
 1

A More Secure Chaotic Cryptographic Scheme based on

The Dynamic Look-up Table
1

Kwok-wo Wong
1*

, Kwan-Pok Man
1
, Shujun Li

2
 and Xiaofeng Liao

3

1
Department of Computer Engineering and Information Technology,

City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, HONG KONG

2
Department of Electronic Engineering,

City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, HONG KONG

3
Department of Computer Science and Engineering, Chongqing University,

Chongqing 400044, P. R. CHINA

 Corresponding Author: K.W. Wong (E-mail: itkwwong@cityu.edu.hk)

Abstract

We have proposed a chaotic cryptographic scheme based on iterating the

logistic map and updating the look-up table dynamically. However, it has been

broken recently. In this paper, the weaknesses of the original dynamic look-up table

scheme are analyzed and a more secure chaotic encryption scheme based on this

dynamic look-up table concept is proposed. Theoretical analysis indicates that the

modified scheme can resist the reported attacks. Moreover, simulation results show

that this encryption scheme leads to a flat ciphertext distribution.

PACS Codes: 05.45.+b

Keywords: Chaos, Cryptography, Logistic map.

1 Citation information: Kwok-wo Wong, Kwan-Pok Man, Shujun Li and Xiaofeng Liao, “A More Secure

Chaotic Cryptographic Scheme based on Dynamic Look-up Table,” Circuits, Systems & Signal Processing, vol.

24, no. 5, pp. 571-584, Birkhäuser Boston Inc., 2005

mailto:itkwwong@cityu.edu.hk
http://dx.doi.org/10.1007/s00034-005-2408-5
http://dx.doi.org/10.1007/s00034-005-2408-5
http://www.springer.com/journal/00034

 2

I. Introduction

The growing of research interest in chaos and cryptography has resulted in a

number of digital chaotic cryptographic approaches that realize private key

cryptography with chaos [1,5,12]. Among those chaotic cryptographic schemes, the

one proposed by Baptista [5] has attracted much interest. Since its publication in

1998, a number of variants [6-7, 9-11, 13-15] have been suggested. The concept of

this type of chaotic cryptosystem is very simple. The interval of interest in the phase

space of the chaotic map is divided into a number of partitions equal to the total

number of possible plaintext blocks. Each plaintext block is encrypted as the number

of iterations applied in the chaotic map in order to reach the partition correspondent

to that block [5]. The resultant ciphertexts are integers and are suitable to be

transmitted through public data communication networks.

There are two major drawbacks with Baptista’s approach. Firstly, the

ciphertexts usually concentrate at small number of iterations and so their distribution

is not flat enough to ensure high security. Secondly, the cryptographic scheme is too

slow to make it suitable for practical use such as the secure transmission of large

multimedia files through the internet. Finally, the ciphertext size is usually long, at

least twice that of the original plaintext. To deal with the first drawback, we have

modified the original method so as to obtain a flatter ciphertext distribution [15]. To

increase the encryption speed, we have proposed a fast approach using a smaller

look-up table that is updated dynamically [13]. Moreover, a short ciphertext

encryption scheme is suggested in [14] to reduce the length of the ciphertext.

A number of attempts for the cryptanalysis of the original Baptista-type

chaotic cryptosystem and its variants have been performed [2-4, 8-9]. The first

attempt was reported in [8]. Only one attack was proposed and it is in partial form.

In the analysis made in [2], it was found that this type of chaotic cryptosystem

actually behaves as a stream cipher although it operates like a block cipher that a

fixed number of plaintext bits are encrypted to an integer number of iterations.

Based on this observation, a keystream attack was applied to break the cryptosystem

successfully. A similar attack [3] was used to break the variant for generating flat

ciphertext distribution [15]. Our modification based on a dynamic look-up table [13]

has also been broken recently [4]. The objective of this paper is to analyze the

weaknesses of the original dynamic look-up table scheme and to propose a more

secure chaotic encryption scheme based on this dynamic look-up table concept.

