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Abstract

We give some Monte Carlo results on the performance of two robust
alternatives to least squares regression estimatiocn -- least absolute
residuals and the one-step "sine" estimator. We show how to scale
the residuals for the sine estimator to achieve constant efficiency
at the Gaussian across various choices of X-matrix and give some

results for the contaminated Gaussian distribution.
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Introduction and Notation

In this paper we discuss some preliminary results on the efficiency of
two regression methods that have been suggested as rcbust alternatives
to least squares. We assume the usual linear model,

y=XB+e, (1-1)
where y and e are Nx1 vectors, X is Nxp and B is pxl. In our Monte
Carlo study, e is a random vector with independent and identically
distributed coordinates from a density f(*), where f is either the
Gaussian or one of a selected family of scale contaminated Gaussian
densities. Our main interest is in the effect of f and X on the
behavior of estimators of 8. We give some Monte Carlo results on
these effects in sections 2 and 3 and discuss an implication they
have in section U4.
Notation: We denote the ordinary least squares estimator of 8 by
éLS or LS. The two alternatives to LS whiéh we studied are denoted by
LAR (or &) and SINL (or és)'

LAR is the "least absolute residual' estimator so that BL minimizes

Dy - Tx=.8. . (1-2)
H 3 1] 3

LAR has been studied extensively and goes by a variety of other names

-- least lines, minimum absolute deviations (MAD), minimum sum of

absolute errors (MSAE), least absolute deviations (LAD) and the



minimum l-norm estimator. The estimator SIN1 is the "l-step SIN
estimator starting from LAR" so that 8g 1is given by

<5 w07 K y (1-3)

Bs

where <w> is a diagonal matrix whose diagonal entries are given by

1 if ri=0
sin(r./o) .
wi = 1 if O<ri§.no (1-4)
r‘i;o
0 if r.>mo .
i

In (1-4), r; is the izh- residual from the LAR fit, i.e.

? = Y-'-?L ) (1—5)
and o is given by

¢ = 2.1 median {|ri|} . (1-6)
The SIN1 estimator is based on Andrews' ''sine" estimator of location
(AMI') from Andrews et al,[1372]. SIN1, as used here, consists of
one step of iteratively reweighted least squares starting at LAR. The
weights are based on the LAR residuals and the particular choice of

scale given in (1-6) is adapted from the cne used in Andrews et al [1372]
for the location problem. One result of our study is a

modification of (1-6) that appears to be a modest improvement. We
view SIN1 as a simple way to improve the LAR estimator and our

simulation results indicate that it usually is.

In order to compare LAR and SIN1 with each other and with LS across
various choices of X and f we use the following overall measure of the
inefficiency of B relative to éLS :

~
-

if£(8) = E|| 8-8|| “/E|| 8, 8| (1-7)




For an unbiased estimator (1-7) becomes:

iff(g) = § Var(s;) / § Var(g; o) - (1-8)

When the number of regressor variables, p, equals 1 iff(B) reduces
to the reciprocal if the relative efficiency of B to Bl g The

smaller the value of iff(2), the better 8 is relative to LS.

The X-matrix: All of the g—matrices used in our Monte Carlo study
are derived in various ways from a basic 20x6 matrix, VDATAl. TFirst
we describe the construction of VDATAL and then indicate how the X-
matrices used is the study are derived from it.

The 6 colums of VDATAl were devided into 3 groups of 2. Colums
1 and 2 were chosen so that their scatter plot forms a perfect square
centered about the origin. Thus the first two colums correspond to
variables like those in a designed experiment. Colums 3 and 4 were
chosen to be roughly independent bivariate Gaussian. Their scatter

plot is given in Figure 1-1.

Figure 1-1 goes about here

Colums 5 and 6 were chosen to be roughly independent bivariate
variables with outliers. Two independent Cauchy samples of size 20

were drawn and then the largest observations in each sample was moved

in until they contributed 80 and 85% to the total sum of squares of
their columns, respectively. The scatter plot of colums 5 and 6

is given in Figure 1-2.

