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Abstract. Threshold Implementations provide provable security against
first-order power analysis attacks for hardware and software implemen-
tations. Like masking, the approach relies on secret sharing but it differs
in the implementation of logic functions. At Eurocrypt 2011 Moradi
et al. published the to date most compact Threshold Implementation
of AES-128 encryption. Their work shows that the number of required
random bits may be an additional evaluation criterion, next to area and
speed. We present a new Threshold Implementation of AES-128 encryp-
tion that is 18% smaller, 7.5% faster and that requires 8% less random
bits than the implementation from Eurocrypt 2011. In addition, we
provide results of a practical security evaluation based on real power
traces in adversary-friendly conditions. They confirm the first-order at-
tack resistance of our implementation and show good resistance against
higher-order attacks.

Keywords: Threshold Implementation, First-order DPA, Glitches, Sharing, AES,
S-box

1 Introduction

Embedded devices seem to be easily protected by modern ciphers in a black-box
scenario. However, in the late 90s [10] the security of such devices has been shown
to depend on the algorithm implementation. During the computation of an al-
gorithm the device leaks information. Side channel attacks (SCA) are among
the most relevant threats for the security of implementations of cryptographic
algorithms. Certain countermeasures aim at introducing noise in the side chan-
nel, e.g. random delays, random order execution, dummy operations, etc., while
masking conceals all sensitive intermediate values of a computation with random
data and allows one to formally argue the security such a protection provides.
Different masking schemes, like additive [8,9] and multiplicative [14], have been
proposed in order to provide security against differential power analysis (DPA)
attacks. However, it was shown [11,12,17] that masked hardware implementa-
tions can still be vulnerable to first-order DPA due to the presence of glitches.
One can try to eliminate the security relevant glitches by carefully balancing



signal propagation delays, but this requires expertise, time, iterations of design
and testing, and hence is expensive. As an alternative, new masking schemes
have been developed that provide provable security even if glitches occur.

In 2006 Nikova et al. proposed such a scheme called Threshold Implementa-
tion (TI) [19]. It is based on secret-sharing and provably secure against first-order
DPA [20]. In 2012 Prouff and Roche proposed a dth-order masking scheme [24],
based on Shamir’s secret sharing, for which they claim security even against
higher-order attacks. It is a general method that replaces every field multiplica-
tion by 4d3 field multiplications and 4d3 additions, using 2d2 bytes of random-
ness. In some cases this may prove too costly or inefficient. And [16] has shown
that the multivariate leakages can be exploitable in univariate attacks.

Related Work. The Threshold Implementation technique is based on a spe-
cific type of multi-party computation and applies Boolean masking. Interesting
properties of the technique are that it provides provable security against first-
order side-channel attacks, that it requires few assumptions on the hardware
leakage behavior, and that it allows to construct realistic-size circuits without
intervention and design iterations. However, threshold implementations can still
be broken by univariate mutual information analysis (MIA) [2,20] or univariate
higher-order attacks [15].

It has been shown that all 3 × 3 and 4 × 4 have a TI sharing with 3, 4 or
5 shares [5]. The TI approach has been applied to only few entire algorithms:
PRESENT [21], AES [18], Keccak [3] and Fides [4]. In AES, the S-box is the
by far most challenging part to share. Moradi et al. [18] have proposed a TI of
this S-box that constantly uses 3 shares based on the tower field approach.

Contribution. We propose a more compact and faster Threshold Implementa-
tion of AES-128 encryption that requires less random bits compared to the one
by Moradi et al. from Eurocrypt 2011. For the S-box we use the tower field
approach over GF (24) and for each block in the S-box computation we adapt
the number of shares. This reduces the area by 13% and the clock cycles by 40%.
However, our main focus is to optimize not only the S-box but the whole cipher.
Our implementation of AES is 18% smaller, 7.5% faster and requires 8% less
random bits than the implementation from Eurocrypt 2011. We investigate
the uniformity problem and the need for re-masking in more detail. We prove
that under certain circumstances, it is enough to re-mask only a fraction of the
shares. We provide results of a practical security evaluation based on real power
traces in adversary-friendly conditions. They confirm the theoretically guaran-
teed first-order attack resistance and show good security against higher-order
attacks.

2 Threshold Implementation

TIs use sharings with the following properties: correctness, incompleteness and
uniformity. The last property is often the most difficult to achieve. We propose



implementations where not every function satisfies the property of uniformity
and use fresh randomness instead to do a re-masking. In this section, we recall
the TI properties defined in [19] and describe how circuit complexity can be
traded off for fresh random bits.

