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Abstract

We give some Monte Carlo results on the performance of two robust

alternatives to least squares regression estimation -- least absolute

residuals and the one-step "sine" estimator. We show hcw to scale

the residuals for the sine estimator to achieve constant efficiency

at the Gaussian across various choices of X-matrix and give soma

results for the contaniinated Gaussian distribution.
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1. Introduction and Notation

In this paper we discuss soire preliminary results on the efficiency of

two regression rrethods that have been suggested as robust alternatives

to least squares. We assurre the usual linear rrcdel,

(1—1)

where y and e are Nxl vectors, X is Nxp and is pxl. In our Monte

Carlo study, e is a random vector with independent arid identically

distributed coordinates from a density f(), where f is either the

Gaussian or one of a selected family of scale contaminated Gaussian

densities. Our ma.in interest is in the effect of f and X on the

behavior of estimators of . We give sone Monte Carlo results on

these effects in sections 2 and 3 and discuss an implication they

have in section .

Notation: We denote the ordinary least squares estimator of by

or 13. The two alternatives to LS which we studied are denoted by

LAR (or and SIN1 (or ).

LIAR is the "least absolute residual" estimator so that minimizes

I' -
x±

. (1-2)
1 J

LIAR has been studied extensively and goes by a variety of other naires
-- least lines, minimum absolute deviations (MAD), minimum sum of

absolute errors (MSAE), least absolute deviations (LAD) and the
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minimum 1-norm estimator. The estimator SIN1 is the "1-step SIN

estimator starting from LAR" so that 6 is given by

T -1 T
<> 9 (1—3)

where <w> is a diagonal rrtrix whose diagonal entries are given by

1 if 1
sin(r./a)

w. 1 if O<r.< ia
1 1— (l_L)

Ia

0 if r.>ira

In (1-n), r. is the i residual from the TAP fit, i.e.

F (1—5)

and a is given by

a 2.1 median (Ir.} (16)

The SIN1 estimator is based on Andrews' "sine" estirrtor of location

(ANT) from Andrews etal.[1972]. SIN1, as used here, consists of

one step of iteratively reweighted least squares starting at tAR. The

weights are based on the LAR residuals and the particular choice of

scale given in (1-6) is adapted from the one used in Andrews et al [1972]
for the location problem. One result of our study is a

rrDdification of (1-6) that appeaxe to be a rrdest irrprovement. We

view SIN1 as a sirr1e way to iirrove the LAR estintor and our

simulation results indicate that it usually is.

In order to conpare LAR and SIN1 with each other and with LS across

various choices of X and f we use the fo11iing overall measure of the

inefficiency of 6 relative to

iff(6)
EI(6_6112/EJI6LS_6t12

. (1-7)
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For an iithiased estimator (1-7) becomes:

iff(8) = Var(.) / Var(6.) . (1-8)
— j J j

When the number of regressor variables, p, equals 1 iff(6) reduces

to the reciprocal if the relative efficiency of 6 to 6. The

smaller the value of iff(3), the better 6 is relative to IS.

The X-rnatrix: All of the X-matrices used in our Monte Carlo study

are derived in various ways from a basic 20x6 matrix, VDATA1. First

we describe the construction of VDATA1 and then indicate hcxi the X-

matrices used is the study are derived from it.

The 6 cohrns of VDATA1 were devided into 3 groups of 2. Coluriris

1 and 2 were chosen so that their scatter plot forrr a perfect square

centered about the origin. Thus the first two columis correspond to

variables like those in a designed experiment. Colurrris 3 arid were

chosen to be roughly independent bivariate Gaussian. Their scatter

plot is given in Figure 1—1.

Figure 1-1 goes about here

Coli.ris 5 and 6 were chosen to be roughly independent bivariate

variables with outliers. 'I\.o independent Cauchy samples of size 20

were drawn and then the largest observations in each sample was rrcved

in umtil they contributed 80 and 85% to the total sum of squares of

their columns, respectively. The scatter plot of columns 5 and 6

is given in Figure 1-2.