II. The Original Dynamic Look-up Table Scheme

We first review the chaotic cryptographic method proposed in [13], which is

based on a dynamic look-up table. As in Baptista’s method [5], the chaotic map

chosen is the simple one-dimensional logistic map governed by the following

equation.

xn+1 = bxn(1 - xn), (1)

where b is the gain and xn [0, 1]. An initial look-up table containing the mapping

of each possible plaintext block to equal-width partitions in the interval [xmin , xmax]

of the phase space of the logistic map should be set in advance. This initial mapping

can be in order or at an agreed setting. For the encryption of the i
th

 input block, we

let the logistic map iterate until the trajectory first falls into the region corresponding

to the ASCII code of this block. Similar to Baptista’s method, the iteration will

 3

continue if the current number of iterations is smaller than a pre-defined minimum

number of iterations. This prevents cryptanalysis upon the loophole of zero or just a

few iterations. On the other hand, if the current number of iterations is large enough,

it is sent immediately as the ciphertext and no random numbers need to be

generated. This is an advantage to resource-constraint computing environment such

as smartcard because no additional hardware or software random number generators

are required. Before encrypting the next message block, we have to update the look-

up table dynamically by exchanging the i
th

 entry ei with another entry ej. In ref. [13],

the interval v between these two entries is solely determined by the current value of

x using the following formula.

N
xx

xx
v *)(

minmax

min

 (2)

where N is the total number of entries in the table, xmax is the maximum value of x

in the chosen phase space region and xmin is the minimum value.

The interval obtained from Eq. (2) is used to locate the other entry ej to be

swapped with ei as the value of j is equal to the sum of i and v. This sum may be

larger than N. In this case, we have to perform a modulus operation so that the index

increment is in a cyclic manner and the value of j is still within N. As a result,

j = i + v mod N (3)

In order to make the look-up tables for consecutive plaintext blocks as unlike

as possible, just swapping a single pair of entries in the table after the encryption of

a single plaintext block is no longer enough. An approach for achieving this was

proposed in [14]. Instead of just swapping one pair of entries in the table, we can

swap more pairs by making use of the interval, v, between two swapping entries

obtained from Eq.(2). Starting from the current entry i, we swap the entries at

locations i and (i+v mod N). Then we continue to swap (p-1) pairs of entries starting

from the entry next to the one last visited, i.e., (i+v+1 mod N) ↔ (i+2v+1 mod N),

(i+2v+2 mod N) ↔ (i+3v+2 mod N), …, (i+(p-1)v+p-1 mod N) ↔ (i+pv+p-1 mod

N), where p is the total number of pairs to be swapped during the encryption of each

plaintext block. After that, the look-up table updating process is completed and we

can start the iterations on the logistic map for the next block. Then we perform the

p-pair swapping in the look-up table again by increment i and calculate a new value

of interval. Notice that if the index i reaches the bottom of the table, it will start from

the top again.

An illustration of this generalized dynamic updating of the look-up table is

given in Fig. 1. Suppose that the input block size is 8-bit. Therefore N equals to 256

and there are 256 entries in the table, from e0 to e255. Moreover, xmin and xmax is

chosen as 0.2 and 0.8, respectively. Suppose that we are now encrypting the 4
th

 8-bit

input block. The current x value is 0.4355 while the current number of iterations is

770. By using Eqs. (2) & (3), we obtain v=100+770 mod 256=102 and j=4+102

mod 256=106. The entries e4 is swapped with e106. If p is chosen as 3, we have to

swap two more pairs, i.e., e107 ↔ e209, e210 ↔ e56, as shown in Fig. 1.

III. Weaknesses of the Original Dynamic Look-up Table Scheme

There are a number of weaknesses in the dynamic look-up table scheme that

make it vulnerable to cryptanalysis. As pointed out in [4], although the current

chaotic state x is involved in Eq. (2) for calculating v, the output value actually

 4

depends solely on the plaintext, but not the key. Therefore an attacker can recover

the keystream used for encryption and so the cryptosystem is broken [4]. Secondly,

the mapping of the plaintext block with the entries in the look-up table is fixed

during the encryption of each plaintext block and the table update operation is

performed only after the completion of the encryption of each plaintext block.

Moreover, the swapping process starts from the first entry of the look-up table,

which is fixed for all keys and plaintexts.

In order to enhance the security of the Baptista-type chaotic cryptosystem

based on the dynamic look-up table scheme, the following modifications should be

made.

1. The update of the look-up table must depend on the current chaotic state x.

2. The mapping of plaintext should be changed in the course of encrypting a

plaintext block, but not after the completion of it.

3. The table update process should be done in the course of encrypting a

plaintext block, but not after the completion of it.

4. The table update process should not start strictly from the first table entry,

but should depend on the key.

In the next section, we will propose a more secure dynamic look-up table

chaotic encryption scheme that includes the above modifications.

