussian as a continuous representation
of the prior probability distribution, one can use a stan-
dard kernel technique (Silverman 1986) in which a sum
of Gaussian kernels is used to form a continuous rep-
resentation from a random sample.

For reasons elaborated below, the method of Fukun-
aga (1972) is used to select the Gaussian kernels that
are summed to form a continuous approximation to the
random sample. For an n-member sample, a set of n
Gaussian kernels is used,

n

P(x) ø K (x), (13)O i
i51

K (x) 5 N(m , aS), (14)i i

where the mean of the ith kernel mi is the value of the
ith member of the random sample and the covariance
of all the kernels is the same, a constant factor times
the covariance matrix S that would result if a single
Gaussian were used as in (12). Figure 1 shows a sche-
matic representation of the kernels and their relation to
the single Gaussian approximation. A number of meth-
ods for computing the constant covariance reduction
factor, a, have been developed (Silverman 1986). How-
ever, as noted in section 3e, the value of a is subsumed
into a tuning constant and so does not need to be cal-
culated explicitly.

With (13) used to generate a continuous approxi-
mation to the prior conditional probability distribution,
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FIG. 1. Schematic representation of the kernels (solid) and their re-
lation to the single Gaussian approximation (dashed).

FIG. 2. Schematic representation of advantages of kernel over single
Gaussian filter for a low-order model. The background is a projection
of a trajectory from the Lorenz-63 model showing the attractor struc-
ture. Superimposed is an idealized image of the single Gaussian (outer
curve) and kernel (inner curves) prior distributions for a three-mem-
ber ensemble.

a random sample of the pointwise product must be gen-
erated. Applying the distributive law, a continuous rep-
resentation of the pointwise product probability distri-
bution is

n n

C(x) 5 K (x)p(y | x) 5 c N(n , S ). (15)O Oi i i new
i51 i51

In (15), the product is computed by applying the for-
mulas in appendix A to each Gaussian kernel in the
summation for P(x) in turn. Each individual pointwise
product is characterized by a mean, ni, an area, ci, and
a covariance, Snew; the covariance is the same for all
the individual products since each kernel in P(x) has
the same covariance and the product’s covariance (A.2)
depends only on the individual covariances. This fact
also greatly reduces the work required to compute the
n individual pointwise products.

Once the ni, ci and Snew are computed, a new n-mem-
ber random sample of C(x) must be generated. This is
easily accomplished by noting that the ci’s define the
relative probability that a sample should be taken from
the ith member of the product sum. Selecting a random
sample of the C(x) consists of repeating the following
two steps n times. First, randomly select a kernel with
probability

n

p 5 c c . (16)Oi i i@i51

Then, select a random sample from the Gaussian for the
selected kernel using standard methods. This method is
referred to as a kernel filter in the following.

This kernel filter can have distinct advantages over
the Gaussian filter if the prior conditional probability
distribution (or the product itself ) has a distinctly non-
Gaussian structure. Figure 2 shows a schematic dem-
onstrating the additional power of the kernel method
when assimilating observations from a low-order dy-
namical system. In this example, the attractor of the

dynamical system being assimilated is confined to a
limited region of the model’s phase space. When a single
Gaussian is used to represent the prior conditional dis-
tribution, the result can be a representation that has the
majority of its probability density in regions of phase
space that are never visited by the model. The kernel
filter’s ability to represent non-Gaussian prior distri-
butions allows more of the density of the pointwise
product to be placed in areas of phase space that are
consistent with the model’s dynamics. Comparisons of
the single Gaussian and kernel methods are presented
in more detail in sections 5 and 6.

d. Comparison to other algorithms

A number of other approaches to solving the filtering
problem (11) exist or could be developed. Perhaps the
best known approximation for solving (11) is the Kal-
man filter. The Kalman filter assumes that the prior con-
ditional probability distribution is Gaussian and repre-
sents this distribution explicitly in terms of its mean and
covariance. Equation (3) is used to advance the mean
of the prior distribution in time. The covariance matrix
is advanced in time by linearizing (3) around the mean
trajectory in phase space and applying the resulting lin-
ear operator to the covariance matrix. The pointwise
product step can then be performed using the equations
of appendix A, the result being the new mean and co-
variance for the state estimate. Miller et al. (1994) ex-
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amine the application of a number of variants of the
Kalman filter to the Lorenz-63 system.

The Gaussian filter described above is similar to the
Kalman filter in that the prior conditional probability
distribution is represented as a Gaussian. However, the
Monte Carlo method does not require a linearized ver-
sion of the model; it is also computationally cheaper in
many cases since it requires only n integrations of the
nonlinear model. On the other hand, if the ensemble
size is smaller than the model phase space (as is always
the case in realistic model problems of interest), the
Monte Carlo method can at best sample the covariance
of the prior distribution in an n 2 1-dimensional sub-
space of the model phase space. Results later in section
7 discuss the efficacy of sampling only a subspace. In
general, the Monte Carlo method naturally samples
those directions in phase space with the most rapid per-
turbation growth, which can be argued to be the most
important directions for the filtering problem.

A number of groups have combined traditional dis-
crete data assimilation algorithms with ensemble fore-
casts. One method, the Observing System Simulation
Experiment–Monte Carlo (OSSE–MC) is described in
Houtekamer et al. (1996) and Houtekamer and Derome
(1995). In these cases, a set of perturbations around the
single discrete assimilated state is integrated in the non-
linear model. When new observations are available, this
sample is converted to a Gaussian as in the Gaussian
filter algorithm here and the pointwise product com-
puted. A new sample is then selected from the product’s
probability distribution. However, the OSSE–MC meth-
od requires some independent assimilation mechanism
to get the single control mean state. This mean estimate
may be fundamentally inconsistent with the probability
distribution being approximated by the ensemble of per-
turbations. In addition, constraining the perturbations to
be distributed around the control implies that the en-
semble does not represent a random sample of the fore-
cast probability distribution (6). This is especially true
when ensemble perturbations are required to be sym-
metric around the single control assimilation (Houtek-
amer et al. 1996) but is also true even without this
additional constraint.