Figure 1-2 goes about here
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After the coluims of 'IDATA1 were selected each column was standardized

to have mean zero and iIiit sum of squares, i.e. (VDATA1)TVDATA1 is a

correlation matrix. In Table 1-1 we give the final, standardized columns

of VDATA1. In Table 1-2 we give the correlation matrix of the columns

of VDATA1. From Table 1-2 we see that the six columns of \TflTA1 are

all roly ohogonal. The eigenvalues of (VDAT)TVDATA1 are given

in Table 1-3. The ratio of the largest to the smallest eigenvalue (the

condition number of (\TDAT1)TVDATA1 )is 7J99. The two outliers in

columns 5 arid 6 occur in ris 20 and 18 respectively of Tb1e 1-1.

Tables 1-1, 1-2 arid 1-3 go about here

The various X-matrices we used were derived from VDATA1 in two basic

ways. Most of our results concern N20 and p<6. To vary p, we formed

an X-inatrix from the first p columns of VflATA1. Thus as we vary

the dimension of X we are also varying the kurtosis in the columns

of X -- this is important to remember in section 3. A few results

are also given for LQ• We wanted to have L0xp X-matrices that

were "sijriilar to" the 2Oxp ones we used. To do this we merely replicated

every row of VDATATL. This has the effect of producing a new Ox6

matrix whose singular value decomposition is identical to that of

VflATA1 except for the "basis" or U-matrix. The condition number and

the pattern of eigenvalues are unchanged.

Error Distributions:

After a preliminary examination of various error distributions, f (S),

we decided to use the simple 2-paraneter family of a mixture of a N(0,1)
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TABLE 1-1
FINAL, STANDARDIZED OOLUMS OF VDATA1

ROW COL1 COL2 COL3 COLI4 00L5 COL6

1 0.2712 0.2712 —0.0453 0.0257 —0.0880 0.0288

2 0.2712 0.1627 0.1092 —0.1268 —0.0509 0.0470

3 0.2712 0.05142 0.14513 0.0963 0.01140 0.0682

14 0.2712 —0.05'42 —0.1605 0.2977 —0.1065 0.0225

5 0.2712 —0.1627 0.22142 —0.3618 0.21463 0.3193

6 0.2712 —0.2712 0.0107 0.12146 —0.08114 0.01461

7 0.1627 —0.2712 0.1937 0.1006 —0.0373 0.0583

8 0.05142 —0.2712 —0.21435 0.3205 —0.1373 0.014014

9 —0.05142 —0.2712 —0.00914 —0.14123 —0.0852 0.0228

10 —0.1627 —0.2712 0.1382 0.14631 —0.0630 —0.0112

11 —0.2712 —0.2712 0.0956 0.09814 —0.0489 0.0388

12 —0.2712 —0.1627 0.0597 —0.1136 —0.0732 0.0327

13 —0.2712 —0.0542 —0.0613 —0.1263 —0.091414 0.0303

14 —0.2712 0.05142 0.1282 0.0598 —0.0680 0.0691

15 —0.2712 0.1627 —0.0966 —0.0085 0.1387 —0.0672

16 —0.2712 0.2712 —0.1060 —0.3819 —0.1340 0.0559

17 —0.1627 0.2712 0.2013 0.0145 —0.0290 0.0966

18 —0.0542 0.2712 —0.43214 —0.2083 —0.1520 —0.9198

19 0.0542 0.2712 0.0914 0.0840 —0.0417 —0.0620

20 0.1627 0.2712 —0.51486 0.0544 0.8917 0.0833
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TABLE 1-2
MATRIX OF INTERCORPELATIONS FOR fl COLUM'JS OF VDATAJ.

ROW OOL1 'COL2 00L3 COL4 00L5 COLE

1 1. 0. 0.0573 O.JJ462 O.215 0.1576

2 0. 1. —0.2786 —0.2456 0.2382 —O.3034

3 0.0573 —0.2786 1. 0.0'404 —0.3499 0.4818

4 0,11462 —0.21456 0.04014 1. —0.0297 Q•Q71414

5 0.2150 0.2382 —0.3499 —0.0297 1. 0.2448

6 0.1576 —0.3034 0.4818 0.0744 0.2448 1.

Matrix of intercorrelations for the co1uzs of VflATA1 (i.e. (VDATA1 )T VDATA1).
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TABLE 1-3

EII VALUES OF (V]DATAJ
T

1 2 3 5 6

O.2L14 O.62'4 0.821 1.068 1.L11 1.832
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density with a N(0,k2) density. This is given by

g(u) (2) e_U2/2 + e 1/2 () 2 (19)

where 0<cL<l, and l<k<. These are denoted Cc w that CG3.01

indicates a choice of g where k3 and o. .01 . In all cases

the scale of f(u) was selected so that the errors had unit variance.

