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In 2011, a discrepancy between the values of the Planck constant measured by counting Si

atoms and by comparing mechanical and electrical powers prompted a review, among others,

of the measurement of the spacing of 28Si {220} lattice planes, either to confirm the measured

value and its uncertainty or to identify errors. This exercise confirmed the result of the

previous measurement and yields the additional value d220 = 192 014 711.98(34) am having

a reduced uncertainty. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917488]
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1. Introduction

Efforts are in progress on accurate determinations of the

Planck, h, and Avogadro, NA, constants.1 They are prompted

by the proposal of a new kilogram definition based on a conven-

tional value of the Planck constant, NA and h being linked

by the molar Planck constant, NAh, which can be accurately

measured.2

The most accurate way to determine NA is by counting the

atoms in a single-crystal Si ball highly enriched with 28Si;

a measurement was completed in 2011.3–5 The uncertainty

associated with the determination of h from this measure-

ment is 3.0 × 10−8h, but the measured value differed from the

then most accurate result of the watt-balance comparisons of

mechanical and electrical power.6

Although subsequent watt-balance determinations7,8 gave h

values in substantial agreement with that obtained by atom

counting, this prompted a reassessment of the NA uncertainty to

identify whether errors were done. All the necessary measure-

ments were scrutinized and repeated aiming at a smaller uncer-

tainty, thus carrying out stress tests of all the technologies to

confirm that the intended performances are met. In the present

paper, we report about the measurement of the lattice param-

eter by means of combined x-ray and optical interferometry

and give an additional result having a reduced uncertainty.

2. NA Measurement

The NA value is obtained from measurements of the molar

volume, V M/m, and lattice parameter, a, of a perfect and

chemically pure silicon single-crystal. In a formula,

NA =
8MV

a3m
, (1)

where m and V are the crystal mass and volume, M is the mean

molar mass, a3/8 is the atom volume, and 8 is the number

of atoms in the cubic unit cell. Since the binding energy of

the Si atoms is about 5 eV and the mass of a Si atom is

about 26 GeV, M and m can be viewed as the molar mass

and mass of an ensemble of free atoms. To make the kilogram

redefinition possible, the targeted accuracy of the measurement

is 2 × 10−8NA.

From (1), it follows that the NA determination requires the

measurement of (i) the lattice parameter—by combined x-

ray and optical interferometry,9 (ii) the amount of substance

fraction of the Si isotopes and, then, of the molar mass—

by absolute mass-spectrometry,10–12 and (iii) the mass and

volume of nearly perfect crystal-ball having about 93 mm

diameter.13–15

Silicon crystals may contain chemical impurities, interstitial

atoms, and vacancies, which implies that the measured mass

value does not correspond to that of an ideal Si crystal and that

the crystal lattice may be distorted. This means that crystals

must be characterized both structurally and chemically, so that

the appropriate corrections are applied.16–18 The mass, thick-

ness, and chemical composition of the oxide layer covering the

sphere must be taken into account; they are measured by optical

and x-ray spectroscopy and reflectometry.19

3. Lattice Parameter Measurement

3.1. X-ray/optical interferometry

The combined x-ray and optical interferometer used to

measure the lattice parameter is described by Ferroglio et al.20

As shown in Fig. 1, an x-ray interferometer consists of three

blades, 1.20 mm thick, so cut that the {220} planes are orthog-

onal to the blade surfaces. X rays from a (1 × 10) mm2 Mo Kα1

line source are split by the first crystal and recombined via a

transmission crystal, by the third, called analyser. The inter-

ference pattern is imaged onto a multianode photomulti-

plier tube through a pile of eight NaI(Tl) scintillator crystals.

F. 1. Combined x-ray and optical interferometer. The yellow line indicates

the continuation of the laser beam, at 21 mm from the analyser base, where

the spacing of the diffracting planes was surveyed. The optical interferometer

and fixed Si crystal rest on a common silicon plate (not shown). The analyser

displacement and attitude (pitch and yaw angles) are optically sensed via

quadrant detection of the interference pattern. The transverse, y and z,

displacements and roll rotation of the analyser are sensed via a reference 90◦

trihedron (resting on the same platform as the analyser) and three capacitive

sensors faced to it (not shown).
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The photomultiplier image projected on the analyser is (1

× 11.2) mm2, with a pixel size of (1 × 1.4) mm2.

When the analyser is moved along a direction orthogonal

to the {220} planes, a periodic variation in the transmitted

and diffracted x-ray intensities is observed, the period being

the diffracting-plane spacing. The movement, up to 5 cm,

requires control of the analyser attitude to within nanoradians

and vibrations and position to within picometers. The analyser

displacement and rotation are measured by optical interfer-

ometry; the necessary picometer and nanoradian resolutions

are achieved by phase modulation, polarization encoding, and

quadrant detection of the fringe phase. To eliminate the adverse

influence of the refractive index of air and to ensure millikelvin

temperature uniformity and stability, the apparatus is hosted in

a thermovacuum chamber.

We measured the lattice parameter of a number of natural

Si crystals; the link between the results of these measurements

and the measured value for the enriched crystal used to deter-

mine NA is given by Massa et al.17 All the past measurements

relied on the same optical interferometer that served us since

1994. In order to exclude systematic effects, we assembled a

new one and integrated it in the apparatus. The main novelties

of the upgraded system are listed hereinbelow.

