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Abstract. Precise orbit determination, and satellite-geo-
detic applications such as gravity field modelling or
satellite altimetry, rely on different observation types and
groups that have to be processed in a common parameter
estimation scheme. Naturally, the choice of the relative
weights for these data sets as well as for added prior
information is of importance for obtaining reliable
estimates of the unknown parameters and their associated
covariance matrices. If the observations are predomi-
nantly affected by random errors and systematic errors
play a minor role, variance component models can be
applied. However, most of the methods proposed so far
for variance component estimation involve repeated
inversion of large matrices, resulting in intensive compu-
tations and large storage requirements if more than a few
hundred unknowns are to be determined. In addition,
these matrices are not necessarily provided as standard
output from common geodetic least-squares estimation
software. Therefore, a method is proposed which is based
on Monte-Carlo estimation of the redundancy contribu-
tions of disjunctive observation groups. The method can
handle unknown variance components without the need
for repeated inversion of matrices. It is computationally
simple, numerically stable and easy to implement. Its
application is demonstrated in an experiment concerning
low-medium-degree gravity field recovery from simulated
orbit perturbations of the GOCE mission, and compared
in performance with Lerch’s method of subset solutions.

Keywords: Weight estimation – Variance component
estimation – Satellite geodesy – Gravity field modelling –
Monte-Carlo method

1 Introduction

Precise orbit determination, and satellite-geodetic
applications and techniques such as global and

regional gravity field modelling or sea surface mapping
by satellite altimetry, rely on many different observa-
tion types or groups that have to be processed in a
common parameter estimation scheme. Global gravity
field models, for example, are computed nowadays
from multi-arc, multi-satellite, multi-station laser
tracking data, altimetry, terrestrial gravimetry, GPS-
based satellite-to-satellite tracking, and specific tech-
niques such as intersatellite ranging with the Gravity
Recovery And Climate Experiment (GRACE) space-
craft or satellite gravity gradiometry with the Gravity
and Steady-State Ocean Circulation Explorer Mission
(GOCE). Needless to say, the choice of the relative
weights for these different observation groups as well
as for those models which introduce additional prior
information, e.g. on the gravity field, is of importance
for obtaining reliable estimates of the unknown
parameters. The reliability of estimated and/or cali-
brated covariance matrices of the unknown parameters
also depends on the assumptions about the observa-
tion weights.

Therefore, a weight optimization process normally
forms a part of the activities. This involves assessing the
formal instrumental errors as well as carrying out em-
pirical considerations and intercomparison with inde-
pendent models and data sets. Optimization with respect
to the weights given by formal errors is necessary due to
the limited knowledge of the instrument noise charac-
teristics, and due to the imperfections in the physical
models involved in the estimation process. Down- or
overweighting in global gravity field modelling or orbit
determination can easily reach a factor of 10 or more
(Marsh et al. 1988; Lerch 1991; Schwintzer et al. 1997;
Kizilsu and Sahin 2000). The question as to whether
re-weightings are appropriate is likely to appear in the
course of the European Space Agency’s (ESA’s) GOCE
satellite mission, although a lot of effort is currently put
into the investigation of error models for the gradiom-
eter instrument and the precise orbit determination
(POD) process.

A method proposed by Lerch (1991) establishes the
weighting scheme based on the behaviour of the com-
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mon parameters – the spherical harmonic coefficients of
the Earth’s gravity field in his paper – and their error
estimates when we derive subset solutions where data
groups have been excluded. This method is approxima-
tive in the sense that it assumes that each data subset in
question has only small influence on the overall solution
in comparison to the full data set. Consequently, in a
variance component model, this method gives unbiased
estimates to the same degree of approximation. Lerch’s
method requires repeated evaluation of the trace of the
solution covariance matrix and the subset solution co-
variance matrices, which certainly will pose a problem
for application to GOCE data analysis given the number
of unknowns and the size of these covariance matrices.
Lerch’s method is, however, known to be quite robust
with respect to unmodelled systematic errors.

It should be added that an assessment of the proper
weight of prior information can be viewed as Tikhonov
regularization with a posteriori parameter choice.
Within this approach the regularization or weighting
parameter is to be derived from minimization of some
statistically or mathematically motivated target func-
tion, which usually involves the least-squares (LS)
residuals of the data. Triggered by the new gravity field
missions, quite recently different techniques have been
studied in this field [see Kusche and Klees (2002) and the
references therein]. If more than one regularization or
weighting parameter is to be determined, however, these
methods lead to multi-dimensional optimization prob-
lems for which numerical solutions lack efficiency in
computation or may not be feasible at all.

The weighting method presented in this paper is
based on the estimation of variance components (VCE),
which goes back to Helmert (1924). Rao (1973) devel-
oped the MINQUE technique, and Grafarend and
d’Hone (1978) investigated estimation methods for
analysing geodetic data. For further references, see e.g.
Schaffrin (1983), Rao and Kleffe (1988), Koch (1990), or
Grafarend and Schaffrin (1993). A recent survey on
exact and simplified VCE approaches when observation
groups are disjunctive is provided by Crocetto et al.
(2000). In global gravity modelling, VCE has been
proposed by Schwintzer (1990) for assessing the proper
weight of prior information on the Earth’s low-degree
gravity field. Sahin et al. (1992) and Kizilsu and Sahin
(2000) apply Helmert’s VCE for precision analysis in
satellite laser ranging. Recently, VCE has been applied
by Zhang et al. (2001) for improving orbit determina-
tion for the ERS-2 satellite. Lucas and Dillinger (1998)
applied MINQUE to very-long-baseline interferometry
(VLBI) data analysis and found good agreement with
the conventional weighting methods in this field. Apart
from in their problem, only relatively few unknown
parameters were involved in the applications as report-
ed. Looking at the GOCE data analysis concepts, the
main limitation of the VCE techniques proposed so
far seems the costly and repeated computation of the
redundancy contributions of the observation groups,
involving the normal matrix contribution of the partic-
ular data set as well as the inverse of the weighted
combined normal matrix. For large systems, like those

encountered when solving for a high-resolution gravity
field model, this is prohibitive. The inverse normal ma-
trix will not necessarily be computed if iterative solvers
are employed. Moreover, the matrices involved are
generally not provided as standard output by common
geodetic parameter adjustment software. Even the
technique worked out by Lucas and Dillinger (1998),
which reduces the size of the problem to the number of
common parameters present in the adjustment problem,
cannot be expected to be of great improvement if the
number of these global parameters dominates the
problem. Therefore we apply a variant described by
Koch and Kusche (2002), which makes use of a sto-
chastic trace estimation technique invented by Girard
(1989) and Hutchinson (1990).