Thus

f(u) g ()
(1-90)

where

T2 1-a + (1-11)

Both of the estirrtors LAR and SIN1 are regression invariant

in the sense that if the vector of observed values y is transfonred
(0) (0) (0)to y + X for some then is transfonred to +

This invariance implies that

EJ-I2 E0HH2 (1-12)

for any err-cr distribution. Hence all of our Monte Carlo results were

computed with the true value of set equal to 0
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2. Creeping Inefficiency in the Gaussian Case

One difference between LAR and SIN1 is the dependence of the latter

on the choice of a residual scaling factor, a . Ig-ioring for the

rrint the particular form of a in (1-6) it is clear that if a in

(1-4) is very large then the w. are all near i.u-uity and will be

near the LS estimate. On the other hand, if a is very small, then

the w. are all zero causing to be iridefined. LAR like IS does

not depend on a choice of scale for the residuals. The rrotivation

for the choice of residual scaling given in (1-6) is its per-

forrnance in the location case (pl) where Andrews et al. [1972]

fouid it to be an effective irrprovelTent on the scale estimate based

on the interquartile range. In the location case, (1-6) gives a

as a multiple of the ndian absolute deviation from the redian

and this is the scale analogue of the rrdian —— see Hanple [1973].

One can irctivate (1—6) as fol1c.s. If the initial LAR fit is

reasonably good, then the absolute residuals {1r11} will behave

approd.mately like a san1e from the half-Gaussian distribution.

Matching the rrdian of this sanle to that of a half-Gaussian

population leads to a scale estimate that is a multiple of the

one given in (1—6). The choice of the multiplying factor depends on the

weighting fiction (1-4) and a desired level of inefficiency at

the Gaussian -— in the location case Andrews used a factor of 2.1

and achieved an inefficiency of 1.07 at the Gaussian.

Soie Monte Carlo Results: We estimated the covariance matrix of

and in the Gaussian case using the Monte Carlo "swindle"

described in Holland [1973], and 500 replications. In all cases,
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N2O and we varied p, the dirrnsion of the X-matrix, over the range

1,2,3,,6 by successively including the colurrns of VDATA1 as

described in section 1. Table 2-1 gives the resulting estijrted

inefficiences for LAR and SIN1 as a function of p.

Table 2-1 goes about here

The estinated inefficiency of SIN1 for pl is 1.10 which

compares favorably with the value of 1.07 found in the Princeton

Pcbustness Study. When p3 the value of 1.17 for SIN1 is close

to the value 1.16 found byMdrews [1973] using a different

X-rnatrix.

In Table 2-1 we see that SIN1 exhibits creeping inefficiency

in the sense that what is a hily efficient estimator for pl,
becorres progressively less efficient as p increases. While SIN1

is still better than LAR over this range of p, the systematic

increase suggests that for p7 SIN1 would be cease to be an

improvemant over LAR. On the other hand, LAR does not exhibit

this phenomanon. Instead, LAR becomes rrcre inefficient as the

effective sample size (N-p) increases. This is analogous to the

behavior of the madian which approaches its asymptotic variance

from below as N . (See Kendall and Stuart [1963], page 367).

It is evident that the creeping inefficiency of SIN1 can be

avoided by adjusting the residual scaling factor, a, so that it

depends on p -- in particular, it should increase as p increases

to make ucre closely approximate 6L5 in the Gaussian case.

This naturally suggests a simple degree of freedom type of correction of



— 13 -

TABLE 2-1
INEFfiCIENCY OF LAP. AND SIN1 IN GAUSSIAN CASE FOR N2O, p1 ,2,3, 4,6

p 1 2 3 6

1.63 1.63 1.57 1.54 1.47

1.10 1.12 1.17 1.23 1.32



the form

— 11+

a (2.1 dian {Jr.J}) (2—1)

We tried using (2-1) instead of (1-6) and it helped, but did not

eliminate the problem, nor did various similar adj ustirnts to a

using different multiplying factors.