Figure 1-2 goes about here
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After the R colums of VDATAl were selected each colum was standardized
to have mean zero and unit sum of squares, i.e. (VDATAl)TVDATAl is a
correlation matrix. In Table 1-1 we give the final, standardized colums
of VDATAl. In Table 1-2 we give the correlation matrix of the columns

of VDATAl. From Table 1-2 we see that the six colums of VDATAL are

all roughly orthogonal. The eigenvalues of (VDATAl)TVDATAl are given

in Table 1-3. The ratio of the largest to the smallest eigenvalue (the
condition number of (VDATl)TVDATAl )is 7.u499. The two outliers in

colums 5 and 6 occur in rows 20 and 18 respectively of Table 1-1.

Tables 1-1, 1-2 and 1-3 go about here

The various g-matrices we used were derived from VDATAl in two basine
ways. Most of our results concern N=20 and p<6. To vary p, we formed
an X-matrix from the first p colums of VDATAL. Thus as we vary

the dimension of X we are also varying the kurtosis in the colums

of X == this is‘important to remember in section 3. A few results

are also given for N=40. We wanted to have 40xp ¥—matrices that

were "similar to" the 20xp ones we used. To do this we merely replicated
every row of VDATAl. This has the effect of producing a new 40x6
matrix whose singular value decomposition is identical to that of
VDATAL except for the "basis" or U-matrix. The condition number and
the pattern of eigenvalues are unchanged.

Error Distributions:

After a preliminary examination of various error distributions, £ (-),

we decided tc use the simple 2-parameter family of a mixture of a N(0 1)
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L2712
L2712
.1627
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2712
.1627
.0542
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.2712
.2712
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TABLE 1-1
FINAL, STANDARDIZED COLUMNS OF VDATAL
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COL3

L0453
.1092
L4513
.1605
.2242
.0107
.1937
.2435
.009u
.1382
.0956

.0597

.0613
.1282
.0966
.106e0
.2013
L4324
.091u
.5486

COLY

.0257
.1268
.0963
.2977
. 3618
L1246
.1006
. 3205
4123
L4631
.0984
.1136
.1263
.0598
.0085
. 3819
L0145
.2083
.0840
.05uy

COLS

.0880
.0509
.0140
.1065
L2463
.081u
.0373
.1373
.0852
.0630
.0u489
.0732
.0944
.0680
.1387
.13u0
.0290
.1520
L0417
.8917

COL6

o O O O O o o o O

i
o O

.0288
L0470
.0682
.0225
. 3193
.0u6l
.0583
. 0404
.0228
.0112
.0388
.0327
.0303
.06391
.0672
.0559
.0966
.9198
.0620
.0833
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TABLE 1-2
MATRIX OF INTERCORRELATIONS FOR THE COLUMNS OF VDATAL

ROW QOL1 "COL2 COL3 COLY4 COL5 COL6
1 1. 0. 0.0573 0.1462 0.2150 0.1576
2 0. 1. -0.2786 -0.2456 0.2382 -0.3034
3 0.0573 -0.2786 1. 0.040Y -0.3499 0.u4818
y 0.1462 -0.2456 0.0u0u 1. -0.0297 0.0744
5 0.2150 0.2382 -0.3499 -0.0297 1. 0.2448
6 0.1576 -0.3034 0.4818 0.0744 0.2u48 1.

Matrix of intercorrelations for the columns of VDATAL (i.e.(VDATAl)T VDATA1).




TABLE 1-3
EIGENVALUES OF (VDATAL)® VDATAL

0.244 0.62u4 0.821 1.068 1.411 1.832
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density with a N(O,kz) density. This is given by

= “F2 a2 () 2}, (19)

g(w) = (2n) (1-a) e

Al

where 0<a<l, and l<k<=. These are denoted CGka s0 that CG3.01
indicates a choice of g where k=3 and a = .01 . In all cases

the scale of f(u) was selected so that the errors had unit variance.

Fw = Lg (H> (1-90)
T T

where

2 = 1-q + ok’ (1-11) .