A 532 nm frequency-doubled Nd:YAG laser was substituted

for the previous 633 nm diode laser—stabilized by frequency-

offset technique against the frequency of a He-Ne laser which,

in turn, was stabilized against component a18 of the 127I2 transi-

tion 11-5 R(127). The laser was better collimated, thus halving

the correction for diffraction effects. The residual pressure in

the vacuum chamber has been reduced to below 0.04 Pa. This

makes any correction for the refractive index of the residual gas

in the vacuum chamber inessential and ensures the calibration

of the optical interferometer with a negligible uncertainty.

Contrary to our past measurement, the lattice spacing was

surveyed along an horizontal line at 21 mm from the analyser

base (instead of the previous 26 mm) and the correction for the

self-weigh deformation was recalculated.

A new optical bench is clamped to the vacuum chamber;

it collimates the laser beam, modulates the phase of the π-

polarized component, and delivers it to the interferometer by a

pointing mirror and a window of the vacuum chamber. The de-

livery, collimation, modulation, and pointing systems—optical

fiber, beam collimator and polarizer, phase modulator, and

injection mirror—have been rebuilt to conform to the new

wavelength.

Previously, the orthogonality between the laser beam and

the analyser was only occasionally checked. This was done by

observing simultaneously via a visual autocollimator placed—

when necessary—outside the vacuum chamber, the analyser,

and laser beam through the output port of the interferometer.

To gain the online control of the beam pointing, a homemade

telescope picks up part of the beam delivered to the detector.

In order to ensure stability, it is clamped on the same baseplate

as the x-ray/optical interferometer.

A plate beam-splitter was manufactured ad-hoc and substi-

tutes for the cube beam-splitter previously used to ensure that

the difference of the transmitted- and reflected-light paths is

insensitive to the beam translations and rotations. Therefore,

the components of the optical interferometer—beam-splitter,

quarter-wave plates, and fixed mirror—were replaced and

assembled anew.

In order to make the interfering beams parallel, the compo-

nents of the optical interferometer are cemented on a glass plate

supported by three piezoelectric actuators. As shown in Fig. 2,

a noise at a frequency of about 1 mHz caused phase instabilities

between the x-ray and optical fringes. A new power supply

was realized, having a sub part-per-million stability over the

time scales, from 1 s to 1 h, relevant to the lattice parameter

measurement. Eventually, the phase noise was reduced to the

shot noise limit of the x-ray photon count.

The Physikalische Technische Bundesanstalt (PTB) found

a contamination of the surfaces of the x-ray interferometer by

Cu, Fe, Zn, Pb, and Ca caused by the wet etching used by the

Istituto Nazionale di Ricerca Metrologica (INRIM) to remove

any residual stress due to surface damage after the crystal

machining. The contamination was removed by cleaning the

crystal in aqueous solutions of HF and (NH4)2S2O8.

The last upgrade concerned the temperature measurement.

Since, the thermal expansion coefficient of 28Si is about 2.6

× 10−6 K−1, the measured volumes of the Si balls and unit cell

must refer to the same temperature to within a sub-millikelvin

accuracy. Absolute temperature measurements are not neces-

sary, but the temperature measuring chains must be linked.

We carried out more accurate and sensitive measurements of

the Pt-thermometer resistance and linked our fixed-point cells

with those used to calibrate the measurements of the 28Si ball

temperature.

3.2. Measurement procedure

The measurement equation is

a =
√

8d220 =

√
8mλ

2n
, (2)

where d220 is the spacing of the {220} planes,
√

8 accounts for

the different spacings of the {100} and {220} planes, and n is

the number of x-ray fringes in a step of m optical fringes having

period λ/2.

F. 2. Phase of the x-ray fringes when the analyser is locked to an in-

teger optical interference-order. Top: noisy supply voltage of the optical-

interferometer actuators. Bottom: upgraded voltage supply. The integration

time of each measurement is 30 s. The right scale shows the corresponding

analyser displacement.
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In practice, d220 is determined by comparing the periods of

the x-ray and optical fringes. This is done by measuring the x-

ray fringe fraction at the ends of increasing steps mλ/2, where

m = 1, 10, 100, 1000, and 3570. We start from λ/(2d220) =

n/m ≈ 1385.95 and measure the fringe fractions at the step

ends with an accuracy sufficient for predicting the integer

number of fringes in the next step. Consequently, λ/(2d220) is

updated at each step. Eventually, measurements were carried

out over 48 subsequent steps of 3570λ/2, 0.95 mm each for a

total scanning length of 46 mm.

The least-squares method is applied to reconstruct the x-ray

fringes and to determine their phases at the ends of each step.21

Typical input data are 300 photon counts over 100 ms time

windows spaced by 4 pm; a typical sample contains six x-ray

fringes, covers 1.2 nm, and lasts 30 s. Each d220 measurement

is the average of about nine values collected in measurement

cycles where the analyser is repeatedly moved back and forth

along the selected step. The visibility of the x-ray fringes ap-

proached 50% with a mean brilliance of 500 counts s−1 mm−2.

The crystal temperature is simultaneously measured with sub-

millikelvin sensitivity and accuracy so that each d220 value is

extrapolated online to 20 ◦C.