In rethinking the irtivation for using a in the location

case we realized that one feature of the LAR residuals is that

at least p of them must be identically zero. Hence the absolute

residuals from LAR do not look like a sanpie from the half-Gaussian

distribution. This suggests eliminating p—i of these zero

residuals and then conuting a as before, i.e.

2.1 xrdian {largest N-p+1 of the (2—2)

Table 2-2 gives the Monte Carlo estimates of the inefficiency

of SIN1 using (2—2) instead of (1-6) for It is clear

that this correction has been successful and the SIN1 estirrator

nu has an inefficiency at the Gaussian that is effectively

independent of the dinension of the X-rnatrix.

Table 2-2 goes about here

The new residual scaling given by

have seriously altered the behavior of

case. For the CG5 .25 distribution and

estimates of if f() for a given by

a given by (2—2) it was .63 . TsThi1e

rrüre thorough conparison than this we

(2—2) does not seem to

SIN1 in the non-Gaussian

for p=6, our Monte Carlo

(1—6) was .614 while for

it may be useful to rrke a

did not and henceforth all
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TABLE 2-2
INEFFICIENCY OF SIN1 IN]R GAUSSIAN ERRORS USING

(2—2) AS THE FINITION OF , FOR p 2,'i,6

p 2 6

1.08 1.08 1.09
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results given for SIN1 use (2-2) for the residual scaling. In
the next section we give rrore results for the contaminated

Gaussian case.
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3. bnte Carlo Results for Contaminated Gaussian ErTors

After some preliminary experimentation we decided to obtain

bnte Carlo estimates of the inefficiency of LAR and SIN1 under

CGka errcrs for three values of a (.1, .25, . 5), three values of k

(3,5,10) and three choices of X-matrix (the first two, the first

four and all six colurms of \rDATA1). The tbnte Carlo estimates for

these two estimators and twenty-seven situations are given in Table 3-1.

These bnte Carlo estimates used simple experimental sailing rather

than the contaminated-Gaussian version of the swindle described in

Holland [1973] and are based on 500 replications each.

Table 3-1 goes about here

The nest obvious message in Table 3—1 is that, except for five

cases involving LAR, both LAR and SIN1 are improverrents, sometimes

substantial improvements, over LS. Furtherjire, except for four cases

where the percent of contamination is very high (50%) SIN1 does

improve upon LAR.

In addition to these effects, there are at least 3 trends in Table 3-1

that should be mentioned. First, for each level of percent contamination

there is a systematic improvement in both LAR and SIN1 over LS as

the variance of the contaminating distribution increases. Thus the heavier

the tails of the error distribution the worse LS is and therefore the

more LAR and SIN1 can improve upon it. The second trend involves varying

the X-matrix for each error distribution. For SIN1 there is a systematic
increase in iff ( ) as the X-rnatrix includes more colunrs of VDATA1. This

is also true for LAR except for the GG3. 1 errors where the trend is

ant)iguoUS. While this looks something like the creeping inefficiency
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TABLE 3-1

INEFFICIENCY OF LAR JJD SIN1 WITH RESPECT TO LS

k 3 5 10

p LAR SIN1 EAR SIN1 EAR SIN1

2 1.09 .78 .60 .44 .19 .13

.10 4 1.03 .80 .59 .47 .20 .15

6 1.03 .87 .72 .60 .38 .33

2 .87 .71 .42 .39 .15 .15

.25 4 .91 .78 .49 .47 .26 .25

6 .96 .83 .69 .63 .45 .43

2 .91 .81 .58 .63 .35 .146

.50 4 1.00 .87 .74 .75 .55 .62

6 1.08 .94 .92 .87 .80 .79

Inefficiency of LAR and SIN1 with respect to IS. Monte Carlo estimates
(500 replications).
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we found in the Gaussian case, we suspect that it is mré due to the

changing nature of the -matrix than the increase in its dimension.

The first two columns of VflTAl form a balanced design matrix. The
next two are still well behaved but are like a bivariate Gaussian

sample. The last two coluirais have outliers (or high leverage points)

and are not well behaved at all. The kurtosjs of the six colurrris of
VflTA1 are —1.65,—l.65,O.56,_0.30,9.76,11.53, respectively. Thus

as we incorporate rrore columrs of VDATA1 into the X-matrix we increase

the probability that a large error will be associated with a high leverage
point. A large error associated with a high leverage point in X decreases

the improvement of SIN1 and LAR over LS.