Both of the estimators LAR and SIN1 are regression invariant

in the sense that if the vector of observed values y is transformed

(0) (0)

to y + XB for some B then 8 1is transformed to é + B

This invariance implies that

> 2 2
Eglle-sll” = Egl 8] (1-12)

for any error distributicon. Hence all of our Monte Carlo results were

computed with the true value of B set equal to 0 .
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Creeping Inefficiency in the Gaussian Case

One difference between LAR and SIN1 is the dependence of the latter
on the choice of a residual scaling factor, o . Ignoring for the
moment the particular form of ¢ in (1-6) it is clear that if o in
(1-4) is very large then the w; are all near unity and és will be
near the LS estimate. On the other hand, if o is very small, then
the w, are all zero causing éS to be undefined. LAR like LS does
not depend on a choice of scale for the residuals. The motivation
for the choice of residual scaling given in (1-6) is its per-
formance in the location case (p=l) where Andrews et al. [1972]
found it to be an effective improvement on the scale estimate based
on the interquartile range. In the location case, (1-6) gives o

as a multiple of the median absolute deviation from the median

and this is the scale analogue of the median -- see Hample [1973].
One can motivate (1-6) as follows. If the initial LAR fit is
reasonably good, then the absolute residuals {Iril} will behave
approximately like a sample from the half-Gaussian distribution.
Matching the median of this sample to that of a half-Gaussian
population leads to a scale estimate that is a multiple of the

dne given in (1-6). The choice of the multiplying factor depends on the
weighting function (1-4) and a desired level of inefficiency at

the Gaussian -- in the location case Andrews used a factor of 2.1

and achieved an inefficiency of 1.07 at the Gaussian.

Some Monte Carlo Results: We estimated the covariance matrix of

~

B;, and B¢ in the Gaussian case using the Monte Carlo "swindle"

described in Holland [1973], and 500 replications. In all cases,
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N=20 and we varied p, the dimension of the X-matrix, over the range
1,2,3,4,6 by successively including the colums of VDATAL as
described in section 1. Table 2-1 gives the resulting estimated

inefficiences for LAR and SIN1 as a function of p.

Table 2-1 goes about here

The estimated inefficiency of SIN1 for p=1 is 1.10 which
compares favorably with the value of 1.07 found in the Princeton
Robustness Study. When p=3 the value of 1.17 for SIN1 is close
to the value 1.16 found by Andrews [1973] using a different
X~-matrix.

In Table 2-1 we see that SIN1 exhibits creeping inefficiency
in the sense that what is a highly efficient estimator for p=1,
becomes progressively less efficient as p increases. While SIN1
is still better than LAR over this range of p, the systematic
increase suggests that for p=7 SIN1 would be cease to be an
improvement over LAR. On the other hand, LAR does not exhibit
this phenomenon. Instead, LAR becomes more inefficient as the
effective sample size (N-p) increases. This is analogous to the
behavior of the median which approaches its asymptotic variance
from below as N +» =. (See Kendall and Stuart [19631], page 367).

It is evident that the creeping inefficiency of SIN1 can be
avoided by adjusting the residual scaling factor, o, so that it
depends on p -- in particular, it should increase as p increases
to make éS more closely approximate éLS in the Gaussian case.

This naturally suggests a simple degree of freedom type of correction of
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TABLE 2-1
INEFFICIENCY OF LAR AND SIN1 IN GAUSSIAN CASE FOR N=20, p=1,2,3,4,6

D 1 2 3 m 6

iff(éL) 1.63 1.63 1.57 1.54 1.47

iff(éé) 1.10 1.12 1.17 1.23 1.32
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the form

B S

. /N-1 :
% =/ o (2.1 median {]r‘il}). (2-1)

We tried using (2-1) instead of (1-6) and it helped, but did not
eliminate the problem, nor did various similar adjustments to o
using different multiplying factors.

In rethinking the motivation for using ¢ in the location
case we realized that one feature of the LAR residuals is that
at least p of them must be identically zero. Hence the absolute
residuals from LAR do not look like a sample from the half-Gaussian
distribution. This suggests eliminating p-1 of these zero

residuals and then computing ¢ as before, i.e.
o = 2.1 median {largest N-p+l of the lri]}. (2-2)

Table 2-2 gives the Monte Carlo estimates of the inefficiency
of SIN1 using (2-2) instead of (1-6) for p=2,4,6. It is clear
that this correction has been successful and the SINl estimator
now has an inefficiency at the Gaussian that is effectively

independent of the dimension of the X-matrix.