2.1 Notation and Definitions

We denote by upper-case characters stochastic variables, and by lower-case char-
acters the values they can take, i.e. elements of a finite field. Let X, taking values
in Fm, denote the input of the (unshared) function f . A masking takes as in-
puts a value x and some auxiliary values (random masks), and outputs a vector
(x1, . . . , xsx) such that the XOR-sum of the sx shares equals x. For all values x
with Pr(X = x) > 0, let Sh(x) denote the set of valid share vectors (x1, . . . , xsx)
for x:

Sh(x) = {(x1, . . . , xsx) ∈ Fmsx |x1 + · · ·+ xsx = x} .

Pr((X1, . . . , Xsx) = (x1, . . . , xsx)|X = x) denotes the probability that (X1, . . . , Xsx) =
(x1, . . . , xsx) when the input of the masking equals x, taken over all auxiliary
inputs of the masking. Similarly, we denote the output of the unshared function
by Y , taking values in Fn, (y1, . . . , ysy ) and Sh(y). Let F denote the vector func-
tion with input (X1, . . . , Xsx) and output (Y1, . . . , Ysy ); we will call it a sharing.
TIs, like most other masking schemes, require that the masking is uniform, in
the sense of the following definition.

Definition 1 (Uniform masking). A masking is uniform if and only if for

all x we have:

Pr((X1, . . . , Xsx) = (x1, . . . , xsx)|X = x) = |F|−m(sx−1)

if (x1, . . . , xsx) ∈ Sh(x), else it is 0.

In words, we call a masking uniform if for each value x of the variable X, the
corresponding vectors with masked values occur with the same probability.

Threshold implementations use sharings that satisfy the following properties.
Firstly, the sharing F of f needs to be correct :

∀y ∈ Fn, ∀(x1, . . . , xsx) ∈ Sh(x), ∀(y1, . . . , ysy ) ∈ Sh(y) :

F (x1, . . . , xsx) = (y1, . . . , ysy ) ⇔ f(x) = y.

Secondly, the sharing needs to be incomplete: every component function of F that
outputs Yi should be independent of at least one share Xi. The third property
is uniformity of the sharing [19]. Although the main point of this section is that
also sharings which do not satisfy the third property can be used in threshold
implementations, we provide the definition already now.

Definition 2 (Uniform sharing). The sharing F of f is uniform if and only

if

∀y ∈ Fn, ∀(y1, . . . , ysy ) ∈ Sh(y), ∀x ∈ Fm with f(x) = y :

∣
∣
{
(x1, . . . , xsx) ∈ Sh(x)|F (x1, . . . , xsx) = (y1, . . . , ysy )

}∣
∣ =

|F|m(sx−1)

|F|n(sy−1)
.



If sx = sy and m = n, this simplifies to:

∀y ∈ Fn, ∀(y1, y2, . . . , ysy ) ∈ Sh(y)∀x ∈ Fn with f(x) = y :
∣
∣
{
(x1, x2, . . . , xsx) ∈ Sh(x)|F (x1, x2, . . . , xsx) = (y1, y2, . . . , ysy )

}∣
∣ = 1 .

It follows that in this case a uniform sharing F is invertible if and only if f is
invertible.

2.2 Security from Correctness and Incompleteness

The security of threshold implementations against first-order side-channel at-
tacks follows from two intuitively easy steps. If the masking is uniform and the
sharing F is incomplete, then

1. any single component function of F does not get the information to deter-
mine the value of X (it does not know x), hence cannot leak any information
on X, and

2. the expected value (average) of any leakage signal of an implementation of
the sharing F , be it instantaneous or summed over an arbitrary period of
time, is constant.

Note that the only assumption on the physical behavior of the hardware or
software implementation of F that is needed for this reasoning, is that it should
be possible to implement the component functions in such a way that they
are each independent of one share Xi. In other words, the cross-talk between
implementations of different components should be negligible.

2.3 Uniformity for the Cascaded and Parallel Functions

If the threshold implementation technique is used to protect cascaded functions,
then extra measures need to be taken, such that the input for the next non-
linear operation is again a uniform masking. A similar situation occurs when the
threshold implementation technique is used to protect several functional blocks
acting in parallel on (partially) dependent inputs. This occurs for example in
implementations of the AES S-box using the tower field approach. If no special
care is taken, then “local uniformity” of the distributions of the inputs of the
individual blocks will not lead to “global uniformity”, i.e. for the joint distribu-
tions of the inputs of all blocks. For example, let g and h be two functions acting
on the same input X. Then, even if G and H are uniform sharings, producing
uniform Y = G(X) and Y ′ = H(X), this does not imply that (Y, Y ′) is uniform.
If each of the parallel blocks satisfies the properties of correctness and incom-
pleteness, there will be no leakage of signals within the parallel blocks. However,
the lack of uniformity in the joint distribution of the masking of the outputs
can lead to information leakage if the outputs are combined as inputs to a next
function.