The method is re-structured and developed further in
a Monte-Carlo sense, that is, on input for an arbitrary
LS estimation software we use cyclically randomized
versions of the original data set where for each indi-
vidual observation group an artificial noise sequence
has to be added in turn. On output, from a comparison
of the residuals obtained with the original data and the
randomized data, the new weights are estimated in an
iterative sense. The method will be called Monte-Carlo
VCE (MCVCE) in the remainder of this paper. Three
sub-variants will be described which differ slightly in
the artificial noise characteristics and the necessary
matrix–vector operations. A Monte-Carlo approach
appears particularly attractive since it seeks to extract
statistical information on the inversion scheme by
passing random input through the given algorithm,
without requiring modifications of the code. This means
that an existing software package for solving the data
inversion problem can be used as a black box. A similar
method has been proposed by Purser and Parrish
(2000) in the context of variational assimilation of
meteorological data.

The material is organized as follows. First, we briefly
review the model setup for the estimation problem in
satellite geodesy. Then, VCE and the particular algo-
rithm we intend to use will be introduced. We will show
how this algorithm can indeed be recast in a Monte-
Carlo fashion when using a randomized trace estimation
technique. Geodetic parameter estimation software can
be imbedded in an iterative MCVCE process without
internal modifications or computing non-standard out-
put. Finally, a simulation of low-/ medium-degree grav-
ity field recovery from the GPS orbit determination for
GOCE is considered. For comparison, we include results
obtained with a randomized version of Lerch’s method
for weight estimation. A discussion closes the article.

2 Data combination in satellite geodesy

The linear observation model which will be adopted
throughout this contribution reads

Xb ¼ yþ e EðeÞ ¼ 0 DðeÞ ¼ R ð1Þ

with n� u design matrix X, u� 1 vector b of unknowns,
n� 1 vector y of observations, and n� 1 vector e of
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stochastic observation errors. We assume that the
observation vector consists of p disjunctive groups of
observations yi, which may be internally correlated but
are uncorrelated with respect to each other. Moreover,
we assume that the positive definite covariance matrices
Ri ¼ r2

i P
�1
i of these observation groups are only given

up to unknown scaling factors, the p variance compo-
nents r2

i . Let ni be the size of yi. Then, Eq. (1) is
completed by

R ¼
Xp
i¼1

r2
iVi ¼

r2
1P

�1
1 0 0 0

0 r2
2P

�1
2 0 0

..

. ..
.

0 0 0 r2
pP

�1
p

0
BBBBB@

1
CCCCCA ð2Þ

where the ni � ni weight matrices Pi are given, and

V1 ¼

P�1
1 0 0 0

0 0 0 0

..

. ..
.

0 0 0 0

0
BBBBBB@

1
CCCCCCA

V2 ¼

0 0 0 0

0 P�1
2 0 0

..

. ..
.

0 0 0 0

0
BBBBBB@

1
CCCCCCA

� � � Vp ¼

0 0 0 0

0 0 0 0

..

. ..
.

0 0 0 P�1
p

0
BBBBBB@

1
CCCCCCA

ð3Þ

Disjunctive observation groups may, for example, be
given by the tracking data collected from a single
ground station, by orbit perturbations observed for a
single satellite, or by all data produced from a single
observation technique. The unknown parameters are
usually separated into common or global parameters bc
that are present in all observation equations, and the
arc or local parameters bi;a which are unique to a single
observation group yi. This means that all unknown
parameters of the problem of Eqs. (1) and (2) may be
collected as

b ¼

bc
b1;a

..

.

bp;a

0
BBBBB@

1
CCCCCA r ¼

r2
1

..

.

r2
p

0
BBB@

1
CCCA ð4Þ

We may then write the original linear model as a
sequence of smaller problems, which are linked to each
other by the common parameters

Xi;cbc þ Xi;abi;a ¼ yi þ ei

DðeiÞ ¼ r2
i P

�1
i i 2 f1; . . . ; pg ð5Þ

Throughout what follows we will often make use of the
abbreviated form

~XXib ¼ yi þ ei i 2 f1; . . . ; pg ð6Þ

with ~XXi ¼ ðXi;c 0 � � � 0 Xi;a 0 � � �Þ. Obviously, in Eq. (1) it
holds that

X ¼

~XX1

..

.

~XXp

0
BBB@

1
CCCA ¼

X1;c X1;a 0 0 0

..

. ..
.

Xp;c 0 0 0 Xp;a

0
BB@

1
CCA

b ¼

bc

b1;a

..

.

bp;a

0
BBBBBB@

1
CCCCCCA

y ¼

y1

..

.

yp

0
BBB@

1
CCCA ð7Þ

We assume here that no prior information has to be
added, and that the method of partitioning will be
applied when forming the normal equations, according
to the separation into common and arc parameters
(e.g. Reigber 1989). From the first assumption we do
not loose any generality since adding prior information
may be formally replaced by introducing additional
pseudo-observations, with regularization parameters
substituted by possibly unknown variance components.
The LS estimate b̂bc for the common parameters then
follows from solving the accumulated normal equa-
tions

Xp
i¼1

1

r2
i

�NNi;cc

 !
b̂bc ¼

Xp
i¼1

1

r2
i

�bbi;c ð8Þ

where the individual contributions, reduced by the
influence of the arc parameters, are

�NNi;cc ¼ X0
i;cPiXi;c � X0

i;cPiXi;aðX0
i;aPiXi;aÞ�1

X0
i;aPiXi;c ð9Þ

�bbi;c ¼ X0
i;cPiyi � X0

i;cPiXi;aðX0
i;aPiXi;aÞ�1

X0
i;aPiyi ð10Þ

The covariance matrix of the common parameters is
given by

Dðb̂bcÞ ¼
Xp
i¼1

1

r2
i

�NNi;cc

 !�1

ð11Þ

and arc parameters b̂bi;a then follow from

1

r2
i
ðX0

i;aPiXi;aÞb̂bi;a ¼
1

r2
i
ðX0

i;aPiyi � X0
i;aPiXi;cb̂bcÞ

¼ 1

r2
i
X0

i;aPiðyi � Xi;cb̂bcÞ ð12Þ

The same can be written, if no partitioning and
reduction is applied at all, as

Nb̂b ¼ X0R�1Xb̂b ¼ X0R�1y ¼ b ð13Þ

or
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The normal matrix shown in Eq. (14) is said to be block-
diagonal bordered due to its special structure.