A method known as the ensemble Kalman filter (Ev-
ensen 1994; Evensen and Van Leeuwen 1996; Van Leeu-
wen and Evensen 1996; Evensen 1997) is functionally
quite similar to the Gaussian filter developed here. The
ensemble Kalman filter uses an ensemble to represent
the covariance statistics of the assimilated state. The
ensemble is integrated in the nonlinear model to get a
sample of the prior distribution at the time of the next
observation. At that point, a Gaussian is fit to the en-
semble to get the covariance matrix of the prior distri-
bution as in the Gaussian filter and the pointwise product
is then performed in the context of the Kalman filter. A
number of variants of this procedure are discussed in
Evensen (1994). The results of applying the ensemble
Kalman filter are probably quite similar to those ob-

tained with the Gaussian filter discussed here. However,
developing a partially nonlinear Monte Carlo method
in the context of the linearized Kalman filter leads to a
great deal of extra complication in the application and
discussion of this method. It seems more natural to pro-
ceed directly to apply Monte Carlo methods to the fully
nonlinear filter as is done here.

The kernel filter has all the advantages of the Gauss-
ian filter but is potentially much more powerful. This
method is somewhat similar to performing an ensemble
of Kalman filters, and one could attempt to apply a
kernel approach when doing the pointwise product in
ensemble Kalman filter methods. Again, it seems much
more natural to develop the kernel filter in the context
of the fully nonlinear filter.

There are a variety of other variants of Monte Carlo
techniques that could be applied to the filtering problem.
A method that has received application in a variety of
problems is the classical weighted Monte Carlo method
with resampling. In algorithms of this class, the mem-
bers of the random sample of the prior are assigned a
weight at the time of the pointwise product correspond-
ing to the relative probability given by (11). The same
sample of points is then integrated to the next time when
data become available and the procedure is repeated.
Periodically, a resampling method similar to the basic
Monte Carlo algorithm described above can be applied
to generate a new set of points. The kernel method of
section c above could be trivially modified to incor-
porate the weighting/resampling approach. Preliminary
results have shown that when applying the method in
low-dimensional models, this can be computationally
somewhat more efficient. It can also help to reduce prob-
lems associated with the need for initialization (see sec-
tion 6). However, when applied to higher-order models,
the weighting method tends to be less effective because
of the empty space phenomenon (e.g., in a 10-dimen-
sional normal 99% of the mass of the distribution is at
points more distant than 1.6 from the mean; Silverman
1986) and related difficulties with sampling probability
densities in high-dimensional space. Future studies may
further explore the efficacy of applying weighting/pe-
riodic resampling in the context of the Monte Carlo
filter.

e. Tuning the filter

One of the common difficulties experienced when
applying a variety of filtering techniques is filter diver-
gence (Jazwinski 1970) in which the distribution pro-
duced by the filter drifts away from the truth. This nor-
mally occurs because the prior distribution becomes too
narrow and the observations have progressively less im-
pact on the pointwise product until the observations
become essentially irrelevant. The most common ap-
proach to dealing with filter divergence is to add some
(white) noise to the prior distribution to ‘‘broaden’’ this



DECEMBER 1999 2747A N D E R S O N A N D A N D E R S O N

distribution and enhance the impact of the observations
in the product.

The Gaussian and kernel filters described above are
not immune to the filter divergence problem. In general,
if the Gaussian filter is applied directly as described, it
eventually diverges resulting in an increasingly tight
prior distribution that is not influenced by new obser-
vations. A direct addition of noise to address the filter
divergence may have undesirable consequences when
applied in models of the type used to do atmospheric
prediction (see discussion in section 6).

Filter divergence can also be fixed by a variety of
other methods that attempt to avoid the unwarranted
tightening of the prior distribution. Here, a particularly
simple approach is taken: the covariance matrix, S, com-
puted for the prior (12) is multiplied by a factor g (g
. 1). By broadening the prior distribution artificially
in this fashion, the divergence problem can be avoided
while the implied prior distribution tends to remain on
the local attractor (Anderson 1994, 1997). Obviously,
making g too large results in a filter in which the ob-
servations are given too much weight, so g must be
chosen with care. In general, the only viable method for
choosing g is experimentation. In the perfect model re-
sults presented in later sections, g is chosen by trial and
error to give an assimilation with the most favorable
statistics. Tuning a filter for a real system is complicated
by the limited number of observations, the lack of
knowledge of the true state, and the presence of sys-
tematic model errors; all assimilation techniques have
to deal with this same problem.

As noted above, when using the kernel filter, the sam-
ple covariance matrix computed from the prior distri-
bution must be multiplied by a factor, a, to generate
kernels of the appropriate size. While a number of heu-
ristic methods for generating a exist (Silverman 1986),
they should be regarded as at best rough approximations
of the optimal value. When applying the kernel method,
a can be computed in the same heuristic fashion as for
g in the preceding paragraph, resulting in a filter that
does not experience filter divergence while giving a
good representation of the model state distribution.