3.3. Raw data

Measurements were made over 48 subsequent analyser

steps, 0.95 mm long. At each position, the lattice spacing was

measured in the eight detector pixels and the eight results were

processed to obtain, by linear regressions, the lattice-spacing

values in 48 points of the horizontal line that is the continuation

of the laser beam, at 21 mm from the analyser base (Fig. 1). A

typical result is shown in Fig. 3.

The figure shows a gradient of the lattice spacing; we discov-

ered that it is correlated to the temperature gradient caused by

the power, about 0.75 mW, injected by the laser beam in the

F. 3. Lattice-spacing values measured on March 14 along the line shown in

Fig. 1; x rays enter the analyser from the obverse face. All the values are

extrapolated to 20 ◦C, but not corrected for the systematic errors listed in

Table 1. The bars indicate the uncertainty of the linear interpolation of the

8 detector-pixel values giving the value at 21 mm from the crystal base. The

linear strain is due to the thermal gradient originated by the optical power

injected into the crystal (from left side of the figure); the best-fit line is

also shown. The red dots indicate the outliers that were excluded from the

subsequent analyses.

analyser. The reduced thermal conductivity of the residual gas

in the vacuum chamber—because of the otherwise desirable

low pressure—contributed to worsening the problem. The way

we coped with this problem is described in Sec. 4.9.

Figure 4 shows that after the thermal strain is removed, the

residuals and the outliers are repeatable from one measurement

to the next—also if carried out after one month. The head-

on (obverse) and inverted (reverse) layouts correspond to the

analyser crystal mounted as it was in the boule and in a reversed

layout; after the reversal, the x rays cross the crystal in the

opposite direction. The residuals and outliers repeatability, the

scatter larger than the one expected by statistics, the different

residual and outlier observed in the head-on and inverted sur-

veys, and additional tests made by shifting the x-ray and optical

baselines suggest that the outliers and residuals are caused by

the analyser surfaces.

Apart from the outliers that were again pinpointed, the pro-

files shown in Fig. 4 are different from those given by Massa

et al.9 Although the support-point variability could partially

explain the difference and in the past measurements the reso-

lution and repeatability were not as good as today (we only

spotted a correlation between the profiles taken with the same

analyser orientation and no correlation between those taken

with opposite orientations), we suspect that the difference is

F. 4. Comparison of the variations of the measured lattice-spacing values

along the line shown in Fig. 1 and after the thermal strain has been removed.

Top: obverse face of the analyser, February 02 (blue) and March 14 (red).

Bottom: reverse face of the analyser, May 15 (blue) and June 05 (red).
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real and this substantiates our surface-effects allegation. A

collaboration with the Leibniz Institutes für Oberflächenmod-

ifizierung in Liepzig is under way to develop machining tech-

nologies based on plasma etching and ion beams to gain a better

control of the geometrical, physical, and chemical properties of

the crystal surfaces.22,23

4. Analysis of the Error Budget

4.1. Statistics

Each measurement is the mean, after eliminating the outliers

(red in Fig. 3) and the thermal strain, of the survey results.

The uncertainty of the mean is dominated by the variations of

the measured values that are supposed to be caused by local

effects of the analyser surface. Therefore, when calculating the

uncertainty, we took the residual correlation into account.

4.2. Laser beam wavelength

The frequency of the Nd:YAG line is locked to the compo-

nent R(56) of the 32-0 transition of the 127I2 molecule. It was

measured to better than a 10−10 relative uncertainty; therefore,

it does not contribute to the measurement uncertainty. To elimi-

nate the influence of the refractive index of air, the experiment

is carried out in vacuo. The residual pressure in the vacuum

chamber has been reduced to less than 0.04 Pa. Since the air

refractivity at the atmospheric pressure is 2.9 × 10−4, assuming

that the pressure is in the interval from zero to 0.04 Pa with a

uniform probability, the relevant correction is 0.058(33) nm/m.

4.3. Laser beam diffraction

The period of the interference fringes is not equal to the

plane-wave wavelength. In the case of the interference of two

identical paraxial beams—whose angular spectra are strongly

concentrated around a wave-vector having ω/c modulus, the

difference between the period of the integrated interference

pattern, λe, and the plane-wave wavelength, λ = 2πc/ω, is24,25

λe − λ

λ
=

(1 − x2
0
/w2

0
)Tr(Γ)

2
+
α2

2
+
γ2

2
, (3)

where the optical-path difference of the interferometer arms is

assumed to be much smaller than the Rayleigh length, x0 is the

offset between the beam axes measured at the beam waists, w0

is the 1/e2 spot radius at the beam waist, Γ is the central second-

moment matrix of the angular power-spectrum of the beams,

2α is the misalignment between the beam axes, and γ is the

beam deviation from a normal incidence on the analyser.

The Tr(Γ) term originates from diffraction and depends on

the spread of the transverse impulse of the photons. It holds

for any paraxial beam, no matter if its profile is Gaussian or

not;24 actually, it is obtained under a coaxial-beam assumption,

i.e., when x0/w0 = α = 0, and subsequently generalized to

noncoaxial beams, but under a Gaussian-beam assumption.25

It must be noted that in the case of Gaussian beams having

cylindrical symmetry, Tr(Γ)/2 = θ2
0
/4, where θ0 is the far-field

divergence. We measured the angular power-spectrum of the

F. 5. Radial profile of the focal-plane image of the laser beam. The solid

lines are minimum and maximum values of the radial profile of the best

bivariate Gaussian function fitting the data.

beams emerging from the interferometer by using the Fourier

transforming properties of a lens. Next, (3) is calculated from

the central second-moment matrix of the focal-plane image,

which is recorded by a video camera.

