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With the rapid development of high-speed railway, the fault diagnosis of railway vehicles has become more and more
important for ensuring the operating safety. -e MF is a nonlinear signal processing method which can extract the modulated
faulty information via reshaping the analyzed signal. However, the choices of operators and structure elements (SE) are
numerous and complicated to determine the best MF solution for different bearing faulty signals. In this paper, the particle
swarm optimization (PSO) was introduced to optimize the effect of MF among several classical MF operators and different SE
parameters. -e proposed method applied PSO to select the best MF result with respect to the fitness function adopting
kurtosis. A set of bearing signals with additional interference of wheel-track excitement are analyzed to verify the effectiveness
of the proposed method. -e results demonstrated that the proposed method is capable of obtaining the optimized solution and
accurately extracting the fault information. Furthermore, the shaft rotation frequency and wheel-track interference were
reduced by the proposed method.

1. Introduction

In recent years, with the rapid development of high-speed
railway all over the world, the occurrence of various kinds of
railway accidents continuously increases [1]. -e failure of
railway vehicle often causes tremendous casualties and eco-
nomic losses. -erefore, the safety of the railway vehicle has
gained more and more attention from the government, the
industry, and the academia. -e axle box bearing, which
supports the weight of the vehicle and suffers various loads
from the wheel set or other components of the bogie, is one of
the key rolling components to guarantee the safety operation of
the railway vehicle [2]. -erefore, the fault diagnosis of axle box
bearing is crucial for the operation safety of the railway vehicle
[3]. Vibration signal is commonly applied for rotational ma-
chinery fault diagnosis because of its convenience and effi-
ciency. However, the vibrational measurement of the axle box
bearing suffers strong interference from other components in
the railway vehicle system, such as rail track irregularity and
wheel defect [4]. Moreover, this interference, especially wheel-
rail excitement, is normally dominant in an axle box bearing

vibration signal, which increases the difficulty of the diagnosis
[5]. -erefore, the analysis of the axle box bearing signal be-
comes a meaningful and challenging topic.

To date, there are two popular fields which have been
intensively researched for employing on rotational ma-
chinery fault diagnosis. One is to extract the resonance band
of the impulse excited by the local or distribution defect of
machinery, including empirical mode decomposition
(EMD) [6], empirical wavelet transformation (EWT) [7], fast
kurtogram [8], and variational mode decomposition (VMD)
[9]. -e purpose of this type of method is to narrow the
analyzed frequency band and to help the further processes to
perform better. Another kind of approaches, such as en-
velope analysis [10], squared envelope analysis [11], fast
spectral correlation [12], and cyclostationary analysis [13],
focus on demodulating or revealing the faulty signal pattern
based on the assumption that the impulses excited by the
defect are generally considered as an amplitude modulated
and quasiperiodic signal.

As an alternative approach, the morphological filter
(MF) has brought some discussion on bearing fault
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diagnosis in recent years. -e morphological filter is es-
sentially an incorporation of nonlinear signal operators,
design methodology, and application related to mathe-
matical morphology [14]. According to the theory of
mathematical morphology, the analyzed signal is con-
sidered as a set in a Euclidean space. -e MF is viewed as a
set operation that transforms the graph of the analyzed
signal, which provides a quantitative description of its
geometrical characteristics. -e MF was first used in
analyzing binary and grey-level images and then applied
in periodic signals by Nikolaou as an envelope-type signal
processing tool [15]. -e typical response pattern of pe-
riodic impacts excited by bearing defects comprises an
amplitude modulation. Since the vibration signal is in the
form of vibration amplitude with respect to time, MF can
be considered as a nonlinear 1D signal processing tool.
-e idea of MF is to construct a data set, called structural
element (SE), and to design morphological operators to
modify the shape of the analyzed signal so that the period
impulse excited by the rotation machinery defect can be
demodulated from the analyzed signal [16]. In early MF
researches, single-scale MF with fixed SE parameter was
generally adopted. -is method suffered from some
shortages, including the requirement of prior knowledge
and the incomplete extraction of pulse characteristics
[17]. Later, in order to improve the performance of MF,
multiple-scale MF was introduced based on the concept of
optimization from MF results with various SE parameters.
Several research studies apply various types of MF op-
erators to approach the bearing fault diagnosis [18–20],
but it appears that different MF operators would produce
various effects on different bearing vibration signals be-
cause of the various interference noises. Moreover, the
construction of SE is another significant factor that affects
the performance of MF. It would be complicated and time
consuming to simultaneously select the optimal MF op-
erator and SE when applying MF on new bearing fault
signals.

-erefore, a novel method combining MF and an
optimizing method called particle swarm optimization
(PSO) is proposed in this paper. PSO is one of the popular
optimization algorithms [21–23], which finds the optimal
solution through information sharing among a group of
independent individuals. PSO has been broadly applied in
many fields especially in high-dimensional optimization
problems [24]. By applying PSO on MF, the selection of the
optimal MF operators and SE parameters could be more
applicable and less time consuming. -e idea of the pro-
posed method is to build up a selecting scheme to overall
consider the performance of numerous operators and select
the best MF operator and SE to extract the optimal fault
pattern in bearing signals. Moreover, to verify the effec-
tiveness of the proposed method, several measured bearing
fault signals with strong interference were analyzed in this
paper.