A third trend in Table 3-1 concerns the improvement of SIN1 over
tAR. This is rrore easily seen in Table 3-2 which gives the ratio,

ff (BL)/iff(8s). The biggest improvement occurs in the lowest contamination

case and for the first two columns of VflTA1 as the X-rnatrix. In the very

extreme case of CG1O .5, SIN1 actually degrades the performance of tAR.

Table 3-2 goes about here

Since SIN1 is a simple 1-step irrproveirent on LAR it might be hoped

that rrcre iterations would help it out. To test this we ran a auxiliary

experiment for the CG1O .10 case and changed the number of steps
sequentially from 1 to 5. The value of the numerator of (i.e.

El Isi1 J2) is given for each number of steps in Table 3-3. An exam-

ination of the individual 8 estirrates shows that they do change with

rrore steps but as we see in Table 3-3 on the whole they do not improve.

Table 3-3 goes about here

As a final question we asked what is the effect of N? As described
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TABLE 3-2

RATIO OF iff(8s) TO FROM TABLE 31

k 3 5 10

a p

2 1.40 1.36 1.146

.10 4 1.29 1.26 1.33

6 1.214 1.20 1.15

2 1.23 1.08 1.07

.25 14 1.17 1.014 1.04

6 1.16 1.10 1.05

2 1.12 .92 .76

.50 14 1.15 .99 .89

6 1.15 1.08 1.01
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TABLE 3-3

NTE CARLO ESTIMATES OF Ej - f 2

Number of Steps

1 2 3 5

E t2 2.95 2.97 2.97 2.97 2.98

bnte Carlo estimates of E - 2
for 1 to 5 steps of iteratively

reweighted least squares using (1-u) (227 replications)



— 22 —

in section 1, we doubled the size of our X-rnatrices by replicating each

rxyi. The inefficiences for LAR and SIN1 for 3 choices of X-matrix

with NL0 and two error distributions (CG3.5 and CG1O.l) are given

in Table 3—4. These values are systematically smaller than the

corresponding ones in Table 3—i indicating that robustness is easier to

achieve when the sample size is larger.

Table 3-4 goes about here

4• Covariance Matrices for Robust Regression Estimators

The results of Table 3-1 have an interesting isvlication for a

class of possible estimates of the covariance matrix for robust regression

estimators. Analogues to least squares as well as asymptotic theory

lead to a covariance matrix for of the form

h2(XTX)l (4-1)

where h2 is a multiplying factor that potentially depends on these

factors:

(1) The estimator -— for iteratively reweighted least squares

estimators like Sfl'l this would include the way the weights are

fornd.

(2) The error distribution.

(3) The rrethod of scaling the residuals.

(4) The desired level of inefficiency achieved at sorr standard

distribution (e.g. the Gaussian) -- in the case of SIN1 this is

about 1.08

(5) The X-matrix.

The original hope was that all but (5) would matter except through

N and p,but Table 3—1 shows that this is not the case. If (4—1) holds

then
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TABLE 314

INEFflCICIES OF LAR J'D SIN1 FOR NLO

CG3.5 CG1O.1

p LAR SIN1 LAR SIN1

2 .79 .72 .18 .12

.82 .75 .18 .12

6 1.00 .86 .25 .17

Inefficiencies of LAR and SIN1 for N4O. Monte Carlo estintes

(500 rp1ications).
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El l-l 2 h2 tr(XTX) . (L_2)

But

El lsI 12 Var(f) tr(XTX) tr(XTXY

since in all cases the errors were scaled to have Var(f) 1. Hence if

(l4l) holds then

iff() h . (-3)

We observe that the results of section 2 indicate that in the Gaussian

case the residuals can be scaled to renove the effect of X on h2.

However, the results in Table 3-1 show that in general this is not possible.

It is evident that the dependence on X is not a simple function of N arid

p, and we suspect that at the very least some nasure of the average

kurtosis of the colims of X is involved in h2 if the form (-l) is to

give a reasonable approximation to the covariance ntrix of for

either LAR or SIN1 under a variety of types of error distributions.

Huber £1973 ] and Tukey [1973] propose rrre complex expressions for

these covariance ntrices which may obviate the necessity of nking h2

depend on X.
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