4. Evaluating ensemble analyses and forecasts for
perfect model experiments

Before presenting some sample applications of the
Monte Carlo filters, it is necessary to develop some tools
for assessing the quality of analyses and forecasts. As
noted in the introduction, the goal of the techniques
developed here is to produce a random sample of the
analysis probability distribution (5) and the forecast
probability distribution (6). Since no analytic represen-
tation of these probability distributions is available, even
in simple model applications with straightforward ob-
servational error covariances, it is a challenging problem
to determine how well ensembles produced by a par-
ticular algorithm satisfy this criterion.

a. Partitioning by order statistics

Equation (5) describes all that can possibly be known
about the truth given the available observations. If the
filter worked perfectly, then the true state should be
statistically indistinguishable from the random samples
of the analysis distribution produced by the filter. There-
fore, a necessary condition for a perfect assimilation is
that the true state of the system and the random sample
produced by the analysis are drawn from the same dis-
tribution; this condition is referred to as consistency
between the ensemble analysis and the truth in what
follows.

It is impossible to test this condition given a single
sample of the truth and the analysis ensemble at a single
time; it is also difficult to evaluate this condition for
probability distributions in high-dimensional vector
spaces. Anderson (1996b) described a technique, known
as binning or Talagrand diagrams, that uses samples of
scalar functions of the truth and the corresponding anal-
ysis ensemble at many different times to check for con-
sistency between the truth and the analysis distribution.
At each analysis time, this technique uses the analysis
ensemble of a scalar quantity to partition the real line
into n 1 1 intervals (bins); the truth at the corresponding
time falls into one of these n 1 1 bins. As shown in
Anderson (1996b), a necessary condition for the anal-
ysis ensemble to be a random sample of (5) is that the
distribution of the truth into the n 1 1 bins be uniform.
In what follows, this is evaluated by applying a standard
chi-square test to the distribution of the truth in the n
1 1 bins. The null hypothesis here is that the truth and
the analysis ensemble are drawn from the same distri-
bution. Obviously, for large enough samples, the assim-
ilation and the truth should be distinct since there are
many approximations in the filtering algorithm. A very
rough measure of the quality of the assimilation can be
obtained by noting how large a sample must be used to
demonstrate that the truth and assimilation are signifi-
cantly different.

The binning technique can be applied only to scalars.
However, one would like to have some information
about higher-dimensional aspects of the analysis prob-
ability distribution. One very simple tool to evaluate
this involves the ratio of the time-averaged rms error of
the ensemble mean to the time-averaged mean rms error
of the individual ensemble members. As shown by Mur-
phy (1988, 1990), this ratio should be

R 5 Ï(N 1 1)/2N

if the truth is statistically indistinguishable from a mem-
ber of the analysis ensemble.

b. Minimizing rms

Consistency between the analysis ensemble and the
truth is only a necessary condition for the truth and
assimilation to be samples from the same distribution.
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FIG. 3. Impact of covariance inflation factor, a, on the performance
of a 40-member kernel filter assimilation applied to the Lorenz-63
model with observational error standard deviation 2.0 on each var-
iable independently and observations available every 50 time steps.
(a) The rms of the ensemble mean (solid), mean rms of the ensemble
members (dashed), and the normalized ratio of the two (dash–dotted).
(b) The significance of the chi-square statistic for the x (solid), y
(dashed), and z (dash–dotted) variables.

For instance, an ensemble analysis comprised of a ran-
dom sample from a long model climatological run would
be consistent with the truth. It is also necessary to min-
imize some measure of the average error between the
analysis ensemble mean and the truth. The average rms
difference between the ensemble mean and the truth is
used here (Leith 1974).

5. Low-order model results: Lorenz-63 model

Tests in low-order models are essential to understand-
ing the behavior of ensemble data assimilation and fore-
casting methods since the behavior of realistic forecast
models is far too complicated to be readily understood.
Here, results are first presented for the Lorenz-63 model
(Lorenz 1963) (appendix B), which is a set of three
coupled nonlinear partial differential equations in three
variables (B1)–(B3). This model is chosen for a number
of reasons: its low integration cost allows large numbers
of comprehensive tests with large sample sizes, it is
chaotic in its continuous form and has large sensitivity
to initial conditions in its discretized form, it has an
attractor with unusually simple structure, and it has been
used in many previous studies of data assimilation and
ensemble prediction (Anderson 1996a; Palmer 1993;
Anderson and Hubeny 1997; Evensen 1997).

All results presented in this section are from perfect
model experiments in which a very long control run of
the Lorenz-63 model is assumed to represent the truth.
Observations of the truth with a specified observational
error are generated periodically by adding a random
sample of a prescribed observational error distribution
to the truth. Monte Carlo filters are then applied to these
observations to produce random samples of the analysis
probability distribution and forecast probability distri-
butions for a range of forecast lead times. This perfect
model framework has two advantages. First, it allows
the verification of the assimilation and forecasts against
the truth, which can never be known for a real system.
Second, it eliminates the difficulties of dealing with sys-
tematic model error, which complicate the assimilation
algorithm. Issues related to systematic error are dis-
cussed in section 7.

In the experiments in this section, the observational
error distribution for a given experiment is fixed in time.
To start the assimilation, an initial sample of the model
state probability distribution is needed. Here, each mem-
ber of the ensemble at the initial time is generated by
adding an independent random sample of the observa-
tional error distribution to the truth. The first 5000 model
time steps of the assimilation are discarded to avoid
direct impacts of the early spinup portion of the assim-
ilation.

a. Tuning the filter

As noted in section 3, it is necessary to select a value
for the covariance inflation factors (g for the single

Gaussian representation and a for the kernel represen-
tation) in order to avoid filter divergence while pro-
ducing the best assimilation and forecasts possible. Fig-
ure 3 shows the impact of varying the covariance in-
flation factor, a, for a 40-member ensemble assimilation
of the Lorenz-63 model using a kernel filter. In this case,
observations are available every 50th nondimensional
time step with an observational error that has a standard
deviation of 2.0 for each of x, y, and z with no covariance
in the observational error. As noted in section 4, the
goal of the assimilation is to produce a random sample
of the conditional probability distribution that is con-
sistent with the truth while minimizing the rms error of
the ensemble mean from the truth. For values of a less
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TABLE 1. Mean rms error of the ensemble mean as a function of
the observational interval for 40-member kernel and Gaussian filter
assimilations of the Lorenz-63 system with observational error stan-
dard deviation 2.0 on each variable independently. Results are for
time steps 5000–15 000 of a long assimilation run.