Owing to the 8 bit resolution and dark-noise of the camera

that we are presently using, a calculation of Γ based on a

discrete approximation of the relevant integrals is unreliable.26

Therefore, it was estimated by fitting a bivariate Gaussian

function to the focal-plane image; an example is shown in

Fig. 5. The uncertainty associated to the Tr(Γ) estimate is

small, typically, less than 1%.

To check the correction estimate, we examined the results of

a number of d220 measurements carried out from 2010 to 2014

with different beams. The results shown in Fig. 6 suggest that

we overestimate the correction. Subsequent investigations did

not shed light on this problem, but a study of the interference

of wavefronts differently perturbed in the separate arms of the

interferometer—where (3) does not hold exactly—seems to

support an overestimation; more details will be given in a sepa-

rate paper. Another hypothesis is a wrong estimate of the center

F. 6. Corrected d220 values vs. the applied correction for the diffraction

of the laser beam. The measurements are made from 2010 to 2014 by

using laser beams differently collimated. Bullets (red): He-Ne laser source

at 633 nm; squares (green): frequency-doubled Nd:YAG laser source at 532

nm. If the corrections are correctly estimated, the data are expected to lie on

an horizontal line.
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of mass of the focal-plane image, which implies a correction

always larger than true. In addition, since a single datum—

corresponding to the largest beam divergence, see Fig. 6—

dictates the regression line, we may be misled by a measure-

ment error. Owing to the smallest beam divergence in the

present setup, the result we are reporting agrees with the value

extrapolated to a zero correction from the data in Fig. 3. There-

fore, we did not correct the Tr(Γ)/2 = 3.978 × 10−9 value, but,

cautiously, increased its uncertainty to 15%Tr(Γ)/2.

The interfering beams are kept parallel to within a 2α =

1 µrad maximum misalignment by leveling the phase in four

quadrants of the interference pattern via the piezoelectric sup-

ports (pitch) and inertial drivers (yaw) of the interferometer

baseplate. Consequently, the α2/2 term in (3) is irrelevant and

was omitted.

4.4. Laser beam alignment

When assembling the apparatus, the laser beam deviation

γ from a normal incidence on the analyser was nullified with

the aid of an autocollimator looking at both the analyser and

beam from the interferometer output port. Next, as shown in

Fig. 7, we carried out a number of d220 measurements while

γ was purposely changed along two orthogonal directions

and its variations were recorded by an online telescope. The

telescope is mounted, inside the vacuum chamber, on the same

baseplate of the x-ray/optical interferometer and picks up part

of the output beam. After two parabola were fitted to the

measured d220 values, the beam direction corresponding to

the maxima—hence, to a supposed normal incidence—was

identified to within µrad uncertainty and maintained in the

telescope optics with an uncertainty of 20 µrad. Eventually, the

laser beam was kept parallel to that direction and the telescope

readings recorded for subsequent analyses.

After we completed the measurements and removed the

interferometer from the apparatus, we realized that the opera-

tion of the optical interferometer may be liable to a systematic

error. This problem will be examined in a separate paper, but,

since it relates to the assessment of the measurement uncer-

tainty, we outline it shortly.

F. 7. Measured d220 values vs. the pitch angle of the laser beam; the angle

origin is set in the maximum of the parabola (red line) that best fit the data.

In the case of a pointing error γ, an analyser displacement s

shears the interfering beams by 2sγ. Hence, the measure beam

goes through different parts of the optics crossed in its way

to the detector. This shear changes the optical-path length by

(2γs)β∆n, where∆n and β are the refractivity and the relevant

component of the vertical angle of a wedge that, in a simplified

model, substitutes for the optics in the way from the analyser to

the detector. In addition, because of the wavefront curvature,

the beam shear is sensed by the interferometer as a rotation

equal to

Ω =
sγ

R
, (4)

where 1/R is the wavefront curvature. Therefore, the measured

d220 value is

dm = d220



1 −
1

2
γ2 +

(

β∆n +
b

2R

)

γ



, (5)

where b is the Abbe’s offset between the laser and x-ray beam-

centroids. According to (5), dm is maximum when γ = β∆n +

b/(2R), not when γ = 0 as assumed in the alignment proce-

dure. It must be noted that when dm is maximum, the sensed

rotation is not zero—as expected if γ = 0 rad—but,

Ω =
sβ∆n

R
, (6)

where, for the sake of simplicity, we assumed b = 0 mm.

Since the analyser attitude is servoed so as to nullify signal

of the angle interferometer—the differential phase between the

quadrants of the interference pattern, the shear is counteracted

by an analyser rotation. Eventually, the pitch component of

this rotation is disclosed by a d220 gradient in the different

detector pixels. The pitch explaining the gradient observed

with a varying alignment of the laser beam is shown in Fig. 8.