3 Estimation of weights

3.1 Variance component estimation (VCE) in the
Bayesian picture

The principle of VCE that we intend to use may be
introduced briefly by way of the Bayesian point of view.
We refer to Koch (1990) for more details and
references. Let a vector k of random parameters be
realized with a prior probability density, pðkÞ. For our
application, we can think of collecting all unknown
common and arc-dependent parameters, and all
unknown variance components according to Eq. (4) in
k, thus

k ¼ b
r


 �
ð15Þ

Let the conditional density for the vector of observa-
tions y be pðyjkÞ. Then, according to elementary
probability theory, the joint density for k and y is
pðy; kÞ ¼ pðyjkÞ pðkÞ. Equally, we may express the joint
density as the product of the conditional density pðkjyÞ
and the unconditional density pðyÞ. Combining these, we
obtain Bayes’ theorem

pðkjyÞ ¼ pðyjkÞpðkÞ
pðyÞ ¼ pðyjkÞpðkÞR

pðyjkÞpðkÞdk
/ pðyjkÞpðkÞ ð16Þ

Here / means proportionality, and dk is the volume
measure in the parameter space. We refer to pðkÞ as
being the prior density, and pðkjyÞ as being the
posterior density, which has been modulated by the
likelihood function pðyjkÞ. With the posterior density
determined, the problem of statistical inference is
solved: the estimate on k can, for example, be obtained
by maximization of the posterior density; it is then
called the MAP estimator. Alternatively, we may derive
the Bayes estimator

R
kpðkjyÞdk, which can be shown

to minimize the quadratic loss function L ¼
ðk̂k � kÞ0DðkÞ�1ðk̂k � kÞ (Koch 1990). Finally, the maxi-
mum-likelihood estimator, maximizes the likelihood
function without considering the prior density. It can
be viewed as an MAP estimator where implicitly the
prior has been assumed as a constant for all parameters;
for the b portion of the parameter vector this is called a
non-informative prior.

Let us now assess the linear model given by Eqs. (1)
and (2) with unknown common and arc parameters and
unknown variance components. Assuming normal sta-
tistics for the observations, the likelihood function is
then explicitly given by

pðyjkÞ ¼ pðyjb; rÞ ¼ 1

ð2pÞn=2jRj1=2

� exp � 1

2
ðy� XbÞ0R�1ðy� XbÞ


 �
ð17Þ

where j � j is the matrix determinant. Through R
[Eq. (2)], the likelihood function depends on the vari-
ance components r. It is useful to refer to the negative
logarithm of the probability densities, thereby con-
verting multiplicative relationships into additive ones

Lyjb;r ¼ � log pðyjb; rÞ ¼ 1

2
logðð2pÞnjRjÞ

þ 1

2
ðy� XbÞ0R�1ðy� XbÞ ð18Þ

Lb;r ¼ � log pðb; rÞ; Lb;rjy ¼ � log pðb; rjyÞ ð19Þ

By integration over the b parameter space, the likelihood
function can be expressed by a function of r only

pðyjrÞ / 1

jRj1=2jX0R�1Xj1=2

� exp � 1

2
y0R�1ðI� XN�1X0R�1Þy


 �
ð20Þ

Lyjr ¼ 1

2
log jRjð Þ þ 1

2
log jX0R�1Xj
 �

þ 1

2
y0R�1ðI� XN�1X0R�1Þyþ C ð21Þ

where C is just a constant (Koch 1990). Using the last
result in a maximum-likelihood estimate (Koch 1986)
leads to the algorithm used in the next section, with
posterior densities for the variance components and
their ratios as given in Koch and Kusche (2002).
However, the main computational difficulty becomes
obvious from the fact that derivatives of the likelihood
function involve the derivatives of the log-determinant
matrix function: let A be a regular symmetric matrix
which is a function of r2

i , then o logðjAjÞ=or2
i ¼

traceðA�1oA=or2
i Þ.

Pp
i

1
r2
i
X0

i;cPiXi;c

� �
1
r2
1

X0
1;cP1X1;a

1
r2
2

X0
2;cP2X2;a � � � 1

r2
p
X0

p;cPpXp;a

1
r2
1

X0
1;aP1X1;c

1
r2
1

X0
1;aP1X1;a 0 � � � 0

1
r2
2

X0
2;aP2X2;c 0 1

r2
2

X0
2;aP2X2;a � � � 0

..

. ..
.

1
r2
p
X0

p;aPpXp;c 0 0 � � � 1
r2
p
X0

p;aPpXp;a

0
BBBBBBBBBB@

1
CCCCCCCCCCA

b̂b ¼

Pp
i

1
r2
i
X0

i;cPiyi

1
r2
1

X0
1;aP1y1

1
r2
2

X0
2;aP2y2

..

.

1
r2
p
X0

p;aPpyp

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð14Þ
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3.2 The VCE algorithm

The algorithm described in this chapter goes back on
Förstner (1979). It can be derived by the maximum-
likelihood method from Eq. (20) if the observation
groups are disjunctive, as shown in Koch (1986). If its
iterations converge, this algorithm gives the same
numerical results as the iterated MINQUE technique
(see e.g. Rao and Kleffe 1988, Chap. 9.2). The non-
negative estimates for the unknown variance compo-
nents follow from

r̂r2
i ¼

êe0iPiêei

ri
; i 2 f1; . . . ; pg ð22Þ

where the nominator is the weighted residual square sum
for the ith observation group

êei ¼ Xi;cb̂bc þ Xi;ab̂bi;a � yi ¼ � I� ~XXiN
�1 ~XX0

i
1

r2
i
Pi


 �
yi

þ ~XXiN
�1

Xp
j 6¼i

~XX0
j
1

r2
j
Pjyj

 !
ð23Þ

A residual file is standard output of common LS
estimation software. The denominator in Eq. (22) is
given by the redundancy contribution of the particular
observation group, also called the group redundancy
number. This quantity involves the trace of the obser-
vation group influence matrix ~XXi

0
Pi ~XXiN

�1

ri ¼ �traceðoêei=oyiÞ ¼ ni �
1

r2
i
traceð~XXi

0
Pi

~XXiN
�1Þ ð24Þ

For numerical evaluation of the trace term it is more
suitable to deal with symmetric matrices. Therefore, in
the next section we will make use of the following
formulation:

ri ¼ ni �
1

r2
i
traceðG0

i
~XXiN

�1 ~XX0
iGiÞ ð25Þ

where Pi ¼ GiG
0
i. The partial redundancies sum up to

the total redundancy of the LS problem

Xp
i

ri ¼ r ¼ n� u ð26Þ

The estimation of variance components generally leads
to a coupled iterative process. The strategy is then as
follows

1. Select start values for r2
j
ð0Þ
, j ¼ 1 . . . p

For k ¼ 0; 1; 2 . . .