We can take different types of actions to remedy this problem. The first

approach is to require uniformity of the sharing F (Definition 2). We can show



that if the sharing is uniform and the masking of its input is uniform, then also
the masking of its output is uniform.

Theorem 1. If the masking of X is uniform and the sharing F is uniform, then

the masking of Y = f(X), defined by (y1, . . . , ysy ) = F (x1, . . . , xsx), is uniform.

The proof is omitted here to save space. Practice shows that adding the unifor-
mity requirement to a sharing tends to blow up the mathematical complexity of
the sharing, as well as the cost of its implementation. In some applications, it
might be better to consider a second approach: re-masking as for example done
by Moradi et al. [18]. Indeed, by adding new random masks to the shares, we
can make the distribution uniform.

2.4 Reducing the Randomness Used in a Re-masking Step

The following theorem allows to reduce the amount of random bits used by re-
masking steps of threshold implementations: under certain circumstances, only
a fraction of the shares needs to be re-masked.

Theorem 2. Let (X1, . . . , Xs) be a sharing of a variable X ∈ Fm, where Pr(X1 =
x1, . . . , Xt = xt) = |F|−tm, ∀(x1, . . . , xt) for some t with 1 ≤ t ≤ s. Then the

sharing (Y1, . . . , Ys), defined by Yi = Xi for 1 ≤ i ≤ t and Yi = Xi + Ri

for t < i ≤ s, is a uniform sharing for X, i.e.: Pr(Y1 = y1, . . . , Ys = ys|X =
y1+· · · ys) = |F|(1−s)m, provided that the Ri, i = t+1, . . . , s−1 are independently

and uniformly distributed random variables and that Rs = −(Rt+1+ · · ·+Rs−1).

Proof. We give here a sketch of the proof. We have:

Pr(Y1 = y1, . . . , Ys = ys|X = y1 + · · · ys)

= Pr(Y1 = y1, . . . , Yt = yt|X = y1 + · · · ys) (1)

·Pr(Yt+1 = yt+1, . . . , Ys = ys|X = y1 + · · · ys, Y1 = y1, . . . , Yt = yt) .

Since Yi = Xi for 1 ≤ i ≤ t, the first factor equals |F|−tm. For the second factor
we recall the definition of Yt+1 to obtain that:

Pr(Yt+1 = yt+1) =
∑

xt+1

Pr(Xt+1 = xt+1) Pr(Rt+1 = yt+1 − xt+1)
︸ ︷︷ ︸

|F|−m

.

The same holds for Yt+2, . . . , Ys−1 and since the Ri have independent distribu-
tions, we can equate the second factor of (1) to:

|F|(1−s−t)m
∑

xt+1,...,xs−1

Pr (Xt+1 = xt+1, . . . , Xs−1 = xs−1, Ys = ys|

X = y1 + · · ·+ ys, X1 = x1, . . . , Xt = xt) .

Recalling the definition of Ys completes the proof. ⊓⊔

Note that generating the extra randomness required by the re-masking approach
may become a bigger challenge in some cases than the blow-up in gate count
caused by the uniform sharing approach.



Conclusion. Assume that we have an input that is uniformly masked. Sec-
tion 2.2 explains that single circuits are secure against first-order side-channel
attacks, if they satisfy the incompleteness property. Section 2.3 explains that
for cascaded circuits we need to ensure that the inputs of all circuits are uni-
formly masked. This can be done either by using uniform sharings (Def. 2) or
by re-masking. The point that we want to stress here, however is that we do not
need to do both: an implementation that uses re-masking, does not need uniform
sharings in order to resist first-order attacks.

By relinquishing the uniformity requirement, it is often possible to reduce
the number of shares and the size of the implementation. This will be used in
the next section in order to reduce the number of shares in the subblocks of the
AES S-box and improve on the implementation of [18].

3 Implementation

In this section, we will discuss the new TI of AES in detail. We will first describe
the general data flow of our implementation. Then we will introduce a new ap-
proach to apply the TI to the S-box of AES which is the only non-linear layer
of the block cipher. We used ModelSim to verify the functionality of the pro-
posed design and Synopsys Design Vision D-201-.03-SP4 with Faraday Standard
Cell Library FSA0A C Generic Core, which is based on UMC 0.18µm GenericII
Logic Process with 1.8V voltage, for synthesis. We will conclude this section
by providing the performance of our design together with the comparison with
the previous work in [18]. We should note that the work in [18] uses a similar
standard cell library based on UMC 0.18µm logic process with 1.8V voltage.

