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Abstract  

We have proposed a chaotic cryptographic scheme based on iterating the 

logistic map and updating the look-up table dynamically. However, it has been 

broken recently. In this paper, the weaknesses of the original dynamic look-up table 

scheme are analyzed and a more secure chaotic encryption scheme based on this 

dynamic look-up table concept is proposed. Theoretical analysis indicates that the 

modified scheme can resist the reported attacks. Moreover, simulation results show 

that this encryption scheme leads to a flat ciphertext distribution. 

 

PACS Codes: 05.45.+b  

Keywords: Chaos, Cryptography, Logistic map.  

                                                           
1 Citation information: Kwok-wo Wong, Kwan-Pok Man, Shujun Li and Xiaofeng Liao, “A More Secure 

Chaotic Cryptographic Scheme based on Dynamic Look-up Table,” Circuits, Systems & Signal Processing, vol. 

24, no. 5, pp. 571-584, Birkhäuser Boston Inc., 2005 

mailto:itkwwong@cityu.edu.hk
http://dx.doi.org/10.1007/s00034-005-2408-5
http://dx.doi.org/10.1007/s00034-005-2408-5
http://www.springer.com/journal/00034


 2 

I.   Introduction 

 

The growing of research interest in chaos and cryptography has resulted in a 

number of digital chaotic cryptographic approaches that realize private key 

cryptography with chaos [1,5,12]. Among those chaotic cryptographic schemes, the 

one proposed by Baptista [5] has attracted much interest. Since its publication in 

1998, a number of variants [6-7, 9-11, 13-15] have been suggested. The concept of 

this type of chaotic cryptosystem is very simple. The interval of interest in the phase 

space of the chaotic map is divided into a number of partitions equal to the total 

number of possible plaintext blocks. Each plaintext block is encrypted as the number 

of iterations applied in the chaotic map in order to reach the partition correspondent 

to that block [5]. The resultant ciphertexts are integers and are suitable to be 

transmitted through public data communication networks.  

There are two major drawbacks with Baptista’s approach. Firstly, the 

ciphertexts usually concentrate at small number of iterations and so their distribution 

is not flat enough to ensure high security. Secondly, the cryptographic scheme is too 

slow to make it suitable for practical use such as the secure transmission of large 

multimedia files through the internet. Finally, the ciphertext size is usually long, at 

least twice that of the original plaintext. To deal with the first drawback, we have 

modified the original method so as to obtain a flatter ciphertext distribution [15]. To 

increase the encryption speed, we have proposed a fast approach using a smaller 

look-up table that is updated dynamically [13]. Moreover, a short ciphertext 

encryption scheme is suggested in [14] to reduce the length of the ciphertext.  

A number of attempts for the cryptanalysis of the original Baptista-type 

chaotic cryptosystem and its variants have been performed [2-4, 8-9]. The first 

attempt was reported in [8]. Only one attack was proposed and it is in partial form. 

In the analysis made in [2], it was found that this type of chaotic cryptosystem 

actually behaves as a stream cipher although it operates like a block cipher that a 

fixed number of plaintext bits are encrypted to an integer number of iterations. 

Based on this observation, a keystream attack was applied to break the cryptosystem 

successfully. A similar attack [3] was used to break the variant for generating flat 

ciphertext distribution [15]. Our modification based on a dynamic look-up table [13] 

has also been broken recently [4]. The objective of this paper is to analyze the 

weaknesses of the original dynamic look-up table scheme and to propose a more 

secure chaotic encryption scheme based on this dynamic look-up table concept. 

 

II.  The Original Dynamic Look-up Table Scheme 

We first review the chaotic cryptographic method proposed in [13], which is 

based on a dynamic look-up table. As in Baptista’s method [5], the chaotic map 

chosen is the simple one-dimensional logistic map governed by the following 

equation. 

xn+1 = bxn(1 - xn),        (1) 

where b is the gain and xn  [0, 1]. An initial look-up table containing the mapping 

of each possible plaintext block to equal-width partitions in the interval [xmin , xmax] 

of the phase space of the logistic map should be set in advance. This initial mapping 

can be in order or at an agreed setting. For the encryption of the i
th

 input block, we 

let the logistic map iterate until the trajectory first falls into the region corresponding 

to the ASCII code of this block. Similar to Baptista’s method, the iteration will 
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continue if the current number of iterations is smaller than a pre-defined minimum 

number of iterations. This prevents cryptanalysis upon the loophole of zero or just a 

few iterations. On the other hand, if the current number of iterations is large enough, 

it is sent immediately as the ciphertext and no random numbers need to be 

generated. This is an advantage to resource-constraint computing environment such 

as smartcard because no additional hardware or software random number generators 

are required. Before encrypting the next message block, we have to update the look-

up table dynamically by exchanging the i
th

 entry ei with another entry ej. In ref. [13], 

the interval v between these two entries is solely determined by the current value of 

x using the following formula.  