2. Compute b̂bðkÞc , b̂bðkÞj;a , êe
ðkÞ
j , j ¼ 1 . . . p

3. Compute rðkÞj , j ¼ 1 . . . p
4. Determine r2ðkþ1Þ

j , j ¼ 1 . . . p, and continue with step 2
until convergence is achieved.

Step 3, according to Eq. (24) or (25), poses a problem if
the related matrices are not available from the estima-
tion software, or if the dimension of the problem is so
large that they cannot be computed in reasonable time.

Lucas and Dillinger (1998) in their treatment reduced
the complexity of the problem by making explicit use of
the block-diagonal bordered structure of the matrices
involved in Eq. (24), and they were able to show that
only matrices and vectors that appeared already in the
reduced normal equations, Eqs. (9) and (10), showed up
here. However, their method still requires the inverse of
the normal matrix partition associated with the common
parameters to be computed explicitly, which is one of
the calculations we would like to avoid. Therefore, in the
following we aim at obtaining a computationally cheap
estimate of these quantities.

4 The MCVCE method for weight estimation

4.1. Randomized trace estimation for the observation
group redundancies

Within the kth cycle of the iteration (i.e. given a set of
approximate variance components) we have to compute
the redundancy contributions rðkÞi for all observation
groups yi, i 2 f1 . . . pg. This computation can be greatly
simplified if we apply the idea of randomized trace
estimation to Eq. (25), as proposed by Koch and
Kusche (2002).

As is well known, for any symmetric positive definite
matrix T and any random vector z with EðzÞ ¼ 0,
DðzÞ ¼ I, regardless the type of its probability density
function, holds

Eðz0TzÞ ¼ traceðTÞ ð27Þ

Estimation of the trace of T holds in that q realizations
�zzj of z are being obtained from a random number
generator. The trace of T is then replaced by the
unbiased estimate 1

q

Pq
j¼1 �zz

0jT�zzj. If, in addition,

z � Nð0; IÞ follows from the multivariate standard
normal distribution, the variance of the trace estimate
can be bounded by (Girard 1989)

V ðz0TzÞ ¼ 2 traceðT2Þ < 2 traceðTÞ ð28Þ

The inequality holds if the matrix T is a smoother matrix,
that is, with all its eigenvalues between 0 and 1. The
observation group influence matrices ~XXi

0
Pi

~XXiN
�1 indeed

share this property. However, it has been shown by
Hutchinson (1990) that the estimator assumes minimum
possible variance, if z � Uð0; IÞ, where U is the multi-
variate discrete probability function, so that each com-
ponent of the sample vector takes the value �1 or 1 with
equal probability 1=2. The variance of this particular
trace estimate can be bounded by (Hutchinson 1990).

V ðz0TzÞ ¼ 2
Xn
k 6¼l

ðTklÞ2 < 2 traceðTÞ � 2

n
ðtraceðTÞÞ2

ð29Þ

where n� n is the dimension of T. The variance of the
trace estimate can be further reduced if q > 1 sample
vectors are employed, clearly at the cost of increasing
the computational load. There is no general prescription
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for the choice of q, since V ðz0TzÞ and – what is more
important for the variance component estimate of
Eq. (22) – the relative variance V ðz0TzÞ=ðtraceðTÞÞ2
depend on the matrix T according to Eqs. (28) and
(29). Sharper bounds have been derived by Hutchinson
(1990) but they are difficult to apply. In principle we
could evaluate the bounds of Eq. (28) or (29) as soon as
a first trace estimate is given, and conclude on the
necessary number q� 1 of additional realizations to
match a certain relative accuracy. But the bounds of
Eqs. (28) and (29) turn out to be rather pessimistic.
Instead, after carrying out some tests, we found it fully
sufficient to work with only q ¼ 1 realization of z for the
GOCE–SST gravity field recovery experiment conducted
in Sect. 5. We reported similar conclusions in Kusche
and Klees (2002) in the context of regularization
parameter choice for GOCE gradiometry.

In the following the application of trace estimation to
VCE in the model of Eqs. (1) and (2) will be described.
Three algorithms are given, with minor differences in the
characteristics of the artificial random sequence and the
necessary matrix–vector operations.

4.2 Monte-Carlo algorithm: first variant

A direct application of Eq. (27) on the computation of
the redundancy contribution ri according to Eq. (25)
gives immediately

r̂ri ¼ ni �
1

r2
i
z0iGi

0 ~XXiN
�1 ~XXi

0
Gizi ð30Þ

with random vector zi, dimðziÞ ¼ ni, EðziÞ ¼ 0,
DðziÞ ¼ I. Throughout the following we assume that
applying a q ¼ 1 sample of the random vector will meet
our requirements in terms of accuracy of the trace
estimate; otherwise, the mean of q estimates has to be
taken. The evaluation of Eq. (30) for all p observation
groups can then be formulated as a two-step procedure.

1. Solve

Nqi ¼ ~XXi
0
Gizi ð31Þ

for the ‘random parameter solutions’ qi, i ¼ f1 . . . pg.
2. Compute

r̂ri ¼ ni �
1

r2
i
z0iGi

0 ~XXiqi ð32Þ

instead of the exact ri.

Step 1 means nothing other than solving the original
normal equations [Eq. 14] with the right-hand side
replaced by

~XX0
iGizi ¼

X0
i;cGizi
0

..

.

X0
i;aGizi
0

..

.

0
BBBBBBB@

1
CCCCCCCA

ð33Þ

i.e. with random observations for observation group i,
scaled by Gi, and zeros for all other observations. Re-
assembling the right-hand side is therefore necessary
only for the ith observation group. In other words, at
step 1 we pass scaled standard-distributed random
noise for the observation group in question and zeros
for all other data through our LS parameter estimation
algorithm, and at step 2 the redundancy estimate
follows from the solved-for parameters and the (un-
reduced) right-hand-side vectors which have been built
up in the course of the first step. The numerical benefit
of this technique depends on the way we solve the
normal equations – it will be great for Cholesky
solvers since we have to solve for just one additional
right-hand-side vector and might be moderate for
conjugate gradient solvers – but anyway it will clearly
outperform the exact evaluation of the matrix trace
and avoids the explicit formulation of the full normal
matrix.