IV. The Proposed Scheme

The plaintext sequence is divided into a number of blocks with size M. The

total number of partitions in the phase space of the chaotic map is twice the number

of possible plaintext blocks, i.e., 2
M +1

. If the plaintext sequence is read by bytes, the

total number of partitions is 512. It is equal to 32 if the plaintext sequence is divided

into a number of 4-bit blocks. The 2
M +1

 partitions are divided into two groups, half

of them are marked while the other half are unmarked. This leads to an equal number

of marked and unmarked partitions and the entropy is the highest, i.e., most difficult

to guess the location of the marked and unmarked partitions correctly. This look-up

table is similar to the association map used in [6]. The 2
M

 marked partitions each

associates uniquely with a possible plaintext block by a one-to-one mapping. The

initial location of the marked partitions as well as the initial mapping is random and

should be kept secret. A typical look-up table is shown in Fig. 2(a) while the

corresponding mapping with the plaintext block can be found in Fig. 2(b).

 The encryption procedures can start when the initial look-up table has been

prepared. The first plaintext block is read and the chaotic map starts to iterate using

the initial condition x0. After each iteration, the value of the current chaotic state x

will be checked. If it falls in an unmarked partition, this iteration is not considered as

an effective iteration. Nothing will be modified and the iteration will continue until

the chaotic orbit lands on a marked partition. Then the iteration is considered as an

effective one and a counter of the number effective iterations made in the encryption

of this plaintext block will be incremented. If that marked partition corresponds to

the current plaintext block, the number of effective iterations made in encrypting this

plaintext block will be taken as the ciphertext.

On the other hand, if the marked partition that the chaotic orbit falls in does

not correspond to the current plaintext block, some modifications on the look-up

table should be done. However, these modifications should not be performed

regularly in each landing so as not to favor cryptanalysis. They can be made

intermittently such as updating the look-up table every three or five times of landing

 5

on the marked partitions. This updating can be realized by swapping the marking

status of the current partition with the next partition with opposite marking status.

This means that the current partition is changed from marked to unmarked. Then we

search for an unmarked partition from the next partition and turn it as marked. In

order to change the look-up table substantially, more pairs of swapping are required.

From the partition that has just been marked, we search down for the next marked

partition, make it unmarked and then mark the next unmarked partition. Notice that

the search and swap operations are performed in a cyclic manner. This means that if

the end of the look-up table is encountered, it will continue from the top.

After the mark and unmark processes, the total number of marked partitions in

the table is still 2
M

 as we always swap pairs of marked and unmarked partitions.

However, these 2
M

 newly marked partitions may no longer correspond to the original

ones mapped to the 2
M

 plaintext blocks. Therefore we have to perform a re-map

operation, starting from the current partition that the chaotic orbit falls in. This means

that the next marked partition is mapped to the all-zero plaintext block. Then we

search in the look-up table and map the next marked partition to the plaintext block

with all-zero but a “1” in least significant bit. This re-map operation continues in a

cyclic manner until all the newly marked partitions are associated with all the

possible plaintext blocks uniquely. Note that the re-mapping process can be

performed in a very quick manner: record all marked partitions in an array

U[0,…,2
M

-1] and use an index, i, to point to the partition corresponding to “0”. In

this way, the j-th marked partition corresponds to the plaintext symbol (j-i) mod 2
M

.

The table update and re-map processes are illustrated by an example. Assume

that the table shown in Fig. 2(a) is used and the chaotic orbit falls into partition 4.

Moreover, three pairs of marked and unmarked partitions have to be swapped. This

means that we have to swap partitions 4 and 5 first. Then we go down and found that

partition 7 is marked. It is swapped with partition 11. Finally, we swap partitions 14

and 15. The new look-up table is shown in Fig. 3(a). As the current chaotic orbit

stays in partition 4, the next marked partition will be mapped to the all-zero plaintext

block. Similarly, we map the remaining marked partitions with the corresponding

plaintext block in order to obtain a new association table, as given in Fig. 3(b).

Under this table update and re-map scheme, the new look-up table depends on

the current chaotic state x. This is because the start point of the swapping is the

current partition that the chaotic orbit falls in. The latter is determined by x which is

obtained by iterating the chaotic map, Eq. (1). The new look-up table will be

different if the start point of the swapping is changed. This satisfies criterion (1) set

in Section III. The table update and re-map processes are performed intermittently

when the current partition that the chaotic orbit lands on is not the target partition.