Table 2-2 goes about here

The new residual scaling given by (2-2) does not seem to
have seriously altered the behavior of SIN1 in the non-Gaussian
case. For the (G5.25 distribution and for p=6, our Monte Carlo
estimates of iff(és) for o given by (1-6) was .64 while for
Op given by (2-2) it was .63 . While it may be useful to make a

more thorough comparison than this we did not and henceforth all
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TABLE 2-2

INEFFICIENCY OF SIN1 UNDER GAUSSIAN ERRORS USING
(2-2) AS THE LEFINITION OF ¢, FOR p = 2,4,6

D | 2 Y 6
iffcés) 1.08  1.08  1.09
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results given for SIN1 use (2-2) for the residual scaling. In

the next section we give more results for the contaminated

Gaussian case.
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3. Monte Carlo Results for Contaminated Gaussian Errors

After some preliminary experimentation we decided to obtain
Monte Carlo estimates of the inefficiency of LAR and SIN1 under
CGka errors for three values of o« (.1,.25,.5), three values of k
(3,5,10) and three choices of X-matrix (the first two, the first
four and all six colums of VDATAl). The Monte Carlo estimates for
these two estimators and twenty-seven situations are given in Table 3-1.
These Monte Carlo estimates used simple experimental sampling rather
than the contaminated-Gaussian version of the swindle described in

Holland [1973] and are based on 500 replications each.

Table 3-1 goes about here

The most obvious message in Table 3-1 is that, except for five
cases involving LAR, both LAR and SIN1 are improvements, sometimes
substantial improvements, over LS. Furthermore, except for four cases
where the percent of contamination is very high (50%) SIN1 does
improve upon LAR.

In addition to these effects, there are at least 3 trends in Table 3-1
that should be mentioned. First, for each level of percent contamination
there is a systematic improvement in both LAR and SIN1 over LS as
the variance of the contaminating distribution increases. Thus the heavier
the tails of the error distribution the worse LS is and therefore the
more LAR and SIN1 can improve upon it. The second trend involves varying
the X-matrix for each error distribution. For SIN1 there is a systematic
increase in iff(é) as the X-matrix includes more colums of VDATAl. This
is also true for LAR except for the GG3.1 errors where the trend is

ambiguous. While this looks samething like the creeping inefficiency
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TABLE 3-1
INEFFICIENCY OF LAR AND SIN1 WITH RESPECT TO LS

k 3 5 10
a - D LAR SIN1 LAR SIN1 LAR SIN1
2 1.09 .78 .60 L4l .19 .13
.10 Y 1.03 .80 .59 47 .20 .15
6 1.03 .87 .72 .60 .38 .33
2 .87 .71 42 .39 .16 .15
.25 Y .91 .78 .49 47 .26 .25
6 .96 .83 .69 .63 .45 43
.91 .gl .58 .63 .. .35 .46
.50 4 1.00 .87 .74 .75 .55 .62
6 1.08 .94 .92 .87 .80 .79

Inefficiency of LAR and SIN1 with respect to LS. Moente Carlo estimates
(500 replications).




- 19 -

we found in the Gaussian case, we suspect that it is more due to the
changing nature of the ¥-matrix than the increase in its dimension.
The first two colums of VDATAl form a balanced design matrix. The
next two are still well behaved but are like a bivariate Gaussian
sample. The last two columns have outliers (or high leverage points)
and are not well behaved at all. The kurtoéis of the six colums of
VDATAL are —1.65,-1.65,0.56,-0.30,9.76,11.53, respectively. Thus
as we incorporate more colums of VDATAl into the X-matrix we increase
the probability that a large error will be associated with a high leverage
point. A large error associated with a high leverage point in X decreases
the improvement of SIN1 and LAR over LS.