More explicitly, making use of the reduced normal
equations [Eqs. (8) and (12)] we solve in addition

Xp
i¼1

1

r2
i

�NNi;cc

 !
qi;c ¼ X0

i;cGizi � X0
i;cPiXi;a

� ðX0
i;aPiXi;aÞ�1

X0
i;aGizi ð34Þ

1

r2
i
ðX0

i;aPiXi;aÞqi;a ¼ X0
i;aGizi � X0

i;aPiXi;cq̂qi;c

¼ X0
i;aGiðzi �G0

iXi;cq̂qi;cÞ ð35Þ

After that we have the estimates

r̂ri ¼ ni �
1

r2
i
z0iGi

0ðXi;cq̂qi;c þ Xi;aq̂qi;aÞ

¼ ni �
1

r2
i
ðq̂q0i;cX0

i;cGizi þ q̂q0i;aX0
i;aGiziÞ ð36Þ

The first expression in Eq. (36) convolves the input
random sequence with a sequence of synthesized obser-
vations from the estimated random parameters, thus
requiring the application of the design matrix on a
parameter vector (synthesis step). The second expression
relies on a product of the right-hand-side with the
estimated parameter vector. The general principle is
outlined in Fig. 1.

4.3 Monte-Carlo algorithm: second variant

This variant differs from the previous one in the scaling
of the artificial random sequence. Instead of applying
Eq. (30) we can form alternatively

r̂ri ¼ ni �
1

r4
i
w0
iPi ~XXiN

�1 ~XXi
0
Piwi ð37Þ

with random vector wi, dimðwiÞ ¼ ni, EðwiÞ ¼ 0,
DðwiÞ ¼ r2

i P
�1
i . The difference is that here the random
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sample vector wi should possess exactly the same
statistical first and second moments as are known or
at least assumed for the error vector ei. If, for instance,
an algorithm exists that simulates the observation errors
given a certain power spectral density model, the same
algorithm might be used for generating the random
realization wi. In comparison with the previous variant,
obviously wi and zi are related by G0

iwi ¼ rizi. The first
step of Eq. (37) then involves solving the normal
equations of Eq. (14) for the unknowns pi with the
right-hand side

~XX0
iPiwi ¼

X0
i;cPiwi

0

..

.

X0
i;aPiwi

0

..

.

0
BBBBBBBB@

1
CCCCCCCCA

ð38Þ

i.e. with unscaled random observations for observation
group i, and zeros for all other observations. Making use
of the reduced normal equations, this is

Xp
i¼1

1

r2
i

�NNi;cc

 !
pi;c

¼ X0
i;cPiwi � X0

i;cPiXi;aðX0
i;aPiXi;aÞ�1

X0
i;aPiwi

¼ X0
i;cPiQi;awi ð39Þ

1

r2
i
ðX0

i;aPiXi;aÞpi;a ¼ X0
i;aPiwi � X0

i;aPiXi;cp̂pi;c

¼ X0
i;aPiðwi � Xi;cp̂pi;cÞ ð40Þ

and finally

r̂ri ¼ ni �
1

r4
i
w0
iPiðXi;cp̂pi;c þ Xi;ap̂pi;aÞ

¼ ni �
1

r4
i
ðp̂p0i;cX0

i;cPiwi þ p̂p0i;aX0
i;aPiwiÞ ð41Þ

Concerning Eq. (41), the same algorithmic structure as
mentioned for Eq. (36) applies; thus Fig. 1 remains valid
for this variant as well.

4.4. Monte-Carlo algorithm: third variant

Since the LS estimator for the common parameters and
the arc parameters is a linear estimator, we might
equally well work simultaneously with the complete
original data set y, supplemented by p artificially
perturbed data vectors y�i

y ¼

y1

y2

..

.

yi

..

.

yp

0
BBBBBBBBBB@

1
CCCCCCCCCCA

y�i ¼

y1

y2

..

.

yi þ wi

..

.

yp

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð42Þ

with wi, dimðwiÞ ¼ ni, EðwiÞ ¼ 0, DðwiÞ ¼ r2
i P

�1
i . In this

case we obtain by accumulation of the normal equa-
tions, partitioning and solving the parameter sets b̂bc, b̂bi;a,
b̂b
�
i;c, b̂b

�
i;a. These are related to p̂pi;c and p̂pi;a as follows:

p̂pi;c ¼ b̂b
�
i;c � b̂bc p̂pi;a ¼ b̂b

�
i;a � b̂bi;a ð43Þ

The estimate for the redundancy contributions is then

r̂ri ¼ ni �
1

r4
i
w0
iPi Xi;cðb̂b

�
i;c � b̂bcÞ þ Xi;aðb̂b

�
i;a � b̂bi;aÞ

� �

¼ ni �
1

r4
i

ðb̂b�i;c � b̂bcÞ
0
X0

i;cPiwi þ ðb̂b�i;a � b̂bi;aÞ
0
X0

i;aPiwi

� �
ð44Þ

With the LS residuals êei ¼ Xi;cb̂bc þ Xi;ab̂bi;a � yi and the
corresponding residuals êe

�
i ¼ Xi;cb̂b

�
c þ Xi;ab̂b

�
i;a � yi this

can be written as

r̂ri ¼ ni �
1

r4
i
w0
iPiðêe�i � êeiÞ ð45Þ

This last expression for the redundancy contributions
needs only the original random sequences wi which were
used when passing perturbed data through the estima-
tion algorithm, and the observation residuals obtained
with the original data as well as with the perturbed data.
Even more so than with the previously derived expres-
sions, Eqs. (36) and (41), the right-hand-side and the
solved-for parameter vectors may remain hidden in
the LS algorithm, although of course implictly needed in
the residuals synthesis. It can be said that this variant is
‘end-to-end’ directed in the sense that the user does not

Fig. 1. Use of ‘black-box’ least-squares estimation software modules
in MCVCE; first variant

647



even need to know exactly what kind of parameters are
represented in the functional model. An outline of the
procedure is shown in Fig. 2.

5 Numerical experiments: gravity field determination
from simulated orbit perturbations of the GOCE
mission

5.1 Description

The objective of the ESA’s GOCE satellite mission is the
determination of a model of the Earth’s static gravity
field with an accuracy of better than 1–2 mGal in terms
of gravity anomalies and 1 cm in geoid heights, at a
resolution of 100 km (ESA 1999). The spacecraft will be
launched in 2006 as the first satellite in the framework of
the ESA’s Earth Explorer Mission programme. GOCE
will be equipped with a gravity gradiometer and a
geodetic GPS receiver, providing observations of the
gravity gradient tensor at satellite altitude (about 250
km) and satellite-to-satellite observations between
GOCE and the GPS satellites.