These conditions will be encountered a number of times before the chaotic orbit falls

in the target partition finally, i.e., the completion of encrypting the current plaintext

block. Therefore criteria (2) and (3) stated in Section III are fulfilled. In the re-map

operation, the mapping starts from the current partition that the chaotic orbit lands

on and so the last criterion set in Section III is also satisfied.

As the ciphertext is the number of effective iterations the chaotic orbit falls in

before reaching the target partition, the probability of occurrence of small ciphertext

is much higher than that of large ones. Therefore the ciphertext distribution will

decrease with its magnitude and will not be flat. To achieve a flat ciphertext

distribution, we can make use of the masking scheme proposed by Li et al. [9-10].

However, here we do not choose to mask the current ciphertext using the

 6

information obtained from the encryption of the current plaintext block. This is

because there may be the chance that two or more combinations of the current

plaintext and current chaotic state will result in exactly the same ciphertext, as

analyzed in [10]. Instead we will use the information obtained from encrypting the

previous plaintext block.

As described before, the updating of the look-up table will be performed

intermittently when the chaotic orbit falls in marked partitions. For the iterations that

the chaotic orbit falls in marked partitions but the look-up table is not updated, we

can perform a bit-wise XOR operation of the index of the current partition

accumulatively so as to store the partial history of the chaotic orbit. The resultant

(M+1)-bit accumulated XOR value will be used to mask the next ciphertext. For the

first ciphertext block, there is no such previous partial history and we can use a

random (M+1)-bit sequence, i.e., an initial vector, instead.

The ciphertext is the number of effective iterations the chaotic orbit falls in

before reaching the target partition. It could be a number much longer than (M+1)-

bit. In such case, we have to divide the ciphertext into a number of (M+1)-bit block

before masking with the (M+1)-bit last accumulative partial chaotic history. For

example, if M is chosen as 4 but the current number of effective iterations is 62,

there will be three 5-bit ciphertext blocks (31, 31, 0). Each block is masked with the

5-bit last accumulative partial chaotic history before sending out as the final

ciphertext. The receiver should possess the exact knowledge of the last accumulative

partial chaotic history before he/she can recover the correct number of effective

iterations for decryption. As a result, this masking scheme not only leads to a flat

ciphertext distribution, but also further enhances the security.

A block diagram of the whole encryption process is shown in Fig. 4. The

decryption process requires nearly the same operations as in encryption such as

iterating the chaotic map, update and re-map the look-up table intermittently.

However, unmask of the ciphertext blocks should be done at the beginning each

decryption so as to obtain the number of effective iterations required in finding the

current plaintext block. Moreover, instead of checking whether the landed partition

corresponds to the target one, the checking in the decryption process is whether the

number of effective iterations has been reached. If this is the case, the decrypted

plaintext is the one associated with the final partition the chaotic orbit lands on.

V. Simulation Results

In order to test the effectiveness and the efficiency of the chaotic

cryptographic scheme described in Section IV, it is employed to encrypt and decrypt

the following four types of source files.

File 1: audio (.mp3) file of size 98,304 bytes,

File 2: Word document (.doc) file of size 210,944 bytes,

File 3: executable (.exe) file of size 487,000 bytes,

File 4: video clip (.avi) file of size 1,087,430 bytes.

The encryption and decryption processes are implemented using C++

programming language running on a personal computer with a Pentium IV 2GHz

processor and 512MB RAM. The value of M is 4. This means that the plaintext file

is read in blocks of length 4 bits. As a result, there are a total of 32 partitions in the

look-up table and each ciphertext block is a 5-bit sequence. The value of b in Eq. (1)

is selected as 3.9999995 while x0 is chosen arbitrarily as 0.1777. The range of

 7

interest in the phase space is from 0 to 1, which is wider than the range from 0.2 to

0.8, as used in most Baptista-type cryptosystem. This choice increases the

encryption speed but will not affect the distribution of ciphertext as the mapping is

changed dynamically. The look-up table is updated every three times when the

chaotic orbit falls in a marked partition. The initial mask is a 5-bit random sequence.

In Table 1, the encryption time, decryption time, number of iterations, length

of ciphertext and other statistics obtained from ten sets of randomly-generated initial

look-up tables are measured and listed in max-mean-min format,. The total number

of iterations means the number of times the chaotic map is iterated for one byte (8

bits) of plaintext. The number of effective iterations refers to the number of times

the chaotic orbit falls into a marked partition during the encryption of one byte of

plaintext.