3.1 General Data Flow

Our main goal for this implementation is to minimize the area and randomness
overhead caused by the sharing. To achieve this, we use a serial implementation
as proposed in [18] which requires only one S-box instance and loads the plaintext
and key byte-wise in row-wise order. Moreover, we adapt the number of shares
used in each operation in the block cipher. That is, we use two shares which is the
minimum number of shares possible for the affine operations such as MixColumns
or Key XOR and increase or decrease the number of shares when required for
the non-linear layer. This can also be seen in Fig. 1, as the key and the state
registers are 256 bits implying the two shares. With this approach we already
decrease a significant part of the register cost since one bit register costs 5.33
GE in our library.

The TI of the S-box, for which the details will be given in the following
section, requires four input shares and 20 bits of randomness and outputs three
shares. Therefore our initial sharing for the plaintext is also with four shares.
However, it is enough to initialize the sharing of the key with two shares. More
details about the key scheduling will be given later in this section. The two
shares of the key are XORed with two of the plaintext shares before the S-box



Fig. 1: Architecture of the serialized TI of AES-128 .

operation. After three clock cycles the first output share of the S-box operation
is written to the register P3 whereas the remaining two shares are written to the
state register S33. The data in P3 is XORed with the second share of the S-box
output, in the state register S33, after one clock cycle to be able to continue with
two shares for the linear operations. In the following AES rounds, we increase
the number of shares from two to four by using 24 bits of randomness one clock
cycle before the S-box operation. We store the additional two shares in P0 to
achieve the non-completeness property in the following combinational logic. The
registers P0 and P3 are used both for the round transformations and the key
scheduling.

State Array (Fig. 2a) The state array consists of sixteen 16-bit registers
each corresponding to the two shares of a byte in the state. From the first
to the sixteenth clock cycle, the four input shares (first round) or the shares
in the registers S00 and P0 (later rounds) are sent to the S-box module. The
corresponding three output shares are written to the registers S33 and P3. The
signal sig2 is active from the fourth to the nineteenth clock cycle to reduce the
number of shares from three to two in the state such that one of the shares in
S33 is XORed with P3 and the other share stays the same. The state is shifted
to the left horizontally from the third to the eighteenth clock cycle. The Shift
Rows operation is also completed in the nineteenth clock cycle with an irregular
horizontal shift. In the next four clock-cycles, the data in the registers S00, S10,
S20 and S30 are sent to MixColumns operation, the rest of the registers are
shifted to the left horizontally and the output of the MixColumns operation is
written to the registers S03, S13, S23 and S33. The MixColumns operation is
implemented column-wise as in [18] and with two shares working in parallel.
The registers except S10, S11 and S12 are implemented as scan flip-flops (SFF)
that are D-flip-flops (DFF) combined with 2-to-1 MUXes and can operate with
two inputs to reduce the area since a single 2-to-1 MUX costs 3.33 GE in our
library whereas one bit SFF costs 6.33 GE. One round of AES takes 23 clock
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Fig. 2: Architecture of the registers where Si, Ki and P0 hold two shares and P3

holds one share. The registers P0 and P3 are shared by the state and the key
array. The XOR of the value in P3 and S33 (resp. K30) is on one share of the
value in register S33 (resp. K30) whereas all the other combinational operations
are on two shares.

cycles. The signal sig1 is active for sixteen clock cycles, starting from the last
clock-cycle of each round, to increase the number of shares from two to four.

Key Array (Fig. 2b) Similar to the state array, the key array also consists
of sixteen 16-bit registers implemented as SFFs each corresponding to the two
shares of a byte in the key schedule. The round key is inserted from the register
K33 in the first sixteen clock cycles of each round. For the next three clock cycles,
the registers except K03, K13, K23 and K33 are not clocked. The registers K03,
K23 and K33 are also not clocked in the seventeenth clock cycle. In that clock
cycle, we increase the number of shares in the register K13. In the following three
clock cycles this re-sharing is done during the vertical shift from the register K23

to K13. Hence the re-sharing signal sig4 is active from the seventeenth to the
twentieth clock cycle. Signal sig5 is active from the eighteenth to the twenty-first
clock cycle to reduce the number of shares back to two. The registers K03, K13,
K23 and K33 are not clocked in the remaining two clock cycles of each round. We
choose this way of irregular clocking to avoid using extra MUXes in our design.
Two shares of the S-box output are XORed to the data in K00 in the last four
clock cycles of each round. In the twentieth clock cycle the round counter rcon
is additionally XORed to one of these shares. The number of shares is reduced
back to two by XORing the share in P3 to one of the shares in K30. Signal sig3
is active in the first sixteen clock cycles except the fourth, eighth, twelfth and
sixteenth clock cycles. The roundkey is taken from the register K00 to be XORed
with the corresponding plaintext before going to the S-box operation.