The GPS receiver plays a multiple role; it enables a
high-precision orbit determination, allowing the gradi-
ometer data to be processed without estimation of orbit
errors, and it serves for recovery of the long-to-medium
part of the gravity field. The POD is expected to be at the
centimetre accuracy level (Visser and van den IJssel 2000).

In this study a simulated 10-day GOCE orbit solution
has been used as pseudo observation, i.e. Cartesian x; y
and z coordinates in an Earth-centered quasi-inertial
reference frame, split up into 10 data sets (orbital arcs)
of 1 day each. In an adjustment for gravity parameters
bc ¼ ðdc02; dc12; ds12; . . .ÞT (i.e. the difference of the har-
monic coefficients between the ‘true’ model OSU91a and
the adopted initial model JGM-3) as well as for 10 sets

of state–vector epoch parameters bi;a ¼ xi ¼ ðx; y; z;
vx; vy ; vzÞT , i ¼ 1 . . . 10, the partial derivatives of the
satellite positions with respect to the unknowns have
been obtained by numerical integration of the varia-
tional equations. The OSU91a model has been used
complete up to degree 50 for the orbit generation. It
should be noted that the parameter estimation process
actually has to be iterated due to linearization errors;
however, these errors are systematic but small for degree
50 and no re-computation of the partials has been
applied. Also, no regularization has been imposed on the
estimation process. Of course, these considerations
should be revised when higher resolutions are taken into
account. Simulated noise-free data and partials files,
computed from the GEODYN II orbit determination
software (McCarthy et al. 1993), have kindly been
provided by P. Visser. A detailed description is given in
Visser et al. (2001), where this data set has been used in a
comparative study on the quality of different recovery
methods. At the time of writing, it is indeed expected
that the variational approach will be followed in the
derivation of the official ESA level-2 gravity field
product from the GPS POD.

5.2 Results

The pseudo-observed coordinates x; y and z have been
assumed as uncorrelated in time as well as with respect
to each other. They have been analysed in the model of
Eqs. (1) and (2) with Pi ¼ I, by assigning a variance
component r2

i or a weight xi ¼ 1=r2
i to each orbital arc

data set. For all experiments we have assumed equal
weights xi ¼ 1 for the first iteration. The normal system
has been solved by the method of partitioning [Eqs. (8)
and (12)]. Results are given for the estimated common
gravity parameters b̂bc, expressed in terms of geoid height
errors, and for the estimated variance components. The
first variant of the MCVCE method has been applied as
described in previous sections. The random number
generator IGNUIN of the statistics package RANLIB
has been used for generation of the artificial noise
sequences. The overall procedure, of course, forms a
rather simplified picture of the long-to-medium-degree
gravity field recovery for GOCE, but it serves perfectly
as a test bed for the Monte-Carlo approach.

For comparison, we will give results obtained with a
randomized version of Lerch’s method (Lerch 1991).
This method aims at estimating weights that balance the
difference of the common parameter solution and cer-
tain subset solutions, i.e. where an observation group
has been excluded, with the associated covariance ma-
trix. It requires, within each iteration, for each obser-
vation group in question, the trace of the difference of
two covariance matrices for the common parameters to
be evaluated. Again, we have used randomized trace
estimation according to Eq. (27) for this purpose. For
both methods, all trace evaluations have been estimated
using one single realization of a random vector. To
validate this assumption, an additional experiment has
been performed: Fig. 3 shows a histogram for the trace

Fig. 2. Use of ‘black-box’ least-squares estimation software modules
in MCVCE; third variant
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estimates of r̂r1, from 25 realizations of a random vector.
We have found that all samples for r̂r1 are within 0:5%
deviation, which, according to Eq. (22), also holds for
the variance component estimate samples. We conclude
that for our problem the accuracy obtained from a single
sample will be sufficient. In addition, the total redun-
dancy, Eq. (26), has been used as a condition for ‘cali-
brating’ the estimated group redundancy numbers,
simply by adjusting for the error

P
i r̂ri � ðn� uÞ 6¼ 0.

In what follows, six test cases have been investigated.
For a fair comparison, we have included one test with
error-free data, two experiments where purely stochastic
noise is involved, and three tests where significant sys-
tematic effects are modulated on top of the stochastic
noise.

First, error-free pseudo-observations x; y and z have
been used. For this case, which is also shown in Visser
et al. (2001), geoid errors are generally negligible with a
maximum of 0.4 cm and an RMS of 0.4 mm if no weight
optimization takes place at all. (See Table 1, which gives
maximum, RMS and average geoid errors as well as the
range of the estimated variance components.)

These small errors are due to numerical round-off
and linearization effects, which are non-stochastic in
nature and depend on the quality of the underlying
gravity model used for integration of the variational
equations. Nevertheless, even these results improve

significantly when we apply MCVCE or Lerch’s method
for weight optimization. Iterations of Lerch’s random-
ized method converge faster in terms of geoid errors, but
MCVCE gives a more reasonable estimate of the size of
linearization effects. This behaviour can generally be
expected since Lerch’s method focuses exclusively on the
common parameters, i.e. the gravity unknowns. When
we tried to force convergence by running many itera-
tions, unexpectedly Lerch’s method started to diverge
(although this was the only test case where we observed
this behaviour). The reason might be that after some
iterations the estimated weights become strongly un-
balanced, and, as a consequence, the underlying as-
sumption that no single data set has more than a
moderate influence on the solution becomes violated.
However, given the magnitude of geoid errors, results
from this test case should not be over-estimated.

Second, all observations have been corrupted artifi-
cially by an uncorrelated random noise sequence of
rx;y;z ¼ 1 cm standard deviation. This is an ideal case
since the assumed stochastic model is then correct from
the very beginning. Consequently, MCVCE performs
excellently and convergence is reached after only one
iteration. Lerch’s method, nevertheless, provides us with
comparable results, and even the weight estimates are
90% correct. A summary is shown in Table 2.

In the third test case for two of the 10 orbital arcs, the
noise level has been increased from rx;y;z ¼ 1 cm to
rx;y;z ¼ 4 cm. Results are summarized in Table 3. The
MCVCE does exactly what we want it to do: it con-
verges quickly (as does Lerch’s method) and provides us
with very accurate estimates of the variance compo-
nents. Two iterations of MCVCE appear to be sufficient.
Although this test clearly oversimplifies the expected real
situation, stochastic noise levels varying over time may
very well be encountered when observation configura-
tions, solar activity or environmental conditions change.