All the encrypted files are decrypted successfully. As nearly the same

operations are performed at both the transmission and the receiving sides, the

encryption and decryption processes require approximately the same amount of

time. However, the decryption time is usually a little bit shorter. This is because

looking up in the association map is required in the encryption process while the

corresponding operation in the decryption process is just a check of whether the total

number of effective iterations is reached the desired one. The last row of Table 1

indicates that the ciphertext length is usually about 1.5 times that of the plaintext.

This is shorter than the double-sized ciphertext obtained in most of the Baptista-type

chaotic cryptosystems [5, 13, 15].

 Theoretical analysis shows that the ciphertext depends substantially on the

initial look-up table. This is verified here by plotting, in Fig. 5, the values of the

plaintext (the graph marked by *) and two corresponding ciphertext sequences (the

graphs marked by + and o), both with very close look-up tables except that a pair of

marked and unmarked partitions are swapped. The graph shows that the resultant

ciphertexts are totally different. Moreover, at positions 8 to 19, the plaintext value is

zero but the corresponding ciphertext still appears randomly.

In order to analyze the distribution of the ciphertext, we have recorded the

number of occurrences of each ciphertext block for the four input files using fixed b

and x0 but random initial look-up tables. The ciphertext distribution is plotted in Fig.

6, which shows that the distribution is very flat due to the masking operation.

VI. Conclusion

In summary, we have modified the original dynamic look-up table scheme

[13-14] so as to make the updating of look-up table depend on the current chaotic

state which in turn is determined by the key. It is believed that the modified scheme

is more secure and can resist the attacks described in [4]. Moreover, simulation

results show that this encryption scheme leads to a flat ciphertext distribution.

Acknowledgement

The work described in this paper was fully supported by a grant from CityU

[Project No. 7001555].

References

 8

[1] E. Alvarez, A. Fernandez, P. Garcia, J. Jimenez, A. Marcano, New Approach to

Chaotic Encryption, Phys. Lett. A, Vol. 263, No. 4–6, pp.373-375, 1999.

[2] G. Alvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalysis of an Ergodic

Chaotic Cipher, Phys. Lett. A, Vol. 311, No.2–3, pp. 172-179, 2003

[3] G. Alvarez, F. Montoya, M. Romera, G. Pastor, Keystream Cryptanalysis of a

Chaotic Cryptographic Method, Comput. Phys. Commun. Vol. 156, No. 2, pp.

205-207, 2004.

[4] G. Alvarez, F. Montoya, M. Romera, G. Pastor, Cryptanalysis of Dynamic

Look-up Table Based Chaotic Cryptosystems, Phys. Lett. A, Vol. 326, No. 3–4,

pp. 211-218, 2004.

[5] M.S. Baptista, Cryptography with Chaos, Phys. Lett. A, Vol. 240, No. 1–2, pp.

50-54, 1998.

[6] Fangjun Huang, Zhi-Hong Guan, Cryptosystem using Chaotic Keys, Chaos

Soliton Fractals, Vol. 23, No. 3, pp. 851-855, 2005.

[7] Fangjun Huang, Zhi-Hong Guan, A Modified Method of a Class of Recently

Presented Cryptosystems, Chaos Soliton Fractals, Vol. 23, No. 5, pp. 1893-

1899, 2005.

[8] G. Jakimoski, L. Kocarev, Analysis of Some Recently Proposed Chaos-based

Encryption Algorithms, Phys. Lett. A, Vol. 291, No. 6, pp.381-384, 2001.

[9] Shujun Li, Xuanqin Mou, Zhen Ji, Jihong Zhang, Yuanlong Cai, Performance

Analysis of Jakimoski-Kocarev Attack on a Class of Chaotic Cryptosystems,

Phys. Lett. A, Vol. 307, No. 1, pp. 22-28, 2003.

[10] Shujun Li ,Guanrong Chen, Kwok-Wo Wong, Xuanqin Mou, Yuanlong Cai,

Baptista-type Chaotic Cryptosystems: Problems and Countermeasures, Phys.

Lett. A Vol. 332, No. 5–6, pp. 368-375, 2004.

[11] A. Palacios, H. Juarez, Cryptography with Cycling Chaos, Phys. Lett. A Vol.

303, No. 5–6, pp. 345-351, 2002.

[12] Roland Schmitz, Use of Dynamical Systems in Cryptography, Journal of the

Franklin Institute, Vol. 338, No. 4, pp. 429-441, 2001.