Observational
interval

Kernel filter
ensemble mean

rms error

Gaussian filter
ensemble mean

rms error

1
10
20
50

100

0.365
0.600
0.805
1.04
1.51

0.348
0.666
0.940
1.28
1.70

FIG. 4. Time sequence of values of x variable for truth (dark 1),
observed (dark *), and 10 members of the ensemble simulation (light
1) from a 40-member kernel filter assimilation of the Lorenz-63
model with observations available every 10 steps with observational
error standard deviation 2.0 on each variable independently.

than about 0.1, the filter may diverge completely from
the truth and the rms error of the assimilation has ap-
proximately the same value as the difference between
two randomly chosen states from a long integration (cli-
mate) of the model. Figure 3a shows that as a is in-
creased, the problem of filter divergence begins to de-
crease. As a is increased past 0.1, the mean of the rms
error and the ensemble mean error have minima at a
approximately 0.15. As a is further increased, the rms
error increases again as the assimilation begins to use
less information from the prior distribution. For very
large a, the rms error would be essentially the same as
one would get by assuming that the model state distri-
bution at observation times is equivalent to the obser-
vational distribution.

Figure 3b plots the significance of the chi-square sta-
tistic for the order statistic binning of x, y, and z as a
function of a. For small a, the filter diverges and the
truth almost always lies in one of the two outer bins,
so the chi-square significance is very small. As a is
increased, the value of chi-square significance increases
until the test is unable to distinguish the distribution of
the bins from uniform with the sample size (200 ob-
servation times) available. All three chi-square values
are generally above the 10% confidence range for values
of a greater than 0.1. The significance should be less
than 10% one-tenth of the time by chance, even if the
null hypothesis is true.

Figure 3a also shows the ratio of the mean of rms
error of the ensemble mean to the individual rms errors
from the ensemble, normalized by the expected value
of approximately 0.716 for a 40-member ensemble. For
small a, the ratio is much larger than 0.716. As a in-
creases, the ratio decreases, passing through the value
0.716 for values of a for which the rms is slightly larger
than its minimum. Since the chi-square statistics suggest
that this is also a value of a for which the ensemble
assimilation is relatively consistent with the truth, it
would appear that values of a approximately 0.15 are
most appropriate for this application. A similar tuning
is undertaken for all the filters used throughout the rest
of this study.

b. Kernel assimilation results for Lorenz-63

The abilities of the kernel filter can be highlighted
by examining the results of assimilations for the Lorenz-
63 model. Table 1 shows the ensemble mean rms error
of the assimilated ensemble as a function of observa-
tional frequency for 40-member ensembles. For frequent
observations, the prior distributions are nearly Gaussian
and the rms errors are relatively small. As an example,
Fig. 4 shows the true, observed, and assimilated ensem-
ble values for the x-variable of the Lorenz-63 system
for observations available every 10 steps. The true tra-
jectory demonstrates typical behavior for the Lorenz-
63 system, switching from one attractor lobe (x positive)
to the other (x negative) after some number of orbits.
The assimilated ensemble (only 10 of the 40 members
are shown to avoid even more clutter) generally tracks
quite tightly along the true trajectory. Occasionally, the
ensemble set spreads out, indicating that there is more
uncertainty about the assimilated state. In some cases,
some members of the ensemble follow trajectories into
the other lobe of the attractor, for instance, around time
step 13 000 or 13 750. At times like this, the prior dis-
tribution is bimodal and clearly not Gaussian.

As a control for the assimilation results, Fig. 5 shows
the same sequence except that the assimilation is
switched off at time 12 750. For the first orbit of the
attractor lobe, all members of the ensemble (now tech-
nically a forecast) remain in the proper lobe. After the
first orbit, the truth switches to the other lobe, but a few
members of the ensemble fail to do so; even more en-
semble members switch back to the wrong lobe after
the next orbit. By about step 13 000, the ensemble mem-
bers are nearly randomly distributed on the attractor.

Figure 6 shows the true, observed, and assimilated
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FIG. 5. Same as Fig. 4 except that all assimilation is stopped at
time step 12 750 and the ensemble is allowed to evolve freely.

FIG. 6. Same as Fig. 4 except with observations available every 50
steps.

FIG. 7. Probability density distribution of x for the prior distri-
bution at time step 12 750 for the same assimilation experiment as
in Fig. 6.

ensemble values for the x-variable for observations
available only every 50 steps. The assimilation is clearly
providing information about the truth, but the spread is
much greater than for observations every 10 steps (Fig.
4). There are also a greatly increased number of inci-
dents in which some of the ensemble trajectories move
into the wrong lobe of the attractor.

For assimilations where the observations are available
relatively infrequently, the prior distributions and even
the assimilated distributions can become highly non-
Gaussian. Figure 7 shows the probability density for the
x-variable of the prior distribution at time step 12 750
of the assimilation shown in Fig. 6 (this continuous
density plot is generated using the same kernel method
that is used in the pointwise product for the assimila-
tion). This prior distribution is significantly bimodal and
is arguably trimodal, with about 25 of the ensemble
points in two peaks in the positive x attractor lobe and
the remaining 15 well separated in the other lobe. While
one should be suspicious that a trimodal distribution
with just 40 samples is simply a result of undersmooth-
ing the data with the kernel summation, in this case,
there is a physical reason to accept the trimodality. The
peak for negative x is due to ensemble members that
are in the negative x attractor lobe. The upper peak for
positive x in Fig. 7 comes from a set of ensemble mem-
bers that moved into the positive x attractor lobe at
approximately time step 12 650. The lower positive x
peak corresponds to points that moved into the positive
lobe one orbit later at about time step 12 700. The ability
of the kernel filter to resolve non-Gaussian behavior in
both the prior and assimilated distributions appears to
be of importance in this type of dynamical system with
fairly infrequent observations (for a particular obser-
vational error distribution).