N
xx

xx
v *)(

minmax

min




        (2) 

where N is the total number of entries in the table,  xmax is the maximum value of x 

in the chosen phase space region and xmin is the minimum value.  

The interval obtained from Eq. (2) is used to locate the other entry ej to be 

swapped with ei as the value of j is equal to the sum of i and v. This sum may be 

larger than N. In this case, we have to perform a modulus operation so that the index 

increment is in a cyclic manner and the value of j is still within N. As a result, 

j = i + v   mod   N       (3) 

In order to make the look-up tables for consecutive plaintext blocks as unlike 

as possible, just swapping a single pair of entries in the table after the encryption of 

a single plaintext block is no longer enough. An approach for achieving this was 

proposed in [14]. Instead of just swapping one pair of entries in the table, we can 

swap more pairs by making use of the interval, v, between two swapping entries 

obtained from Eq.(2). Starting from the current entry i, we swap the entries at 

locations i and (i+v mod N). Then we continue to swap (p-1) pairs of entries starting 

from the entry next to the one last visited, i.e., (i+v+1 mod N) ↔ (i+2v+1 mod N), 

(i+2v+2 mod N) ↔ (i+3v+2 mod N), …, (i+(p-1)v+p-1 mod N) ↔ (i+pv+p-1 mod 

N), where p is the total number of pairs to be swapped during the encryption of each 

plaintext block. After that, the look-up table updating process is completed and we 

can start the iterations on the logistic map for the next block. Then we perform the 

p-pair swapping in the look-up table again by increment i and calculate a new value 

of interval. Notice that if the index i reaches the bottom of the table, it will start from 

the top again. 

An illustration of this generalized dynamic updating of the look-up table is 

given in Fig. 1. Suppose that the input block size is 8-bit. Therefore N equals to 256 

and there are 256 entries in the table, from e0 to e255. Moreover, xmin and xmax is 

chosen as 0.2 and 0.8, respectively. Suppose that we are now encrypting the 4
th

 8-bit 

input block. The current x value is 0.4355 while the current number of iterations is 

770. By using Eqs. (2) & (3), we obtain v=100+770 mod 256=102 and  j=4+102 

mod 256=106. The entries e4 is swapped with e106. If p is chosen as 3, we have to 

swap two more pairs, i.e., e107 ↔ e209, e210 ↔ e56, as shown in Fig. 1. 

 

III.  Weaknesses of the Original Dynamic Look-up Table Scheme 

There are a number of weaknesses in the dynamic look-up table scheme that 

make it vulnerable to cryptanalysis. As pointed out in [4], although the current 

chaotic state x is involved in Eq. (2) for calculating v, the output value actually 
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depends solely on the plaintext, but not the key. Therefore an attacker can recover 

the keystream used for encryption and so the cryptosystem is broken [4]. Secondly, 

the mapping of the plaintext block with the entries in the look-up table is fixed 

during the encryption of each plaintext block and the table update operation is 

performed only after the completion of the encryption of each plaintext block. 

Moreover, the swapping process starts from the first entry of the look-up table, 

which is fixed for all keys and plaintexts. 

In order to enhance the security of the Baptista-type chaotic cryptosystem 

based on the dynamic look-up table scheme, the following modifications should be 

made.  

1. The update of the look-up table must depend on the current chaotic state x. 

2. The mapping of plaintext should be changed in the course of encrypting a 

plaintext block, but not after the completion of it. 

3. The table update process should be done in the course of encrypting a 

plaintext block, but not after the completion of it. 

4. The table update process should not start strictly from the first table entry, 

but should depend on the key. 

In the next section, we will propose a more secure dynamic look-up table 

chaotic encryption scheme that includes the above modifications. 