3.2 TI of the AES S-box

The S-box (Fig. 3) is instantiated only once to be used by both the key schedule
and the state update. In the first sixteen clock cycles, it gets its inputs from
the state. The input is taken from the key array in clock cycles eighteen to
twenty-one.
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Fig. 3: The Sbox of our implementation.

The S-box implementation in [18] uses the tower field approach up to GF (22)
for a smaller implementation. Therefore, the only non-linear operation is GF (22)
multiplication which must be followed by registers to avoid first order leakages.

We also chose to use the tower field approach, however, we decided to go to
GF (24) instead of GF (22). With this approach, the GF (24) inverter can be seen
as a four bit permutation and the GF (24) multiplier as a four bit multiplication
both of which are well studied in [6]. Therefore, we can find uniform TIs for
these non-linear blocks individually which implies using less fresh random bits
during the combination of these uniformly implemented pieces. Moreover, with
this approach the S-box calculation takes three clock cycles instead of five.

The algebraic normal form of the multiplier in GF (24) is given in Ap-
pendix A.1. This multiplication can be shared uniformly as in Appendix A.3
with four input and three output shares. The required area is 625 GE without
any optimization.

The GF (24) inverter, on the other hand, can be represented with the formula
in Appendix A.2. To have a uniform sharing for this function, which belongs to
class C4

282 [5], we consider two options. Either using four shares which is the
minimum number of shares necessary for a uniform implementation in that class
and decomposing the function into three uniform sub-functions as Inv(x) =
F (G(H(x))), or using five shares without any decomposition. Our experiments
show that both versions have similar area requirements but a different number of
clock cycles. To reduce the number of cycles, we chose the version with five shares,
with the formula in Appendix A.4, which requires 618 GE. The sharing for this
module is found by using the method described in [20] which is slightly different
from the direct sharing [5]. We chose this formula since it can be implemented
with less logic gates in hardware compared to the direct sharing.

Even though it is enough to use only two shares for linear operations, we
sometimes chose to work on more than two shares to avoid the need for extra



random bits. The linear map of the tower-field S-box operates on four shares
since the multiplication needs four input shares. The inverter requires five input
shares and the multiplication outputs only three shares, therefore we use two
shares for the square scalar to have five shares in the beginning of the second
phase. We use three shares for the inverse linear map of the tower-field S-box
since the multiplication outputs three shares.

Combining the sub-blocks. During this process we face two challenges. One
is to keep the uniformity in the pipeline registers as the sub-blocks are combined.
That is a challenge Moradi et al. also faced and solved with re-masking. We also
apply re-masking in the second phase where we combine the 2 output shares
of the square scaler and the 3 output shares of the multiplier to 5 shares. We
must note that this combination also acts as the XOR of the output of the square
scaler and multiplier in the unshared case. By theorem 2, it is enough to re-mask
only the output shares from one function to achieve uniformity. We choose to
re-mask the output of the square scaler since it operates on less shares hence
requires less random bits. The correction mask, i.e. the XOR of the masks, is
XORed to one of the output shares of the multiplier to achieve correctness and
non-completeness.

The second challenge is to keep the uniformity as we increase or decrease
the number of shares. This is achieved by introducing new masks before the
S-box operation to increase from two to four shares and at the end of the second
phase to decrease from five to four shares. The output of the third phase is not
uniform when the three shares are considered together. However, we verified by
simulation that each share individually is uniform which implies that there is
no first-order leakage in the following register. We combine the first two shares
with an XOR and keep the third share as it is to go back to two shares. We also
verified that, when we decrease the number of shares to two, the output shares
are uniform.

We always keep the XOR of the masks in the pipeline registers and complete
the re-masking in the next clock cycle as in [18]. Overall, we need 44 fresh random
bits per S-box operation which is less than what was required in [18].

3.3 Performance

Like other countermeasures TIs require extra area and randomness. In this work
we minimize these needs for a more efficient implementation. In Table 1, we
show the area, randomness and timing requirements of our implementation and
compare them with [18]. The area cost for the state and the key arrays include
the ANDs and XORs that are in Fig. 2. An expected observation is that the
cost of the state and key array together with the MixColumns is reduced by
one third compared to [18] since we use two shares instead of three. The area
cost of the S-box is the sum of the combinational logic in three phases and the
registers required. For the three phases, we use four linear maps (each 42 GE),
two square scalers (each 9 GE), three multipliers (each 625 GE), one inverter
(618 GE), three inverse linear maps (each 33 GE) and some additional XORs



Table 1: Synthesis results for different versions of AES TI.
State Key

S-box
MixCol

Contr.1
Key

MUX Other Total cycles
rand

Array Array Col XOR bits2

[18] 2529 2526 4244 1120 166 64 376 89 11114/110313 266 48
This paper 1698 1890 3708 770 221 48 746 21 9102 246 44
This paper3 1698 1890 3003 544 221 48 746 21 8171 246 44
1 including round constant 2 per S-box 3 compile ultra

for re-masking. The registers P0 and P3 are also counted in the cost of the S-box
together with the pipelining registers P1 and P2.