For the fourth experiment, we have again added to all
observations the uncorrelated random noise sequence of
rx;y;z ¼ 1 cm. In addition, for two particular orbital arcs
the x; y and z pseudo-observations have been perturbed
by a frequency-dependent radial error of 5 cm at the orbit
frequency, 1 cycle/revolution (CPR). The intention is to
mimic in a very simplistic way an error introduced by the
GPS POD for these observation groups. As in the first

Fig. 3. Histogram of the estimation of the first arc’s redundancy
contribution r̂r1. 25 realizations have been used

Table 1. Results for the case of noise-free observations. Geoid errors are caused purely by linearization errors and numerical round-off

Case 1 Geoid errors (cm) Variance components (cm)

Max RMS Average
r̂ri ¼

1

ŵw1=2
i

Equal weightsa 0.39 0.04 0.06 1
MCVCE, 1st iteration 0.41 0.04 0.06 1:4 � 10�3 . . . 2:1 � 10�3

MCVCE, 5th iteration 0.34 0.03 0.05 0:4 � 10�3 . . . 3:7 � 10�3

MCVCE, 9th iteration 0.26 0.03 0.04 0:4 � 10�3 . . . 5:0 � 10�3

MCVCE at convergence 0.21 0.02 0.03 0:4 � 10�3 . . . 4:8 � 10�3

Lerch’s method, 1st iteration 0.26 0.03 0.04 0:8 � 10�3 . . . 4:1 � 10�3

Lerch’s method, 5th iteration 0.19 0.02 0.03 0:7 � 10�3 . . . 0:02
Lerch’s method, 9th iteration 0.20 0.03 0.04 0:7 � 10�3 . . . 0:16
Lerch’s method at convergenceb – – – –

a This is the case shown in Table 4 of Visser et al. (2001).
b No convergence achieved!
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case, here again we assess a problem where systematic
effects dominate against the stochastic noise. If no weight
optimization takes place at all – i.e. no down-weighting of
the ‘bad’ data sets – the RMS geoid errors are roughly
50% increased when compared to the second case (com-
pare Table 4 to Table 2).MCVCE estimates a sigma value
of 2.1 cm for the questionable data sets, and this down-
weighting reduces the RMS geoid errors by about 2 cm. It
is here that Lerch’s randomized method outperforms
MCVCE, since by its drastic down-weightingRMS errors
are reduced by about 4 cm. On the other hand, the esti-
mated weights for the systematically perturbed arcs are
strongly unbalanced and by no means representative of
the magnitude of the true simulated errors, whereas
MCVCE gives quite accurate weight estimates.

In a fifth test case, all observation arcs have been
corrupted by uncorrelated random noise of rx;y;z ¼ 1 cm
and the systematic 5-cm radial orbit error at 1 CPR. The
unexpected result occurs that the best gravity parameter
solution can be obtained from the original equal-weight

assumption, whereas MCVCE iterations finally increase
the geoid error RMS by about 0.5 cm (see Table 5). The
variance component estimates are still quite represen-
tative at about 2 cm. Lerch’s method performs even
more strangely; after an early improvement it converges
slowly towards a solution where geoid errors are in-
creased by about 4.7 cm.

In the final, sixth test case, for which results are
shown in Table 6, uncorrelated random errors of
rx;y;z ¼ 1 cm standard deviation (arcs 1 . . . 8) and
rx;y;z ¼ 4 cm standard deviation (arcs 9 and 10) have
been applied. In addition, the 5-cm radial bias at 1 CPR
has been added to the orbit pseudo-observations for all
arcs. Again, MCVCE performs well in terms of geoid
errors, weight estimates and speed of convergence.
Lerch’s randomized method, on the other hand, gives a
superior gravity field solution after one iteration but
then things start getting worse, and at convergence the
geoid RMS errors are about 2.6 cm larger than those
obtained with MCVCE.

Table 2. Results for the case of noisy observations. Uncorrelated random errors of rx;y;z ¼ 1 cm standard deviation have been added to the
original orbit pseudo-observations

Case 2 Geoid errors (cm) Variance components (cm)

Max RMS Average
r̂ri ¼

1

ŵw1=2
i

Equal weights 90.45 13.68 18.91 1
MCVCE, 1st iteration 90.45 13.68 18.91 0:99 . . . 1:01
MCVCE at convergence 90.45 13.69 18.91 0:99 . . . 1:01
Lerch’s method, 1st iteration 92.87 13.67 18.92 0:91 . . . 1:10
Lerch’s method at convergence 93.25 13.68 18.93 0:89 . . . 1:12

Table 3. Results for the case of noisy observations. Uncorrelated random errors of rx;y;z ¼ 1 cm (arcs 1 . . . 8) and rx;y;z ¼ 4 cm (arcs 9 and
10) standard deviation have been added to the original orbit pseudo-observations

Case 3 Geoid errors (cm) Variance components (cm)

Max RMS Average
r̂ri ¼

1

ŵw1=2
i

Equal weights 238.54 27.42 38.00 1
MCVCE, 1st iteration 99.67 15.22 21.15 1:01 . . . 1:05; 3:90; 3:98
MCVCE, 3rd iteration 100.02 15.20 21.13 0:99 . . . 1:01; 3:93; 4:01
MCVCE at convergence 100.02 15.20 21.13 0:99 . . . 1:01; 3:93; 4:01
Lerch’s method, 1st iteration 102.81 15.40 21.36 1:12 . . . 1:38; 3:75; 3:74
Lerch’s method, 3rd iteration 100.84 15.16 21.14 0:86 . . . 1:13; 3:97; 4:02
Lerch’s method, 5th iteration 100.71 15.16 21.15 0:85 . . . 1:13; 3:98; 4:02
Lerch’s method at convergence 100.69 15.16 21.15 0:85 . . . 1:13; 3:98; 4:02

Case 4 Geoid errors (cm) Variance components (cm)

Max RMS Average
r̂ri ¼

1

ŵw1=2
i

Equal weights 120.79 19.25 25.84 1
MCVCE, 1st iteration 99.91 17.44 23.09 1:00 . . . 1:01; 2:10; 2:10
MCVCE, 3rd iteration 100.06 17.41 23.06 0:99 . . . 1:01; 2:11; 2:11
MCVCE at convergence 100.06 17.41 23.06 0:99 . . . 1:01; 2:11; 2:11
Lerch’s method, 1st iteration 94.07 18.04 23.99 0:93 . . . 1:10; 1:29; 1:83
Lerch’s method, 3rd iteration 98.10 15.11 20.51 0:86 . . . 1:12; 1:14; 10:68
Lerch’s method, 5th iteration 97.81 15.48 20.98 0:89 . . . 1:12; 1:19; 22:41
Lerch’s method at convergence 97.79 15.49 20.99 0:89 . . . 1:12; 1:21; 22:39