When the beam is aligned in such a way that the d220 value is

maximum, the pitch was equal to 0.4 nrad/mm in February and,

after the analyser reversal and realignment, to 1.3 nrad/mm

F. 8. Parasitic pitch of the analyser motion vs. the pitch angle of the laser

beam. The analyser motion is servoed so as to nullify the differential signals

detected by the optical interferometer. Measurements were done in February

(squares, obverse face) and May (bullets, reverse face). The lines (solid and

dashed, respectively) that best fit the data are also shown. The angle origin is

set in the maximum of the parabola that best fit the measured d220 values (see

Fig. 7).
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F. 9. Parasitic pitch of the analyser motion measured over 0.95 steps in

48 subsequent analyser positions. Surveys were carried out on February 02

(bottom, obverse face) and May 15 (top, reverse face). The laser beam was

pointed so as to ensure that the measured d220 value was maximum and the

analyser was servoed so as to nullify the differential signals detected by the

optical interferometer.

in May. The yaw rotation might be similar, but, presently, we

cannot detect it.

Shear strains of the crystal lattice and surface effects (see

Sec. 3.3.) mimic the same gradients. Therefore, we cannot

unambiguously explain a d220 gradient by a parasitic pitch

rotation. However, a number of additional tests excluded large

strains. For instance, Fig. 9 shows the parasitic pitch of the

analyser that explains the d220 gradients observed in the March

14 and May 15 surveys, where the laser beam was aligned

in such a way that the d220 measure is maximum. Since the

only survey difference is the reversed analyser alignment, if we

had observed a lattice strain, the two plots should be similar.

Contrary, they are not; the mean pitch was 1.0 nrad/mm in

March and −0.5 nrad/mm in May.

According to (4), the radius of curvature of the interfering

wavefronts, R = 25(1) m, can be estimated from the mean

slope, s/R = 40(2) × 10−6 mm−1, of the lines that best fit the

data in Fig. 8. By explaining the d220 gradients in terms of

parasitic pitch rotations and (6), we estimate that the pitch

component of β is 50 µrad from the March data and −25 µrad

from the May one. Since no change was made in the optical

interferometer, these contradictory estimates exclude wedge

angles much greater than, say, 50 µrad.

In order to estimate the needed correction and the associated

uncertainty, we used ∆n ≈ 1/2 and calculated the mean and

variance of the cγ = (γ − β)γd220/2 correction, where β =

0(50) µrad and γ = 0.5β ± 20 µrad are independently nor-

mally distributed. The final result is cγ = −0.11(48) nrad2.

4.5. Laser beam walk

The beam walk refers to the transverse motion of the inter-

fering beams through the optical components. It originates

from different effects causing the beams to move across imper-

fect surfaces or wedged optics. The effect of walks caused by a

tilted incidence on the analyser was investigated in Sec. 4.4. In

our previous setup, the beam-splitter imperfection, combined

with tilts of the apparatus baseplate with respect to the laser

beam, caused systematic differential variations of the optical

paths through the interferometer that required ad hoc correc-

tions. In the new apparatus, we made this problem harmless

by using a plate beam-splitter, having a parallelism error less

than 10 µrad, and by controlling electronically the baseplate

level and tilt to within 25 nm and 70 nm/m, over any analyser

(short or long) displacement. The differential beam walk due to

analyser parasitic rotations is irrelevant because rotations are

less than 1 nrad/mm (see Sec. 4.4.) and the detector distance is

less than 0.5 m.

The mechanical load driving the analyser carriage—from

the outside of the vacuum chamber—causes the inside appa-

ratus to sag and to yaw with respect to the laser beam. During

the motion, the relevant beam walks are quite large, up to 1 µm

and 5 µrad, but after any displacement, the mechanical link

between the apparatus and the driving system is removed, thus

allowing the equilibrium position to be restored and, in prin-

ciple, any beam walk to be nullified. It is difficult to estimate

if, after averaging over the 48 displacements, there is a residual

systematic walk of the interfering beams. We assumed that the

mean walk over a 1 mm displacement is uniformly random in

the [−0.1,0.1] µm interval, a 10% of the maximum observed

without mechanical disconnection and averaging. We assumed

also that the differential wedge angle between the end surfaces

of the separate paths through the interferometer is uniformly

random in the [−10,10] µrad interval. Consequently, the differ-

ence of the optical paths associated to the beam walk is zero,

with standard deviation of 0.577 nm/m.

4.6. Abbe’s error

The Abbe error refers to the difference, ŝ · (b ×Ω) = b ·
(Ω × ŝ) = Ω · (ŝ × b), of the displacements sensed by the laser

and x-ray interferometers, where b is the interferometer offset

and Ω and ŝ are the rotation and movement-direction of the

analyser.

As regards Ω × ŝ, it was zeroed to within 1 nrad (see

Sec. 4.4.) by servoing the motion so as the signals of the angle

interferometer—the phase differences between the vertical and

horizontal quadrants of the interference pattern—are null.

As regards ŝ × b, the vertical offset was nullified by carrying

out off-line measurements of the variations of the x-ray fringe

phase in different detector pixels while the pitch component of

Ω is purposely changed while keeping the analyser displace-

ment null. As shown in Fig. 10, we identified the virtual pixel

having a zero offset to within a 0.1 mm uncertainty. The hori-

zontal offset was set to zero to within the same uncertainty

by rotating the analyser about the vertical and by shifting

horizontally the laser beam until no phase variation is detected,

as shown in Fig. 10.