In this implementation, the S-box occupies 40% of the total area. When
compared to the previous implementation by Moradi et al., the S-box is 13%
smaller and the overall area is 18% smaller. Moreover it is faster and requires less
randomness. The numbers provided in Table 1 are taken from the Synopsys tool
with compile command. We use these numbers for a fair quantitative comparison.
On the other hand, it is also possible to compile each function that is provided
in Appendix A.3 and A.4 individually with the compile ultra command to let
the tool optimize these functions and use the generated optimized descriptions
of these functions. This reduces the cost of TI of AES to 8171 GE. However,
the results for compile ultra mainly reflect how good the tools are at optimizing
and a comparison may not be fair.

4 Power Analysis

To evaluate the security of our design in practice we implement it on a SASEBO-
G board [1] using Xilinx ISE version 10.1. We use the “keep hierarchy” constraint
to prevent the tools from optimizing over module boundaries (see the last para-
graph of Sect. 2.2). The board features two Xilinx Virtex-II Pro FPGA devices:
we implement the TI AES and a PRNG on the crypto FPGA (xc2vp7) while
the control FPGA (xc2vp30) handles I/O with the measurement PC and other
equipment. The PRNG that generates all random bits is implemented as AES-
128 in CTR mode.

We measure the power consumption of the crypto FPGA during the first 1.5
rounds of TI AES as the voltage drop over a 1Ω resistor in the FPGA core GND
line. The output of the passive probe is sampled with a Tektronix DPO 7254C
digital oscilloscope at 1GS/s sampling rate.

Methodology. We define two main goals for our practical evaluation. First,
we want to verify our implementation’s resistance against first-order attacks.
But in practice adversaries are of course not restricted to applying such attacks.
Therefore, our second goal is to assess the level of security our implementation
provides against other, e.g. higher-order, power analysis attacks.

Since there is no single, all-embracing test to evaluate the security of an
implementation, we follow the approach of [18] and test its resistance against
state-of-the-art attacks. We narrow the evaluation to univariate attacks because
our implementation processes all shares of a value in parallel. Estimating the



information-theoretic metric by Standaert et al. [25] is out of reach. It would
require estimation of up to 256 Gaussian templates.

We make several choices that are in favor of an adversary and make attacks
easier. First, to minimize algorithmic noise the PRNG and the TI AES do not
operate in parallel, i.e. the PRNG generates and stores a sufficient number of
random bits before each TI AES operation. In practice, running them in parallel
will increase the level of noise and thus the number of measurements needed for
an attack to succeed. Second, we provide the crypto FPGA with a stable 3MHz
clock frequency to ensure that the traces are well aligned and the power peaks
of adjacent clock cycles do not overlap (this would also help to assign a possibly
identified leak to a specific clock cycle). In practice, clocking the device at a
faster or unstable clock will make attacks harder. Note that the “combining ef-
fect” of the measurement setup or a faster clock described in [16] does not apply
to our situation. In our implementation all shares are processed and leak at the
same time, in contrast to the implementation analyzed in [16] where all shares
are processed and leak separated in time. Hence we expect the effect to not ease
an attack. Third, we let the adversary know the implementation. Specifically, if
the PRNG was switched off the adversary would be able to correctly compute
bit values and bit flips under the correct key hypothesis. In practice, obscu-
rity is often used as an additional layer of security. Fourth, we use synchronous
sampling [13] to avoid clock drift and achieve the best possible alignment. In
practice, secure devices use an internal (and unstable) clock source which pre-
vents synchronous sampling and increases the number of measurements needed
for an attack to succeed.

PRNG switched off. To confirm that our setup works correctly and to get
some reference values we first attack the implementation with the PRNG switched
off. We expect that the implementation can be broken with many first-order at-
tacks. As example, Fig. 4 shows the result of a correlation DPA attack [7] that
uses the Hamming distance of two consecutive S-box outputs as power model.
The attacks require 2 · 28 key hypotheses. To reduce the computational com-
plexity we let the adversary know one key byte and aim to recover the second
one.

Since the adversary knows the implementation, he can choose to compute the
Hamming distance over three 8-bit registers (S33 and P3; output of the S-box in
three shares), two 8-bit registers (S32; one cycle later; two shares) or ignore the
details and compute the distance over a single 8-bit register as if it was a plain
implementation. The results for all three options are identical. This is a property
of our implementation that vanishes when the PRNG is switched on. Only a few
hundred traces are required to recover the key with one of these attacks. It is
worth noticing that the highest correlation peak does not occur at the S-box
output registers, but three resp. two clock cycles later when the bit-flips occur
in register S30. This register drives the MixColumns logic and therefore has a
much greater fanout.