 

IV.   The Proposed Scheme 

The plaintext sequence is divided into a number of blocks with size M. The 

total number of partitions in the phase space of the chaotic map is twice the number 

of possible plaintext blocks, i.e., 2
M +1

. If the plaintext sequence is read by bytes, the 

total number of partitions is 512. It is equal to 32 if the plaintext sequence is divided 

into a number of 4-bit blocks. The 2
M +1

 partitions are divided into two groups, half 

of them are marked while the other half are unmarked. This leads to an equal number 

of marked and unmarked partitions and the entropy is the highest, i.e., most difficult 

to guess the location of the marked and unmarked partitions correctly. This look-up 

table is similar to the association map used in [6]. The 2
M

 marked partitions each 

associates uniquely with a possible plaintext block by a one-to-one mapping. The 

initial location of the marked partitions as well as the initial mapping is random and 

should be kept secret. A typical look-up table is shown in Fig. 2(a) while the 

corresponding mapping with the plaintext block can be found in Fig. 2(b).  

 The encryption procedures can start when the initial look-up table has been 

prepared. The first plaintext block is read and the chaotic map starts to iterate using 

the initial condition x0. After each iteration, the value of the current chaotic state x 

will be checked. If it falls in an unmarked partition, this iteration is not considered as 

an effective iteration. Nothing will be modified and the iteration will continue until 

the chaotic orbit lands on a marked partition. Then the iteration is considered as an 

effective one and a counter of the number effective iterations made in the encryption 

of this plaintext block will be incremented. If that marked partition corresponds to 

the current plaintext block, the number of effective iterations made in encrypting this 

plaintext block will be taken as the ciphertext.  

On the other hand, if the marked partition that the chaotic orbit falls in does 

not correspond to the current plaintext block, some modifications on the look-up 

table should be done. However, these modifications should not be performed 

regularly in each landing so as not to favor cryptanalysis. They can be made 

intermittently such as updating the look-up table every three or five times of landing 
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on the marked partitions. This updating can be realized by swapping the marking 

status of the current partition with the next partition with opposite marking status. 

This means that the current partition is changed from marked to unmarked. Then we 

search for an unmarked partition from the next partition and turn it as marked. In 

order to change the look-up table substantially, more pairs of swapping are required. 

From the partition that has just been marked, we search down for the next marked 

partition, make it unmarked and then mark the next unmarked partition. Notice that 

the search and swap operations are performed in a cyclic manner. This means that if 

the end of the look-up table is encountered, it will continue from the top. 

After the mark and unmark processes, the total number of marked partitions in 

the table is still 2
M

 as we always swap pairs of marked and unmarked partitions. 

However, these 2
M

 newly marked partitions may no longer correspond to the original 

ones mapped to the 2
M

 plaintext blocks. Therefore we have to perform a re-map 

operation, starting from the current partition that the chaotic orbit falls in. This means 

that the next marked partition is mapped to the all-zero plaintext block. Then we 

search in the look-up table and map the next marked partition to the plaintext block 

with all-zero but a “1” in least significant bit. This re-map operation continues in a 

cyclic manner until all the newly marked partitions are associated with all the 

possible plaintext blocks uniquely. Note that the re-mapping process can be 

performed in a very quick manner: record all marked partitions in an array 

U[0,…,2
M

-1] and use an index, i, to point to the partition corresponding to “0”. In 

this way, the j-th marked partition corresponds to the plaintext symbol (j-i) mod 2
M

. 

The table update and re-map processes are illustrated by an example. Assume 

that the table shown in Fig. 2(a) is used and the chaotic orbit falls into partition 4. 

Moreover, three pairs of marked and unmarked partitions have to be swapped. This 

means that we have to swap partitions 4 and 5 first. Then we go down and found that 

partition 7 is marked. It is swapped with partition 11. Finally, we swap partitions 14 

and 15. The new look-up table is shown in Fig. 3(a). As the current chaotic orbit 

stays in partition 4, the next marked partition will be mapped to the all-zero plaintext 

block. Similarly, we map the remaining marked partitions with the corresponding 

plaintext block in order to obtain a new association table, as given in Fig. 3(b). 

Under this table update and re-map scheme, the new look-up table depends on 

the current chaotic state x. This is because the start point of the swapping is the 

current partition that the chaotic orbit falls in. The latter is determined by x which is 

obtained by iterating the chaotic map, Eq. (1). The new look-up table will be 

different if the start point of the swapping is changed. This satisfies criterion (1) set 

in Section III. The table update and re-map processes are performed intermittently 

when the current partition that the chaotic orbit lands on is not the target partition. 

These conditions will be encountered a number of times before the chaotic orbit falls 

in the target partition finally, i.e., the completion of encrypting the current plaintext 

block. Therefore criteria (2) and (3) stated in Section III are fulfilled. In the re-map 

operation, the mapping starts from the current partition that the chaotic orbit lands 

on and so the last criterion set in Section III is also satisfied. 