The kernel filter assimilation is able to perform well
even when observations are extremely infrequent or

when observational error is very large, situations that
are generally challenging for more traditional methods
like the Kalman filter. Figure 8 displays results for an
assimilation with observations every 10 steps, but with
an observational error standard deviation of 10.0 for x,
y, and z. The size of the observational error relative to
the variations of the model can be seen clearly in the
figures. Despite the relatively low quality observations,
the assimilation does not diverge from the truth. Figure
8a shows that the spread of the ensemble is generally
large and occasionally the ensemble is spread out over
almost the entire attractor. Despite this, the ensemble
mean generally stays quite close to the truth as shown
in Fig. 8b. On the occasions when the ensemble mean
does diverge from the truth, for instance, around time
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FIG. 8. (a) Same as Fig. 4 except with observational error standard
deviation 10.0 on each variable independently. (b) Truth and observed
as in (a) with ensemble mean of the assimilation (light 1).

TABLE 2. Mean rms error of the ensemble mean as a function of ensemble size for assimilations with observations available every 20 and
every 50 model time steps for the Lorenz-63 model with observational error standard deviation 2.0 on each variable independently. Results
are shown for kernel and Gaussian filter assimilations and are averaged over time steps 5000 to 15 000 of a long assimilation run.

Ensemble size

Kernel filter ens.
mean rms obs. freq.

20

Gaussian filter ens.
mean rms obs. freq.

20

Kernel filter ens.
mean rms obs. freq.

50

Gaussian filter ens.
mean rms obs. freq.

50

10
20
40
80

160

1.27
0.852
0.805
0.659
0.616

1.31
1.04
0.940
0.883
0.802

1.84
1.23
1.04
1.04
0.758

1.77
1.47
1.28
1.32
1.32

step 13 750, new observations are sufficient to pull it
back toward the truth at later times.

All results displayed to this point are for 40-member
ensembles. Table 2 shows the impact of varying the
ensemble size on the rms of the assimilated ensemble
mean for assimilations with observations available ev-

ery 20 and every 50 model time steps. Increasing the
ensemble size helps improve the assimilation in three
ways. First, the estimates of the sample mean and co-
variance used to compute the kernels are significantly
improved as the ensemble size becomes larger. Second,
additional ensemble members allow better resolution of
the details of the model’s attractor. Third, as more ker-
nels are available, the inflation factor, a, gets smaller
so that the kernel distributions tend to spill into non-
attractor areas to a lesser extent.

The quality of forecasts produced from the ensemble
assimilations can also be evaluated. Figure 9 shows the
rms error of the ensemble mean and the chi-square val-
ues as a function of forecast lead time for an assimilation
with 40 ensemble members and observations available
every 50 steps (shown in Fig. 6); results are shown out
to 500 step lead forecasts (10 observation periods). As
anticipated, the rms error increases with forecast lead
time; however, the ensemble forecasts stay consistent
with the true state of the system as demonstrated by the
chi-square values. The chi-square significance only
drops below 10%, which should happen by chance 10%
of the time, in a handful of cases during the forecast
set. This is the expected behavior for random samples
of the forecast probability distribution; as the lead time
increases, the distribution gets broader but remains con-
sistent with the truth.

c. Single Gaussian versus kernel approximation

Section 3 presented two different methods for rep-
resenting the continuous form of the prior distribution
when performing the pointwise product. It was sug-
gested there that the kernel filter approach should have
advantages when applied to systems like the Lorenz-63
model. These advantages should be more pronounced
when the prior (or assimilated) distribution is distinctly
non-Gaussian, which should be more likely when the
frequency of observations is reduced for a given ob-
servational error distribution.

Tables 1 and 2 contain comparisons of the Gaussian
and kernel filter ensemble mean rms errors for a number
of ensemble sizes and observation frequencies. In gen-
eral, for frequent observations or very small ensembles,
the two methods produce results that are quite similar,
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FIG. 9. Evaluation of quality of forecasts produced from same
assimilation as in Fig. 6. (a) The rms of the ensemble mean (solid),
the mean rms of the ensemble members (dash–dotted), and the nor-
malized ratio of the two (dotted line nearly indistinguishable from
the solid line at 1). (b) The significance of the chi-square statistic for
the x (solid), y (dash–dotted), and z (dashed).

presumably because the prior distributions are almost
always nearly Gaussian in these cases. As the frequency
of observations decreases and/or the ensemble size gets
larger, the advantages of the kernel filter can be realized
and the Gaussian filter ensemble mean errors become
larger than those for the kernel filter. Similar results were
also found for even less frequent observations and when
the observational error standard deviation was increased
while holding the observational frequency constant. In
all these cases, the prior distributions are becoming in-
creasingly non-Gaussian, making the approximation
used in the Gaussian filter increasingly inappropriate.
As pointed out in the discussion of the previous sub-
section, the prior distributions for experiments like those
shown in Figs. 6 and 7 are highly non-Gaussian at cer-
tain times. At these times, the kernel filter is not ham-

pered by the assumption of a Gaussian prior and is able
to produce superior assimilations. No instances were
found for any of the low-order models examined in
which the Gaussian filter performed significantly better
than the kernel filter. In addition, the use of the kernel
filter provides some additional benefits when the op-
erator mapping from model variables to observations [h
in Eq. (4)] is not easily invertible (recall that h is simply
the identity for results here). The advantages of using
the kernel filter can be even greater in higher-order sys-
tems as discussed in section 6.