Fig. 5 shows the result of a correlation collision attack [17] that targets com-
binational logic. The attack computes two sets of mean traces for the values of



Fig. 4: Results of DPA attacks using HD model over 3/2/1 registers with PRNG
off; left: correlation traces for all key hypotheses computed using 50 000 power
traces, correct hypothesis in black, and a scaled power trace; right: max. corre-
lation coefficient per key hypothesis (from the overall time span) over number
of traces used.

two processed plaintext bytes and shifts the mean traces in the time domain to
align them. It aims to recover the linear difference between the two key bytes
involved. To do so, it permutes one set of mean traces according to a hypothesis
on the linear difference and then correlates both sets of mean traces. The result
shows that this attack is successful with a few thousand measurements.

Fig. 5: Result of a correlation collision attack with PRNG off; left: correlation
traces for all hypotheses on the linear difference computed using 50 000 power
traces, correct hypothesis in black, and a scaled power trace; right: max. corre-
lation coefficient per hypothesis on the linear difference (from the overall time
span) over number of traces used.

PRNG switched on. Next we repeat the evaluation with the PRNG switched
on, i.e. the TI AES uses unknown and unpredictable random bits. However,
for the DPA attacks using the Hamming distance over two or three registers as
power model we again suppose these bits were zero. Fig. 6 shows the results
of the first-order attacks against the protected implementation using 10 million
measurements. The results show that the attacks fail.

We proceed with higher-order attacks to assess the level of security our im-
plementation provides. For our second-order DPA attacks we use the same power
models as before but center and then square the traces (for each time sample)



Fig. 6: Results of first-order DPA and correlation collision attacks with PRNG
on computed using 10 million traces; top, left: HD over 1 register; top, right:
HD over 2 registers; bottom, left: HD over 3 registers; bottom, right: correlation
collision.

before correlating [8,23,26]. Second-order correlation collision attacks work as
above with mean traces replaced by variance traces [15].

Fig. 7 (top) shows the results of the second-order DPA attack that uses the
Hamming distance in a single register as power model (as if it was a plain imple-
mentation). The attack requires about 600 000 traces to succeed. We note that
the highest correlation peak occurs again when the bitflips happen in register
S30, cf. Fig. 4. Second-order DPA attacks using the Hamming distance over two
resp. three registers as power model failed to recover the key.

Fig. 7 (bottom) shows the results of the second-order correlation collision
attack. The attack requires about 3.5 million traces to succeed. A third-order
correlation collision attack works as above with mean traces replaced by skewness
traces [15]. This attack fails using 10 million measurements.

Discussion. The first goal of our evaluation is to verify our implementation’s
resistance against first-order attacks. But this goal is always limited by the num-
ber of measurements at hand. It is simply not possible to demonstrate resistance
against attacks with an infinite number of traces. We have shown that our im-
plementation resists state-of-the-art first-order attacks with 10 million traces in
conditions that are strongly in favor of the adversary (no algorithmic noise from
the PRNG, knowledge of the implementation, slow and stable clock, best pos-
sible alignment). Given the theoretical foundations of TI and the correctness of
our implementation, we are convinced that our implementation resists first-order



Fig. 7: Results of second-order DPA (top) and correlation collision (bottom)
attacks with PRNG on computed using 10 million traces; right: min./max. cor-
relation coefficient per hypothesis (from the overall time span) over number of
traces used.

attacks with any number of measurements, but we have no way to demonstrate
that.

The second goal of our evaluation is to assess the level of security our imple-
mentation provides against other attacks. In the same adversary-friendly con-
ditions, the most trace-efficient second-order attack in our evaluation requires
about 600 000 traces. Recall that our evaluation focuses on univariate attacks,
so that the computational overhead is limited to estimating second-order mo-
ments and does not involve the notoriously more costly search over pairs of
points in time. However, regarding second-order attacks it is well known that
the number of traces required for an attack to succeed scales quadratically in
the noise standard deviation [8,22]. Therefore, second-order attacks against our
implementation in less favorable and more realistic, i.e. much more noisy, condi-
tions (algorithmic noise from the PRNG, no knowledge of the implementation,
faster and unstable clock, worse alignment) will require many more traces.