As the ciphertext is the number of effective iterations the chaotic orbit falls in 

before reaching the target partition, the probability of occurrence of small ciphertext 

is much higher than that of large ones. Therefore the ciphertext distribution will 

decrease with its magnitude and will not be flat. To achieve a flat ciphertext 

distribution, we can make use of the masking scheme proposed by Li et al. [9-10]. 

However, here we do not choose to mask the current ciphertext using the 
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information obtained from the encryption of the current plaintext block. This is 

because there may be the chance that two or more combinations of the current 

plaintext and current chaotic state will result in exactly the same ciphertext, as 

analyzed in [10].  Instead we will use the information obtained from encrypting the 

previous plaintext block.  

As described before, the updating of the look-up table will be performed 

intermittently when the chaotic orbit falls in marked partitions. For the iterations that 

the chaotic orbit falls in marked partitions but the look-up table is not updated, we 

can perform a bit-wise XOR operation of the index of the current partition 

accumulatively so as to store the partial history of the chaotic orbit. The resultant 

(M+1)-bit accumulated XOR value will be used to mask the next ciphertext. For the 

first ciphertext block, there is no such previous partial history and we can use a 

random (M+1)-bit sequence, i.e., an initial vector, instead. 

The ciphertext is the number of effective iterations the chaotic orbit falls in 

before reaching the target partition. It could be a number much longer than (M+1)-

bit. In such case, we have to divide the ciphertext into a number of (M+1)-bit block 

before masking with the (M+1)-bit last accumulative partial chaotic history. For 

example, if M is chosen as 4 but the current number of effective iterations is 62, 

there will be three 5-bit ciphertext blocks (31, 31, 0). Each block is masked with the 

5-bit last accumulative partial chaotic history before sending out as the final 

ciphertext. The receiver should possess the exact knowledge of the last accumulative 

partial chaotic history before he/she can recover the correct number of effective 

iterations for decryption. As a result, this masking scheme not only leads to a flat 

ciphertext distribution, but also further enhances the security. 

A block diagram of the whole encryption process is shown in Fig. 4. The 

decryption process requires nearly the same operations as in encryption such as 

iterating the chaotic map, update and re-map the look-up table intermittently. 

However, unmask of the ciphertext blocks should be done at the beginning each 

decryption so as to obtain the number of effective iterations required in finding the 

current plaintext block. Moreover, instead of checking whether the landed partition 

corresponds to the target one, the checking in the decryption process is whether the 

number of effective iterations has been reached. If this is the case, the decrypted 

plaintext is the one associated with the final partition the chaotic orbit lands on.  

 

V.   Simulation Results  

In order to test the effectiveness and the efficiency of the chaotic 

cryptographic scheme described in Section IV, it is employed to encrypt and decrypt 

the following four types of source files. 

File 1: audio (.mp3) file of size 98,304 bytes, 

File 2: Word document (.doc) file of size 210,944 bytes, 

File 3: executable (.exe) file of size 487,000 bytes, 

File 4: video clip (.avi) file of size 1,087,430 bytes. 
 

The encryption and decryption processes are implemented using C++ 

programming language running on a personal computer with a Pentium IV 2GHz 

processor and 512MB RAM. The value of M is 4. This means that the plaintext file 

is read in blocks of length 4 bits. As a result, there are a total of 32 partitions in the 

look-up table and each ciphertext block is a 5-bit sequence. The value of b in Eq. (1) 

is selected as 3.9999995 while x0 is chosen arbitrarily as 0.1777. The range of 
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interest in the phase space is from 0 to 1, which is wider than the range from 0.2 to 

0.8, as used in most Baptista-type cryptosystem. This choice increases the 

encryption speed but will not affect the distribution of ciphertext as the mapping is 

changed dynamically. The look-up table is updated every three times when the 

chaotic orbit falls in a marked partition. The initial mask is a 5-bit random sequence.  

In Table 1, the encryption time, decryption time, number of iterations, length 

of ciphertext and other statistics obtained from ten sets of randomly-generated initial 

look-up tables are measured and listed in max-mean-min format,. The total number 

of iterations means the number of times the chaotic map is iterated for one byte (8 

bits) of plaintext. The number of effective iterations refers to the number of times 

the chaotic orbit falls into a marked partition during the encryption of one byte of 

plaintext. 

All the encrypted files are decrypted successfully. As nearly the same 

operations are performed at both the transmission and the receiving sides, the 

encryption and decryption processes require approximately the same amount of 

time. However, the decryption time is usually a little bit shorter. This is because 

looking up in the association map is required in the encryption process while the 

corresponding operation in the decryption process is just a check of whether the total 

number of effective iterations is reached the desired one. The last row of Table 1 

indicates that the ciphertext length is usually about 1.5 times that of the plaintext. 