6. Filtering and initialization

One of the major problems facing data assimilation
systems in realistic forecast models is the need for ini-
tialization (Vautard and Legras 1986). The forecast
models can be viewed as having attractors on which the
dynamics is dominated by relatively slow, relatively bal-
anced modes of some sort. However, perturbations off
the attractor can result in large amplitude, relatively fast
modes that may be unrealistic and generally have un-
fortunate numerical consequences (Warn and Menard
1986). The Lorenz-63 system discussed in the previous
section does not have a serious need for initialization.
Perturbations off the attractor generally decay expo-
nentially toward nearby trajectories on the attractor (An-
derson and Hubeny 1997).

Another low-order model, the nine-variable model
(appendix C) of Lorenz (1980) can be used to evaluate
the abilities of the filter assimilations in a system that
can require initialization. This model is a truncated ver-
sion of the primitive equations that has been used to
study the behavior of gravity waves (Lorenz and Krish-
namurthy 1987). Unlike the Lorenz-63 model, off-at-
tractor perturbations in this model do not necessarily
decay smoothly back to the attractor. Instead, most per-
turbations result in a transient period of high-amplitude,
high-frequency gravity waves (Anderson and Hubeny
1997). If a data assimilation algorithm produces states
that are not very close to the model attractor when new
observations are combined with some prior estimate,
the result is an assimilated state that is dominated by
gravity wave noise that is unrelated to the true solution.
Many traditional data assimilation algorithms are unable
to incorporate information about the local structure of
the attractor. These assimilation methods end up pro-
ducing estimates of the state with larger errors than are
found in the raw observations if they are applied directly
to the nine-variable system. The standard solution is to
apply some initialization algorithm to the assimilated
state to enforce balance constraints that will reduce the
resulting gravity wave amplitude.

Ostensibly, the analysis probability distribution pro-
duced by the kernel filter method knows about the con-
straints placed on the state by the model dynamics.
However, the approximations involved in the solution
method could lead to a loss of this information, leading
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FIG. 10. (a) Time sequence of values of X1 and (b) z1 for truth
(dark 1), observed (dark *), and 10 members of the ensemble as-
similation (light 1) from a 40-member kernel assimilation of the
nine-variable model with observations available every 100 steps
with observational error standard deviation 0.05 on each variable
independently.

to assimilated probability distributions that are not con-
fined to be close to the model attractor. A kernel filter
assimilation of the nine-variable model has been per-
formed with observations available every 100 time
steps and an observational error of 0.05 on each of the
nine variables independently; a 40-member ensemble
was used in this case. The assimilation has an average
ensemble mean rms error of 5.7 3 1023 and a mean
rms error of 7.9 3 1023 giving an rms ratio of 0.72,
consistent with the truth being indistinguishable from
a random sample of the ensemble. The chi-square sta-
tistics for the individual model components all indicate
that the truth is indistinguishable from the ensemble
with this sample size with a significance above 10%.
Figure 10 shows a segment of the assimilation for var-

iables X1 and z1 , one of the divergence and height var-
iables, respectively. Neither of these variables dem-
onstrates any of the high frequency noise that is as-
sociated with gravity waves in this system. Particularly
encouraging is the filter’s ability to assimilate the X
variables; the amplitude of these variables on the at-
tractor is small (the system is nearly in balance) and
the observational error is more than an order of mag-
nitude larger than the variability of the variables (in
fact, only one of the 25 observations during the period
displayed in Fig. 10a even appears with the scale of
this plot).

The attractor of the nine-variable model is quite sim-
ilar to that for the Lorenz-63 model (Moritz and Sutera
1981). It is nearly flat locally and globally consists of
a pair of nearly flat lobes that intersect at one edge. In
this case, however, the attractor is embedded in a nine-
dimensional phase space. A close examination of the
prior distribution for the kernel filter shows that the
ensemble distributions are generally able to represent
this attractor structure, leading to the high quality as-
similations.

The single Gaussian filter has been applied to the
same assimilation problem and produces an ensemble
mean rms error of 8.7 3 1023 and a mean rms error of
1.2 3 1022. The single Gaussian filter appears to pro-
duce assimilated results that generate slightly more
gravity wave noise in forecasts than do the kernel as-
similation forecasts. This apparently leads to the kernel
filter’s advantage over the single Gaussian being larger
in this nine-variable case than in most of the Lorenz-
63 cases studied.

Increasing the observational frequency to every 10
time steps while simultaneously increasing the obser-
vational error standard deviations to 0.2 leads to an
even more stringent test of the kernel filter. In this case,
low quality observations are available frequently. Each
time these poor observations are assimilated, the as-
similation algorithm must avoid producing new ensem-
ble members that are not close to the attractor. Figures
11a and 11b depict the ensemble assimilation for this
case for the X1 variable for the Gaussian and kernel
filters, respectively. There is much more noise at all
times in the Gaussian filter and orders of magnitude
more noise at certain times. While the kernel filter is
not noise-free in this case, the noise for the X1 variable
is still somewhat less than the natural variability of X1 .
Figures 11c and 11d show the ensemble means for the
same variables. Again, some high-frequency gravity
wave noise is visible in both assimilations, but the
noise is always significantly less in the kernel filter.
The impacts of this noise are less noticeable for the
height field due to its inherently larger natural vari-
ability, but again, the kernel filter produces a consid-
erably better and less noisy assimilation of the z1 var-
iable as shown in Fig. 12.