Table 4. Results for the case of noisy observations, plus systematic
errors. Uncorrelated random errors of rx;y;z ¼ 1 cm standard de-
viation have been added to the original orbit pseudo-observations

for all arcs. In addition, a bias of 5 cm at the 1-CPR orbit fre-
quency of GOCE has been added to the radial component of x; y; z
coordinates of arcs 9 and 10
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6. Discussion

An algorithm has been presented that facilitates VCE
for disjunctive observation groups, without the need for
inversion of the observation group influence matrices or
even for explicit computation of the normal matrix. It
has been shown that the method, then denoted as
MCVCE, can be re-formulated as a Monte-Carlo
method. Thus, an existing LS estimation software can
be used in a black-box fashion to derive weight
estimates. In an iterative procedure random data or
randomly perturbed data have to be passed through the
given algorithm.

The computational costs of MCVCE, when com-
pared with VCE, reduce considerably. Moreover, the
method applies for problems where the matrices in-
volved in a VCE are not available due to restrictions
imposed by the LS estimation software in use. Appli-
cation in satellite geodesy might range from gravity
field determination with the new gravity missions in
combination with altimetry, airborne or terrestrial da-
ta, to orbit and ground station determination. Clearly,
we had the GOCE data analysis in our mind, where the
amount of gravity parameters makes conventional
VCE techniques unattractive. Here the real challenge
will be to combine all available data from gradiometry,
GPS orbit tracking and other sources in an optimal
way.

In a simplified numerical experiment we can show
that the proposed algorithm works well for simulated
satellite orbit perturbations contaminated with pure
stochastic noise, and can reasonably deal with orbit data
where simulated systematic errors are present. In com-
parison, Lerch’s method equipped with randomized
trace estimation proves to perform generally less stably
in terms of convergence, although in some cases with
comparable success. If we aim to estimate the variance
components of the orbit perturbation data (or at least a
representative absolute weight if systematic noise is
present), MCVCE clearly outperforms Lerch’s method.
It should be acknowledged, however, that the major
concern in the design of Lerch’s method was to obtain
useful relative weights, not absolute ones.

A number of important issues have not yet been
touched within this paper, remaining for future investi-
gation, among others: (1) how can the proposed method
be integrated optimally in nonlinear estimation proce-
dures where many iterations of a linearization and esti-
mation process have to be performed?; (2) how can
automatic observation editing algorithms be dealt with?;
and (3) the formulation and use of prior information
about the weights.

Acknowledgements. The author thanks Pieter Visser from DEOS
for providing simulated GOCE orbit data and partials files. The
help of two anonymous reviewers is greatly acknowledged.

Table 5. Results for the case of noisy observations, plus systematic errors. Uncorrelated random errors of rx;y;z ¼ 1 cm standard deviation
as well as a radial bias of 5 cm at the 1-CPR orbit frequency of GOCE have been added to the original orbit pseudo-observations for all arcs

Case 5 Geoid errors (cm) Variance components (cm)

Max RMS Average
r̂ri ¼

1

ŵw1=2
i

Equal weights 94.78 14.78 19.69 1
MCVCE, 1st iteration 94.84 15.12 19.98 2:06 . . . 2:15
MCVCE, 3rd iteration 94.83 15.25 20.10 2:04 . . . 2:15
MCVCE, 5th iteration 94.83 15.26 20.11 2:04 . . . 2:16
MCVCE at convergence 94.83 15.27 20.11 2:04 . . . 2:16
Lerch’s method, 1st iteration 95.77 14.03 19.20 1:01 . . . 1:41
Lerch’s method, 3rd iteration 99.58 15.15 20.29 0:91 . . . 2:01
Lerch’s method, 5th iteration 101.50 17.45 22.68 0:87 . . . 3:42
Lerch’s method at convergence 101.62 19.95 25.84 0:86 . . . 15:21

Case 6 Geoid errors (cm) Variance components (cm)

Max RMS Average
r̂ri ¼

1

ŵw1=2
i

Equal weights 235.78 28.41 38.52 1
MCVCE, 1st iteration 116.66 17.90 23.93 2:07 . . . 2:16; 4:32; 4:42
MCVCE, 3rd iteration 115.23 17.89 23.90 2:05 . . . 2:16; 4:36; 4:46
MCVCE, 5th iteration 115.21 17.89 23.90 2:05 . . . 2:16; 4:36; 4:46
MCVCE at convergence 115.21 17.90 23.90 2:05 . . . 2:16; 4:36; 4:46
Lerch’s method, 1st iteration 103.27 17.14 22.84 1:21 . . . 1:80; 3:79; 3:86
Lerch’s method, 3rd iteration 104.88 17.89 23.72 0:87 . . . 1:57; 4:11; 4:44
Lerch’s method, 5th iteration 106.00 18.15 24.05 0:84 . . . 1:62; 4:11; 4:51
Lerch’s method at convergence 114.63 20.51 26.56 0:79 . . . 8:81; 4:14; 9:40

Table 6. Results for the case of noisy observations, plus systematic
errors. Uncorrelated random errors of rx;y;z ¼ 1 cm standard de-
viation (arcs 1 . . . 8) and rx;y;z ¼ 4 cm standard deviation (arcs 9

and 10) have been applied. Moreover, a radial bias of 5 cm at the 1-
CPR orbit frequency of GOCE has been added to the original orbit
pseudo-observations for all arcs

651



References

Crocetto N, Gatti M, Russo P (2000) Simplified formulae for the
BIQUE estimation of variance components in disjunctive ob-
servation groups. J Geod 74: 447–457

European Space Agency (1999) Gravity Field and Steady-State
Ocean Circulation Mission. Reports for mission selection, ESA
SP-1233(1). ESTEC, Noordwijk

Förstner W (1979) Ein Verfahren zur Schätzung von Varianz- und
Kovarianzkomponenten. Allg Vermess-Nachr 86: 446–453

Girard DA (1989) A fast ‘Monte-Carlo Cross-Validation’ proce-
dure for large least squares problems with noisy data. Numer
Math 56: 1–23

Golub, GH, van Loan CF (1996) Matrix computations. John
Hopkins University Press, Baltimore, MD

Grafarend EW, d’Hone A (1978) Gewichtsschätzung in geodäti-
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