[13] Kwok-wo Wong, A Fast Chaotic Cryptographic Scheme with Dynamic Look-

up Table, Phys. Lett. A, Vol. 298, No. 4, pp. 238-242, 2002.

[14] Kwok-wo Wong, Sunny Sun-Wah Ho, Sophia Ching-Ki Yung, A Chaotic

Cryptographic Scheme for Generating Short Ciphertext, Phys. Lett. A, Vol. 310,

No. 1, pp.67-73, 2003.

[15] Wai-kit Wong, Lap-piu Lee and Kwok-wo Wong, A Modified Chaotic

Cryptographic Scheme, Comp. Phys. Comm., Vol. 138, No. 3, pp. 234-236,

2001.

 9

 File 1 (.mp3)
98,304 bytes

File 2 (.doc)
210,944 bytes

File 3 (.exe)
487,000 bytes

File 4 (.avi)
1,087,430 bytes

Encryption Time

(sec)
0.4 - 0.4 - 0.4 1.2 – 0.9 – 0.8 2.0 – 2.0 – 2.0 4.7 – 4.4 – 4.3

Decryption Time

(sec)
0.4 - 0.4 – 0.4 1.1 – 0.9 - 0.8 2.0 – 2.0 – 1.9 4.3 – 4.3 – 4.2

Total Number of

Iterations

539 -74 - 2 661 – 70 - 2 682 – 74 - 2 681 – 72 - 2

Number of

Effective Iterations

227 – 34 - 1 256 – 32 - 1 295 - 34 - 1 226 – 33 - 1

Ciphertext Length

(byte)

146,418 – 146,248 -

146,149

310,471 – 310,288 -

309,965

725,215 – 724,812 -

724,610

1,611,551 – 1,611,195 -

1,610,713

Ciphtertext to

Plaintext Ratio
1.489 - 1.488 – 1.487 1.472 – 1.471 – 1.469 1.489 – 1.488 – 1.488 1.482 – 1.482 – 1.481

*All items are shown in max-mean-min format.

Table 1 --- Performance of the proposed chaotic cryptographic algorithm.

 10

0.2023
0.2000

255

106

 4

107

Before update After update

0.8000

ASCII

:
:

209
210

0.7977

 x

:

0.2023
0.2000

255

106

 4

107

0.8000

ASCII

:

:

209
210

0.7977

 x

:

: :

56

 @

 #
 &

 $
 %

 ?

 ?

 &

 $

 @

 #

 % 56

:

: :

:
 0 0

Fig. 1. An illustration of the original dynamic updating of the look-up table as proposed in

[13].

 11

Index Marking Status

0 X

1 X

2

3

4 X

5

6

7 X

8 X

9 X

10 X

11

12

13

14 X

15

(a)

Plaintext Block Index in Look-up Table

000 1

001 9

010 10

011 8

100 0

101 14

110 7

111 4

(b)

Fig. 2 (a) An initial look-up table with M=3, i.e., each plaintext block contains 3 bits; The

partitions with an “X” symbol are marked. (b) a mapping of the plaintext blocks with the

index of the look-up table.

 12

Index Marking Status

0 X

1 X

2

3

4

5 X

6

7

8 X

9 X

10 X

11 X

12

13

14

15 X

(a)

Plaintext Block Index in Look-up Table

000 5

001 8

010 9

011 10

100 11

101 15

110 0

111 1

(b)

Fig. 3. (a) The resultant look-up table updated from the one shown in Fig. 2(a); and (b) the

corresponding new associate map. Assume that the chaotic orbit falls into partition 4 and

three pairs of marked and unmarked partitions are swapped.

 13

Fig. 4 A block diagram of the whole encryption process.

Marked

Partition ?

Iterate Chaotic Map

Effective Count + 1

Target

Partition ?

Ciphertext Block =

Effective Count XOR

Last Mask

Encrypt next plaintext

block

Swap?

Swap Partitions

Re-map table with

plaintext

Mask = Mask XOR

current index

Yes

Yes Yes

No

No No

 14

Fig. 5 A plot of the plaintext and the two corresponding ciphertext sequences encrypted by

two very close but not identical look-up tables. (Plaintext: *, Ciphertext: + and o).

 15

Fig. 6 Distribution of the ciphertext. The graph from top to bottom corresponds to File 4,

File 3, File 2 and File 1, respectively.