It is encouraging that the kernel filter is able to pro-
duce nine-variable model assimilations that probably do
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FIG. 11. Same as Fig. 10 except with observations every 10 steps and observational error standard deviation 0.2 on each variable
independently: (a) and (c) from a Gaussian filter and (b) and (d) from a kernel filter assimilation. (a), (b) Ten members of the ensemble
assimilation are shown by the light 1. (c), (d) The ensemble mean is shown by the light 1.

not require initialization, even with relatively frequent
but very noisy observations. If the attractors of higher-
dimensional models are confined predominantly to rel-
atively low-dimensional manifolds locally, it is possible
that these structures could also be represented by en-
sembles much smaller than the total phase space of the
model. Initial results with higher-order models indicate
that the advantages of the kernel filter become even
greater in higher dimensions. Considerable further work
will be needed to evaluate the potential for applying
filters of this type in realistic forecast models that require
initialization.

7. Application to more realistic systems

The results shown here demonstrate the capabilities
of the kernel filter method in low-order systems with

a number of simplifying assumptions. This section
briefly discusses the potential for extending the method
to higher-order models and more realistic observations
while removing the most stringent simplifying as-
sumptions.

a. Application to high-order models

The results of earlier sections have been for dynam-
ical systems in which the number of phase space di-
mensions is small compared to the ensemble size.
However, for realistic applications, the number of en-
semble members would have to be very small com-
pared to the number of phase space dimensions. One
can still attempt to apply the kernel filter method with
small ensembles to large models using a heuristic tech-
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FIG. 12. Time sequence of values of z1 with truth (dark 1), observed
(dark *) and 10 members of 40-member Gaussian (a) and kernel (b)
filter assimilations (light 1) of the nine-variable model with obser-
vations every 10 steps and observational error standard deviation 0.2
on each variable independently.

nique that is similar to classical regularization tech-
niques.

Suppose an m-member ensemble is being used to do
assimilation in a model with an n-dimensional phase
space. Assume that, at time t 0 , the m-member ensemble
is a random sample of the analysis probability distri-
bution (there is no contradiction in having a random
sample of a probability distribution in a high-dimen-
sional space with a small ensemble). One can proceed
to generate a random sample of the prior distribution
by advancing the ensemble in the model as in low-
order applications. However, this prior distribution
spans at most an (m 2 1)-dimensional subspace of the
n-dimensional phase space. One can calculate a basis
for this subspace and project the observational error
distribution onto this basis. The computation and ran-

dom resampling of the pointwise product can then be
completed in this subspace. This operation can be
shown to produce a random sample of the analysis
probability distribution in the (m 2 1)-dimensional
subspace but has no effect on the (n 2 m 1 1)-di-
mensional portion of phase space, which is not spanned
by the ensemble.

Initially, it seems unreasonable to assume that doing
the pointwise product only in the ensemble subspace
can result in an effective assimilation. However, most
high-order dynamical systems used in atmospheric pre-
diction are believed to have local attractor structures
that are confined to very small submanifolds of the total
phase space (Broomhead et al. 1991; Henderson and
Wells 1988). In addition, ensemble members that lie
near this local attractor will generally tend to be enriched
in their projection on the attractor when integrated in
the model [this is the underlying premise of some heu-
ristic ensemble generation methods (Toth and Kalnay
1996)]. If the vast majority of the interesting dynamics
takes place on a submanifold that is not of significantly
larger size than the ensemble, this subspace assimilation
technique may work.

A great deal of additional research is needed to better
understand and test filter methods applied to high-di-
mensional systems. Initial tests, however, demonstrate
that the method can work in models for which the phase
space dimension is much larger than the ensemble size.
An assimilation has been performed with a 40-member
ensemble in a forced global barotropic spectral model
at T42 resolution. Observations of the streamfunction
are available at every grid point on a reduced grid (every
fourth grid point in both latitude and longitude) every
12 h with an observational error standard deviation of
5 3 105 m2 s21 and the assimilation is performed in
physical space, which has more than 3000 degrees of
freedom. The kernel filter method was able to constrain
successfully an assimilation in this case, giving rms er-
rors for the ensemble mean nearly two orders of mag-
nitude less than the observational errors and distribu-
tions for gridpoint streamfunction that were indistin-
guishable from random samples for assimilation sample
sizes of 100.

b. Realistic observations

In the results presented, the operator h [Eq. (4)] map-
ping from the model state variables to the observations
has been simply the identity. It is straightforward to
extend the method to h operators that can be easily
inverted to map from observations to model state. How-
ever, realistic observational operators generally do not
have well-defined inverses.

A variety of possible extensions to the filter method
could be developed to deal with more general h op-
erators. As an example, the prior ensemble distribu-
tion can be mapped to the ‘‘observational space’’ by
applying the h operator to each ensemble member.
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The pointwise product can then be performed in ob-
servational space using the kernel method and a new
random sample generated. Each member of this new
sample is associated with a particular member of the
prior ensemble. One can then solve an ensemble of
constrained optimization problems to find points in
the model state space that closely correspond to the
newly generated observational space sample. This op-
timization may be considerably easier than similar
operations required in some more conventional assim-
ilation techniques for several reasons. First, a rela-
tively good first guess is available since the kernel
method resampling indicates which prior ensemble-
member should be used as a first guess. Second, tech-
niques such as adjoint methods can be readily applied
to assist in gradient computations. The adjoints here
are only for the h operator and may be much easier
to compute than those required for adjoint applica-
tions of variational algorithms (Errico and Vukicevic
1992). Finally, the search need only be conducted in
the phase space spanned by the ensemble, which is
generally small compared to the phase space size of
realistic models. Again, a great deal of additional
work is needed to understand the best ways to apply
filter algorithms with noninvertible h operators.