The angle interferometer and attitude control display imper-

fections; we took advantage of the resulting pitch noise—

which is shown in Fig. 9—to check the vertical offset by data

analysis. The eight detector pixels have a linearly increasing

offset, and as shown in Fig. 11, the linear regressions of the d220

values intersect, ideally, in the pixel having a null offset. Since
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F. 10. Vertical variations of the x-ray fringe phase when the analyser is

rotated—while keeping the displacement measured by the optical interfer-

ometer null—about the y (solid line) and z (dashed line) axes.

the d220 value in this pixel is insensitive to the pitch noise, the

best way to find it is to look at the minimum variance of the

residuals from the best-fit lines of the values interpolated in

each detector pixel or, which is the same, at the zero-correlation

between the same residuals and the residuals from the best-

fit line of the pitch noise. Examples of the residual variance

and correlation are shown in Fig. 12. In half of the surveys,

the null offset is located in a pixel that differs from where the

phase variation of the x-ray fringe was found—in previous off-

line experiments—insensitive to the analyser pitch rotation.

After the projection on the analyser, the maximum differences

are 0.5 mm. Since the x-ray/optical interferometer rests on a

double antivibration system (a table supported by air springs,

in turn, mounted on a giant pendulum), we explained these

shifts by instabilities of the relative leveling between the x-ray

source and interferometer which affect the pixel looking at the

analyser point having zero vertical offset.

We trusted the zero-offset pixel identified by the data anal-

ysis. Since we carried out this analysis after the interferometer

was removed from the apparatus and, consequently, we did not

investigate experimentally the problem, we assumed a null-

pixel error uniform in the [−0.5,+0.5] mm interval with an

F. 11. Vertical variations of the d220 value measured over different 0.95 mm

steps. The coordinate of the step center is also given. The solid lines are the

linear regressions used to interpolate the measured values.

F. 12. Expected (red solid line) and observed (bullets) variances of the

residuals from the line best fitting the d220 values interpolated at different

detector pixels. Expected (green dashed line) and observed (bullets) correla-

tions between the same residuals and the residuals from the line best fitting

the analyser pitch.

uncertainty of 0.29 mm. By combining this uncertainty with

the uncertainty of the zeroing of the horizontal offset compo-

nent, 0.1 mm, and parasitic rotation, 2 nrad, we estimated that

the Abbe error was nullified to within a total uncertainty of

6.11 × 10−10d220.

4.7. Movement direction

The analyser moves orthogonally to the front mirror of a

trihedron; straightness errors are nullified to within nanometers

by servoing the motion with the signals of capacitive trans-

ducers that sense the transverse displacements of the trihedron

top- and side-face.

The misalignment between the optical and x-ray interfer-

ometers causes them to measure different components of the

displacement. With s indicating the displacement, the x-ray

interferometer senses s · ĥ, where ĥ is the unit normal to the

diffracting planes, whereas the optical interferometer senses

s · n̂, where n̂ is the unit normal to the analyser, see Sec. 4.4.

The difference, s · (n̂ − ĥ), is null when the displacement is

orthogonal to (n̂ − ĥ), that is, when it bisects the angle formed

by n̂ and ĥ. The lattice constant is linked to the measured

mλ/(2n) ratio by

d220 =
mλ

2n



1 + ŝ · (n̂ − ĥ)


. (7)

The two (front and rear) analyser mirrors are polished par-

allel to the {220} planes. The residual misalignments, |n̂ −
ĥ| = 13.7(1.2) µrad and |n̂ − ĥ| = 10.8(1.2) µrad for the front

and rear mirrors, with reference to the obverse layout of the

analyser, were estimated by a least-squares adjustment of the

misalignment between x-ray and light reflections on the mir-

rors and lattice planes,27 the phase shift of the x-ray fringes

when the analyser motion lies in the mirror planes, and the

measured angle between the two mirrors. In order to calculate

the relevant correction and the associated uncertainty, the angle

between the trihedron and analyser was periodically measured

to within a 10 µrad uncertainty; examples of the measurement

results are shown in Fig. 13.
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F. 13. Relative directions of the reciprocal vector h of the diffracting

planes, unit normal to the analyser n (front mirror, with reference to the

obverse layout of the analyser), and displacement direction s. The dates

indicate the s checks; after April 14, 2014, the analyser was removed and

realigned in reverse. The circles indicate the measurement uncertainties. The

dashed line is the locus of the s direction where the projection error is null.

4.8. Analyser temperature

The analyser temperature is measured by a capsule standard

Pt resistance thermometer inserted into a well in a copper block

in thermal contact with the crystal. Resistance measurement

were carried out by a FLUKE 1595A Super-Thermometer;

to minimize the self-heating, the measurement current was

0.3 mA. Each temperature datum is the average of 15 measure-

ments pairs, carried out with both positive and negative cur-

rents and integrated over 30 s. The 1595A linearity was checked

by a resistor network made in such a way that the voltages

across any number of resistors in a resistor series are read to

get four-terminal values interrelated by the formula for the

series connection.28 The test showed that linearity is better than

10 µΩ—corresponding to 25 µK—for resistance measure-

ments from 90 Ω to 120 Ω.

The lattice constant measurements were carried out from

February to June 2014; on April 08, the thermometer was

calibrated in situ—that is, by moving the thermometer from

the apparatus to the fixed-point cells without changing the

measuring chain and cables. We extrapolated the resistance

readings to a zero current and corrected the cell temperatures

for the immersion depth and hydrostatic pressure.