A third trend in Table 3-1 concerns the improvement of SIN1 over
LAR. This is more easily seen in Table 3-2 which gives the ratio,
iff (éL)/iff(éS). The biggest improvement occurs in the lowest contamination
case and for the first two colums of VDATAl as the X-matrix. In the very

extreme case of CGl0.5, SIN1 actually degrades the performance of LAR.

Table 3—2‘goes about here

Since SIN1 is a simple l-step improvement on LAR it might be hoped
that more iterations would help it out. To test this we ran a auxiliary
experiment for the CGl0.10 case and changed the number of steps
sequentially from 1 to 5. The value of the numerator of iff(és) (i.e.
E[lés—§[|2) is given for each number of steps in Table 3-3. An exam-
ination of the individual B estimates shows that they do change with

more steps but as we see in Table 3-3 on the whole they do not improve.

Table 3-3 goes about here

As a final question we asked what is the effect of N? As described
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TABLE 3-2

RATIO OF iff(és) 0 iff(éL) FROM TABLE 3-1

3 10

p

2 1.40 .36 1.46
.10 b4 1.29 .26 1.33

6 1.24 .20 1.15

2 1.23 .08 1.07
.25 4 1.17 o4 1.04

6 1.16 .10 1.06

2 1.12 .92 .76
.50 b4 1.15 99 .89

6 1.15 .08 1.01
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TABLE 3-3 ,
MONTE CARLO ESTIMATES OF E]IBS - sll2

Number of Steps

E| 88| | 2.95 2.97 2.97 2.97 2.98

Monte Carlo estimates of E| |BS - 8| |2 for 1 to 5 steps of iteratively

reweighted least squares using (1-4) (227 replications) .
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in section 1, we doubled the size of our X-matrices by replicating each
row. The inefficiences for LAR and SIN1 for 3 choices of X-matrix
with N=40 and two error distributions (CG3.5 and CGl0.l) are given

in Table 3-4. These values are systematically smaller than the
corresponding ones in Table 3-1 indicating that robustness is easier to

achieve when the sample size is larger.

Table 3-4 goes about here

4. Covariance Matrices for Robust Regression Estimators

The results of Table 3-1 have an interesting implication for a
class of possible estimates of the covariance matrix for robust regression
estimators. Analogues to least squares as well as asymptotic theory

lead to a covariance matrix for é of the form
h2(>_<Tg<)'l (4-1)

where h? is a multiplying factor that potentially depends on these
factors:
(1) The estimator -- for iteratively reweighted least squares
estimators like SIN1 this would include the way the weights are
formed.
(2) The error distribution.
(3) The method of scaling the residuals.
(4) The desired level of inefficiency achieved at some standard
distribution (e.g. the Gaussian) -- in the case of SIN1 this is
about 1.08 .
(5) The X-matrix.
The original hope was that all but (5) would matter except through

N and p,but Table 3-1 shows that this is not the case. If (4=1) holds

then
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TABLE 3-4
INEFFICIENCIES OF LAR AND SIN1 FOR N=40

CG3.5 Cclo.1
o) LAR SIN1 LAR SIN1
.79 .72 .18 .12
4 82 .75 18 12
6 1.00 .86 .25 .17

Inefficiencies of LAR and SIN1 for N=40. Monte Carlo estimates
(500 replications).
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E||8-8]]° = h? tr(0T . (4-2)

But

E| 8,58l |% = Var(f) (0™ = ot

since in all cases the errors were scaled to have Var(f) = 1. Hence if
(4=1) holds then

1FE(g) = h . (4-3)

We observe that the results of section 2 indicate that in the Gaussian

case the residuals can be scaled to remove the effect of X on h2.

However, the results in Table 3-1 show that in general this_is not possible.
It is evident that the dependence on X is not a simple function of N and

P, and we suspect that at the very least some measure of the average
kurtosis of the colums of X is involved in h’ if the form (4-1) is to

give a reasonable approximation to the covariance matrix of é for

either LAR or SIN1 under a variety of types of error distributions.

Huber [1973 ] and Tukey [1973] propose more complex expressions for

2

these covariance matrices which may cbviate the necessity of making h

‘depend on X.
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