This is shorter than the double-sized ciphertext obtained in most of the Baptista-type 

chaotic cryptosystems [5, 13, 15].  

 Theoretical analysis shows that the ciphertext depends substantially on the 

initial look-up table. This is verified here by plotting, in Fig. 5, the values of the 

plaintext (the graph marked by *) and two corresponding ciphertext sequences (the 

graphs marked by + and o), both with very close look-up tables except that a pair of 

marked and unmarked partitions are swapped. The graph shows that the resultant 

ciphertexts are totally different. Moreover, at positions 8 to 19, the plaintext value is 

zero but the corresponding ciphertext still appears randomly. 

In order to analyze the distribution of the ciphertext, we have recorded the 

number of occurrences of each ciphertext block for the four input files using fixed b 

and x0 but random initial look-up tables. The ciphertext distribution is plotted in Fig. 

6, which shows that the distribution is very flat due to the masking operation.  

 

 

VI.   Conclusion 

In summary, we have modified the original dynamic look-up table scheme 

[13-14] so as to make the updating of look-up table depend on the current chaotic 

state which in turn is determined by the key. It is believed that the modified scheme 

is more secure and can resist the attacks described in [4]. Moreover, simulation 

results show that this encryption scheme leads to a flat ciphertext distribution.  
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 File 1 (.mp3) 
98,304 bytes 

File 2  (.doc) 
210,944 bytes 

File 3 (.exe) 
487,000 bytes 

File 4 (.avi) 
1,087,430 bytes 

Encryption Time 

(sec)  
0.4 - 0.4 - 0.4 1.2 – 0.9 – 0.8 2.0 – 2.0 – 2.0 4.7 – 4.4 – 4.3 

Decryption Time 

(sec) 
0.4 - 0.4 – 0.4 1.1 – 0.9 - 0.8 2.0 – 2.0 – 1.9 4.3 – 4.3 – 4.2 

Total Number of 

Iterations 

539 -74 - 2 661 – 70 - 2 682 – 74 - 2 681 – 72 - 2 

Number of 

Effective Iterations 

227 – 34 - 1 256 – 32 - 1 295 - 34 - 1 226 – 33 - 1 

Ciphertext Length 

(byte) 

146,418 – 146,248 - 

146,149 

310,471 – 310,288 - 

309,965 

725,215 – 724,812 - 

724,610 

1,611,551 – 1,611,195 - 

1,610,713 

Ciphtertext to 

Plaintext Ratio 
1.489 - 1.488 – 1.487 1.472 – 1.471 – 1.469 1.489 – 1.488 – 1.488 1.482 – 1.482 – 1.481 

 

*All items are shown in max-mean-min format. 

 

Table 1 --- Performance of the proposed chaotic cryptographic algorithm. 
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Fig. 1.  An illustration of the original dynamic updating of the look-up table as proposed in 

[13]. 
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Index Marking Status 

0 X 

1 X 

2  

3  

4 X 

5  

6  

7 X 

8 X 

9 X 

10 X 

11  

12  

13  

14 X 

15  

 

(a) 

 

 

 
Plaintext Block Index in Look-up Table 

000 1 

001 9 

010 10 

011 8 

100 0 

101 14 

110 7 

111 4 

 

(b) 

 

Fig. 2 (a) An initial look-up table with M=3, i.e., each plaintext block contains 3 bits; The 

partitions with an “X” symbol are marked. (b) a mapping of the plaintext blocks with the 

index of the look-up table.
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Index Marking Status 

0 X 

1 X 

2  

3  

4  
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10 X 
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(a) 

 

 

 
Plaintext Block Index in Look-up Table 

000 5 

001 8 

010 9 

011 10 

100 11 

101 15 

110 0 

111 1 

 

(b) 

 

 

 

Fig. 3.  (a) The resultant look-up table updated from the one shown in Fig. 2(a); and (b) the 

corresponding new associate map. Assume that the chaotic orbit falls into partition 4 and 

three pairs of marked and unmarked partitions are swapped. 
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Fig. 4  A block diagram of the whole encryption process. 
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Fig. 5   A plot of the plaintext and the two corresponding ciphertext sequences encrypted by 

two very close but not identical look-up tables. (Plaintext: *, Ciphertext: + and o).
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Fig. 6   Distribution of the ciphertext. The graph from top to bottom corresponds to File 4, 

File 3, File 2 and File 1, respectively. 