The temperature measurements require sub-mK accuracies

and any difference between the temperature scales used to

extrapolate the molar volume and lattice constant to 20 ◦C must

be excluded or identified. Consequently, on April, our fixed-

point cells were compared with those of the Physikalish Tech-

nische Bundesanstalt. After the corrections for the immersion

depth and hydrostatic pressure were taken into account, the

differences of the resistance readings were

RTPW(PTB) − RTPW(INRIM) = 5(3) µΩ,

RGa(PTB) − RGa(INRIM) = −7(4) µΩ.

Unfortunately, it was not possible to investigate the nonunique-

ness associated with the readings of the two thermometers at

20 ◦C; it was cautiously set to 0.1 mK.29

Taking note of these differences, the uncertainties of the

triple point of water and melting point of Ga realizations are

irrelevant; the repeatability of the cells is 50 µK. Owing to the

huge data averaging, the noise of the resistance measurements

is irrelevant; the stability of the reference 100 Ω resistor over

the two months before and after the calibration is 33 µΩ; the

linearity of the measurement of the 107 Ω thermometer resis-

tance is better than 10 µΩ; the measurement nonuniqueness

is 0.1 mK. All together, the uncertainty of the temperature

measurements, estimated by Monte Carlo simulation, is 0.17

mK.

Each d220 measurement was extrapolated to 20 ◦C according

to30

d220(T0) = d220(T)
�

1 + α1(T0 − T) + α2(T0 − T)2
�

, (8)

where T0 = 20 ◦C, α1 = 2.5530(12) × 10−6 K−1, and α2 = 4.32

(37) × 10−9 K−2. All measurements were carried out in the

temperature range from 19.9 ◦C to 20.3 ◦C; therefore, the

average extrapolation uncertainty is 0.24 × 10−9d220.

The thermometer self-heating was identified by repeating

d220 measurements with varying currents; the relevant correc-

tion for the 0.3 mA current is 0.33(3) × 10−9d220, the measured

value being smaller than the true one.

The calibration history, dating back to December 2007,

shows a linear drift of 14(5) µΩ/month or 0.035(13) mK/

month that was taken into account to extrapolate the calibr-

ation to the actual measurement date.

Eventually, the total uncertainty of the lattice constant extra-

polation to 20 ◦C is 0.497 × 10−9d220.

4.9. Thermal strain

A linear approximation of thermal strain due to the optical

power injected into the analyser by the laser beam,

∆d220

d220

= a − b(x − x0), (9)

where a = 0.948(203) × 10−9, b = 0.036(9) × 10−9 mm−1, and

x0 = 22.8 mm is the center of the survey, was found by a least-

squares adjustment of the d220 gradients and the results of

repeated d220 measurements carried out with varying optical

powers. The comparison of (9) with the numerical calcula-

tions of the thermal strain is shown in Fig. 14. To correct

for the thermal strain, we trusted the value given by (9), but

increased its uncertainty to the one half of the 1.28 × 10−9

gap between the minimum and maximum strain predicted by

the numerical calculation. Therefore, the interpolated value at

22.8 mm was reduced by 0.948(640) × 10−9d220. More details

about the numerical and experimental investigations of the

analyser response to the thermal load will be given in a separate

paper.
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F. 14. Comparison of the finite-element calculation of the minimum (the

thermal flux is grounded through the thermometer copper block) and maxi-

mum (the thermal flux is grounded through the crystal support points) thermal

strains (with respect to the measured crystal temperature) due to the optical

power, 0.75 mW, injected into the analyser by the laser beam (solid lines,

red) and the least-squares adjustment (filled area) of the d220 gradients and

variations at the crystal ends (dots).

4.10. Self-weight deformation

To average the d220 measurements over the largest crystal

part, a long analyser has been used. The simulation of the

gravitational bending allowed the analyser to be optimally

designed, the residual lattice strain to be predicted, and the

contribution of the self-weight deformation to the uncertainty

budget estimated.31,32 The simulation purposes were to find

the maximum height of the analyser lamella consistent with a

nonstrained lattice and the support points minimizing bending

or sagging. In order to estimate the necessary correction and

its uncertainty, the residual strain at the 21 mm height was re-

calculated for points randomly located inside the (5 × 5) mm2

support areas. The results show that the mean strain, which is

shown in Fig. 15, depends only on the distance between the

support points. Since the simulation indicates that the everted-

inverted transition occurs with a slightly expanded lattice,

we reduced the measured values by 0.543(377) × 10−9d220—

which relates with the distance distribution shown in Fig. 15.

4.11. Aberrations of the x-ray interferometer

Geometric aberrations contribute to the phase of the x-ray

fringes by less than 0.01d220 per 1 µm changes of the analyser

thickness or focusing.33,34 The root-mean-square roughness of

the analyser surfaces is less than 1 µm, with its main compo-

nents in the neighbour of the 0.1 mm wavelength. The effect of

the surface roughness—included the large local variations of

the angle with respect to the diffracting planes—and of local

surface strain, if any, was washed out by the survey averaging.

The linear gradient of the mean analyser thickness over

the 46 mm measurement distance is less than 10 µm and

contributes by less than 0.4 × 10−9 to the d220 measurement.