c. Systematic errors

All applications of the filter method described to date
have been in a perfect model context for which the
assimilating model is identical to that generating the
truth. In applications to real observations, the assim-
ilating model is expected to have systematic errors.
Filter methods are traditionally able to adapt to the
presence of systematic errors, which are a part of al-
most all real-world applications. However, systematic
errors may present a greater challenge when Monte
Carlo filters are applied in high-dimensional models.
In this case, if the systematic error projects on direc-
tions in phase space that are not spanned by the en-
semble prior, the assimilation will not affect that por-
tion of the systematic error. Since there is no reason
to expect that the systematic error will be predomi-
nantly confined to the attractor of the assimilating mod-
el, this is expected to be a serious problem. Possible
solutions include applying a simpler assimilation meth-
od in the null-space of the ensemble prior. Imperfect
model tests have suggested that even as simple a so-
lution as damping the model state toward observations
in the null space can be effective, but tests with real-
world observations will be essential to develop solu-
tions to the systematic error problem.

d. Stochastic models and parameterizations

In previous sections, the assimilating models have
been assumed to be deterministic with the second term
in Eq. (2) dropped. However, when applied to real sys-

tems, it becomes essential to account for the uncertain-
ties in the model formulation (Houtekamer et al. 1996;
Moritz and Sutera 1981; Buizza et al. 1998). This is
particularly true for subgrid-scale parameterizations in
atmospheric models. Traditionally, these parameteriza-
tions have been formulated as deterministic relations
between the large-scale flow and the feedback of small-
scale, unresolved features on the large scale. Clearly,
this feedback is not deterministic but is instead sto-
chastic. When applying filters to realistic systems, it is
important to account for these stochastic terms in the
assimilating model. This can be done by simply adding
random samples from some rough estimate of the dis-
tribution, or by attempting to formulate stochastic sub-
grid-scale parameterizations. The importance of ac-
counting for these stochastic model dynamics will need
to be further investigated and appropriate solutions de-
veloped.

8. Conclusions

The kernel filter, a method to produce random samples
of the analysis and forecast probability distributions of
a dynamical system, has been described and validated
in low-order model applications. The method is able to
produce samples that are qualitatively very close to ran-
dom in these applications while still producing ensemble
mean assimilations and forecasts with small errors. The
method has a number of advantages over methods pre-
viously described in the literature for the generation of
ensemble members for predictions or predictability re-
search.

A number of difficulties remain in extending the
kernel filter method to more realistic applications.
However, numerous applications exist for random
samples of the analysis and forecast distributions even
in low-order models. These samples can be used for
studies of fundamental predictability questions in
low-order models that have been performed tradi-
tionally using heuristically generated ensembles that
are often poor approximations to the appropriate ran-
dom samples. The kernel filter can also be used to do
low-order model comparisons to techniques of en-
semble generation that are applied in higher-order
models.

A number of major obstacles must be surmounted
in order to extend the assimilation method to high-
order models with realistic observations. Initial tests
of a technique for extending the kernel filter to models
with phase spaces that are large compared to the en-
semble size have been successful. Additional research
is needed to see how these extend to prediction models.
Additional work is also required to investigate ex-
tending the method to more realistic observation types
and to deal with problems of systematic error. If suc-
cessful, however, the application of the method in pre-
diction models promises to enhance significantly the
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quality of ensemble forecasts over a range of spatial
and temporal scales.
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APPENDIX A

Convolution of Two Gaussians

The convolution of two m-dimensional normals with
means m1 and m2 and covariance matrices S1 and S2 is
a normal (A1) with mean m and covariance S defined
in (A2)–(A4):

N(m , S )N(m , S ) 5 cN(m, S), (A1)1 1 2 2

21 21 21S 5 (S 1 S ) , (A2)1 2

21 21 21 21 21m 5 (S 1 S ) (S m 1 S m ), (A3)1 2 1 1 2 2

1 1
T 21c 5 exp 2 [(m 2 m ) (S 1 S ) (m 2 m )] . (A4)2 1 1 2 2 1d /2 1/2 5 6(2P) |S 1 S | 21 2

APPENDIX B

Lorenz-63 Model

The Lorenz-63 model (Lorenz 1963) has become one
of the mainstays for the study of chaotic systems (Palm-
er 1993). The model’s three equations are

ẋ 5 2sx 1 sy, (B1)

ẏ 5 2xz 1 rx 2 y, (B2)

ż 5 xy 2 bz, (B3)

where the dot represents a derivative with respect to
time. The model is integrated using the standard values
for the parameters s, b, and r and the time step described
in the original Lorenz paper resulting in a system with
chaotic dynamics.

APPENDIX C

Nine-Variable Model

The nine-variable model is represented by the equa-
tions

Ẋ 5 U U 1 V V 2 y a X 1 Y 1 a z, (C1)i j k j k 0 i i i i

Ẏ 5 U Y 1 Y V 2 X 2 y a Y , (C2)i j k j k i 0 i i

ż 5 U (z 2 h ) 1 (z 2 h )V 2 g Xi j k k j j k 0 i

2 K a z 1 F , (C3)0 i i i

U 5 2b x 1 cy , (C4)i j i i

V 5 2b x 2 cy , (C5)i k i i

X 5 2a x , (C6)i i i

Y 5 2a y , (C7)i i i

where each equation is defined for cyclic permutations
of the indices (i, j, k) over the values (1, 2, 3). The X,
Y, and z variables can be thought of as representing
divergence, vorticity, and height, respectively, while the
subscripts can be viewed as representing a zonal mean
plus two wave components for each of the three fields.
All the parameters in Eqs. (C1)–(C7) are selected as in
Lorenz (1980) in order to produce a chaotic system.
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