It is tempting to compare the results of our evaluation to the results of the
evaluation in [18]. However, not only the implementations but also the measure-
ment platforms and the conditions differ, so that any difference must not be
credited to an implementation alone. Already the numbers of traces required for
attacks against the implementations with PRNG switched off differ by roughly
two orders of magnitude. In addition, the analysis in [18] is limited to four clock
cycles during the S-box computation.
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A Equations

A.1 Multiplier in GF (24)

(f1, f2, f3, f4) = (x1, x2, x3, x4)× (x5, x6, x7, x8)

f1 = x1x5 ⊕ x3x5 ⊕ x4x5 ⊕ x2x6 ⊕ x3x6 ⊕ x1x7 ⊕ x2x7 ⊕ x3x7 ⊕ x4x7 ⊕ x1x8 ⊕ x3x8

f2 = x2x5 ⊕ x3x5 ⊕ x1x6 ⊕ x2x6 ⊕ x4x6 ⊕ x1x7 ⊕ x3x7 ⊕ x2x8 ⊕ x4x8

f3 = x1x5 ⊕ x2x5 ⊕ x3x5 ⊕ x4x5 ⊕ x1x6 ⊕ x3x6 ⊕ x1x7 ⊕ x2x7 ⊕ x3x7 ⊕ x1x8 ⊕ x4x8

f4 = x1x5 ⊕ x3x5 ⊕ x2x6 ⊕ x4x6 ⊕ x1x7 ⊕ x4x7 ⊕ x2x8 ⊕ x3x8 ⊕ x4x8



A.2 Inverter in GF (24)

(f1, f2, f3, f4) = Inv(x1, x2, x3, x4)

f1 = x3 ⊕ x4 ⊕ x1x3 ⊕ x2x3 ⊕ x2x3x4

f2 = x4 ⊕ x1x3 ⊕ x2x3 ⊕ x2x4 ⊕ x1x3x4

f3 = x1 ⊕ x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x2x4

f4 = x2 ⊕ x1x3 ⊕ x1x4 ⊕ x2x4 ⊕ x1x2x3

A.3 Sharing Multiplier in GF (24) with 4 Input 3 Output Shares

f = xy, where

f = f1 ⊕ f2 ⊕ f3

x = x1 ⊕ x2 ⊕ x3 ⊕ x4

y = y1 ⊕ y2 ⊕ y3 ⊕ y4

f1 = (x2 ⊕ x3 ⊕ x4)(y2 ⊕ y3)⊕ y4

f2 = ((x1 ⊕ x3)(y1 ⊕ y4))⊕ x1y3 ⊕ x4

f3 = ((x2 ⊕ x4)(y1 ⊕ y4))⊕ x1y2 ⊕ x4 ⊕ y4

A.4 Sharing Inverter in GF (24) with 5 Input 5 Output Shares

f = xyz ⊕ xy ⊕ z, where

f = f1 ⊕ f2 ⊕ f3 ⊕ f4

x = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5

y = y1 ⊕ y2 ⊕ y3 ⊕ y4 ⊕ y5

z = z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z5

f1 = ((x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5)(z2 ⊕ z3 ⊕ z4 ⊕ z5))

⊕ ((x2 ⊕ x3 ⊕ x4 ⊕ x5)(y2 ⊕ y3 ⊕ y4 ⊕ y5))⊕ z2

f2 = (x1(y3 ⊕ y4 ⊕ y5)(z3 ⊕ z4 ⊕ z5)⊕ y1(x3 ⊕ x4 ⊕ x5)(z3 ⊕ z4 ⊕ z5)

⊕ z1(x3 ⊕ x4 ⊕ x5)(y3 ⊕ y4 ⊕ y5)⊕ x1y1(z3 ⊕ z4 ⊕ z5)⊕ x1z1(y3 ⊕ y4 ⊕ y5)

⊕ y1z1(x3 ⊕ x4 ⊕ x5)⊕ x1y1z1)⊕ (x1(y3 ⊕ y4 ⊕ y5)⊕ y1(x3 ⊕ x4 ⊕ x5)⊕ x1y1)⊕ z3

f3 = (x1y1z2 ⊕ x1y2z1 ⊕ x2y1x1 ⊕ x1y2z2 ⊕ x2y1z2 ⊕ x2y2z1 ⊕ x1y2z4 ⊕ x2y1z4 ⊕ x1y4z2

⊕ x2y4z1 ⊕ x4y1z2 ⊕ x4y2z1 ⊕ x1y2z5 ⊕ x2y1z5 ⊕ x1y5z2 ⊕ x2y5z1 ⊕ x5y1z2 ⊕ x5y2z1)

⊕ (x1y2 ⊕ y1x2)⊕ z4

f4 = (x1y2z3 ⊕ x1y3z2 ⊕ x2y1z3 ⊕ x2y3z1 ⊕ x3y1z2 ⊕ x3y2z1)⊕ 0⊕ z5

f5 = 0⊕ 0⊕ z1