This error is nullified by repeating the measurement after a

180◦ rotation of the analyser and by averaging the results. If

the crystal displacement does not lie in the mean surface of

the analyser, the interferometer defocuses. The out-of-plane

F. 15. Residual mean self-weigh strain of the analyser calculated at 21 mm

from the base as a function of the distance between the support points. The

filled curve is the distance probability-distribution, given three contact points

uniformly distributed in the (5×5) mm2 support areas.

angle is less than 2 µm/cm which corresponds to a zero-mean

uniform error having 0.23 nm/m standard deviation.

A stress exists in the crystal surfaces even if the bulk material

is stress-free. This problem was investigated by Quagliotti

et al.35 by using an elastic-film model to provide a surface

load in a finite-element analysis. The study showed that if

the tensile stress is 1 N/m, the measured lattice spacing is

6 × 10−9d220 smaller than the value in an unstrained crystal.

Literature values of the (001) surface stress obtained from

ab initio and molecular dynamics calculations are given by

Quagliotti et al.;35 the stress of the (110) surface is expected

to be 60% smaller. Owing to the value and sign scatters of the

literature data, we do not propose a correction and associate

with a null stress an uncertainty of 0.1 N/m. Therefore, the

relevant contribution to the lattice constant uncertainty is

0.6 × 10−9d220. Further experimental investigations and atom-

istic calculations are under way to confirm that surface-stress

effects are irrelevant or to quantify and correct for them.36

5. Measurement Results

Three d220 surveys were made on February 12 and March 10

and 14 with the analyser in the head-on layout; four were made

on May 14 and 15 and June 05 and 12 with the analyser in the

back orientation. Examples are given in Figs. 3 and 4. Next,

after eliminating the outliers and correcting for the thermal

strain, each d220 profile was averaged to obtain the mean lattice

spacing.

The results are shown in Fig. 16; an example of the error

budget is given in Table 1. With respect to our previous mea-

surement, in addition to the reduction of the total uncertainty,

Table 1 shows a significant redistribution of the uncertainty

contributions. The values belonging to each obverse/reverse

face set are significantly correlated; this explains the repeat-

ability, which is much better than the uncertainty.

The analyser reversal required a full realignment of the two

interferometers. Therefore, only the wavelength and tempera-

ture uncertainties, laser-beam diffraction, self-weigh deforma-

tion, and aberrations of the x-ray interferometer combine in the
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F. 16. Measured d220 values. Each measurement is the mean, after eliminat-

ing the outliers and correcting for the thermal strain, of a survey of a 46 mm

long crystal part.

same way; the remaining contributions to the total uncertainty

are largely independent.

Figure 16 shows a difference between the values measured

with the analyser mounted in the head-on and inverted layouts.

We are not yet able to say if this difference is real, e.g., due to a

different physical and/or chemical structure of the analyser sur-

faces, or if it indicates that the control of the systematic errors is

less good than what we estimated. The first option is supported

by the repeatable observation of different obverse- and reverse-

profile, which was statistically anticipated by Massa et al.9 The

second is supported by the fact that a difference between the

obverse and reverse mean-values of d220 was not reported.

The final measured value,

d220(2014) = 192 014 711.98(34) am, (10)

at 20 ◦C and 0 Pa, is the mean of the data in Fig. 16. The relative

uncertainty is 1.75 nm/m. In the average, we did not take

the data uncertainty and correlation into account, but to avoid

that the different number of obverse/reverse surveys biases the

result, first, we averaged the obverse and reverse data and,

subsequently, averaged the two results. To be conservative, we

associated to the mean the worst uncertainty of the input data.

As shown in Fig. 17, (10) is slightly smaller than

d220(2011) = 192 014 712.67(67) am (11)

T 1. Relative correction and uncertainty, in parts per 109, of the February

12, 2014 d220 value

Contribution Correction Uncertainty

Data averaging 0.000 0.722

Wavelength −0.058 0.033

Laser beam diffraction 3.978 0.597

Laser beam alignment −0.110 0.480

Beam walks 0.000 0.577

Abbe’s errors 0.000 0.611

Movement direction 0.699 0.214

Temperature −0.500 0.497

Thermal strain −0.948 0.641

Self-weigh −0.543 0.377

Aberrations 0.000 0.642

Total 2.52 1.75

F. 17. Comparison of d220 values (10) and (11).

given by Massa et al.9 A reasons might be a positive bias of the

correction for diffraction applied to (11), as shown in Fig. 6. In

addition, in (11), the pointing stability of the laser beam was

not monitored online and, in retrospect, we might have overes-

timated the pointing error. Since a pointing error causes a χ2

measurement-underestimate, we consistently—but, perhaps

incorrectly—applied a relatively large positive correction.

Eventually, the reanalysis of the effect of a nonorthogonal

incidence of the laser beam on the analyser mirror in Sec. 4.4.

shows that wedged optics in the beam path combine with

a wrong pointing to originate a positive error. Therefore,

contrary to what we did in the past, the correction for the

laser beam alignment in Table 1 is negative. To estimate

the correlation between the (10) and (11) values, a detailed

analysis of the similarities and differences of our present and

past measurements is under way; the results will be given in a

separate paper.

6. Conclusions

We rechecked the measurement uncertainty of the lattice

parameter of the 28Si crystal used to determine the Avogadro

constant. Additional measurements and stress tests were car-

ried out by using of an upgraded measurement apparatus. No

error was identified; this work confirms the value given by

Massa et al.9 and yields an additional result having a reduced

uncertainty.
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