-e remaining contents of this paper are organized as
follows: the principles of MF and PSO are simply recalled
in Section 2; the detail and procedures of the proposed
method are introduced in Section 3; the simulation signal

is analyzed by the proposed method in Section 4; then,
some vibration signals of the axle box of the railway
vehicle are provided to verify the effectiveness of the
proposed method; finally, the summary is drawn in the
last section.

2. Theoretical Background

2.1. Morphological Filter. -e morphological filter is a pure
time-based and nonlinear signal-processing method, which
modifies the shape of the analyzed signal via the interaction
with the structure element (SE). -e MF operator is one of
the key factors that affects the filtering performance, which
designates the interaction pattern between SE and the an-
alyzed signal. For a one-dimensional signal, the two very
basic MF operators are called dilation and erosion. Let f(n)
be an original 1D signal which ranged in the domain
F � (0, 1, 2, . . . , N − 1), and an SE indicated by g(m) in the
domain G � (0, 1, 2, . . . ,M − 1). -e expressions of dilation
and erosion are formulated as follows:

(f⊕g)(n) � max[f(n − m) + g(m)],

(fΘg)(n) � min[f(n − m) + g(m)],
(1)

where n ∈ F and m ∈ G and ⊕ and Θ indicate the dilation
and erosion respectively. Based on the two operators above,
another two basic operators, called opening and closing, are
further defined as follows:

(f ∘g)(n) � fΘg− ⊕g( (n),
(f •g)(n) � f⊕g− Θg( (n), (2)

where g− (n) � g(− n) and ∘ and • represent opening and
closing separately. -e basic operators of MF comprise the
four operators above. However, it is apparent that the MF
cannot fully meet the requirements of nonlinear signals by
only applying these basic operators. -erefore, more op-
erators are proposed to extend the flexibility of MF, and in
this paper, some classical MF operators, which have been
commonly used, are collected and listed in Table 1 [25, 26].
For the sake of briefness, only the names and expressions of
these operators are shown.

On the other hand, SE roles as a geometric detector to
match and unify the shape of the analyzed signal. According
to the operator expression mentioned above, the outcome of
MF also depends on the construction of SE. -e desired
waveform can be extracted properly only when the shape
and size of SE are matched with the analyzed signal.
-erefore, the parameters, including the shape, length, and
height in the 1D signal case, are decisive for the performance
of MF.

-e most commonly used shapes of SE are flat and
triangle for a 1D signal. -e construction of these SEs is
shown in Tables 2 and 3. Apparently, the length affects the
construction of both flat and triangle SEs, while the height is
another important parameter to construct a triangle SE.

2.2. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is a popular global optimization algorithm that
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was inspired by the social activities of birds’ foraging. PSO
builds up a set of articles with two properties named position
and velocity which represent the direction and velocity of the
particles’ self-movement, respectively. In the meanwhile,
each particle iteratively explores for the optimal solution
within its own search domain and shares the individual
optimal position with other particles in each iteration level.
According to the information gathered from particles, the
current optimal positions and velocity would be updated and
fed back to the corresponding particle. -e detailed process
of PSO is introduced as follows:

Step 1. Initialize a group of particles with random positions
and velocities. -en, calculate the initial fitness value of each
particle.

Step 2. Record the initial position as the current optimal
position of each particle and the best position among the
particles as the global optimal position. -e individual
optimal position is marked as pn,1 where n indicates the nth
particle; and the global optimal position is recorded as g1.

Step 3. According to the current individual optimal position
and the global optimal position, the velocity vn,i of each
particle is updated, where i indicates the number of iteration.
-e update follows the pattern defined as follows:

vn,i � ωvn,i + c1r1 pn,i − xn,i  + c2r2 gi − xn,i , (3)

where ω is called as inertia factor, c1 and c2 are the learning
factors, and r1 and r2 are the random numbers valued within
[0, 1].

Step 4. After obtaining the updated velocity vn,i, the posi-
tions of particles are adjusted as follows:

xn,i � xn,i− 1 + vi. (4)

Step 5. Calculate the fitness values and compare with the
values of the former level. -en, update pn,i and gi according
to the particles with the best fitness value.

Step 6. Repeat Step 3 to Step 5 until the fitness values are
satisfied or the iteration level meets the limitation.

3. Morphological Filter Based on Particle
Swarm Optimization

Taking the superior optimizing capability of PSO, the se-
lection of the MF operator and SE can be converted to a
parameter optimizing problem. -erefore, a morphological
filter based on particle swarm optimization (named PSO-MF
in this paper for simplicity) was proposed in this paper.
Before introducing the procedures of PSO-MF, some con-
siderations about the combination of PSO and MF should be
explained.

Firstly, taking into account the time lag among the
impulses excited by the bearing defect is relatively short,
especially in high-operation speed (i.e., high shaft rotation
speed), the adequate length of a semicircular SE has a high
possibility to cover more than one impulse of defect;
therefore, the semicircular shape is not suitable for our cases.
-e triangle SE is similar as the flat SE when the height
approximates or equals to zero; hence, the form of triangle
SE was applied in the proposed method so that two shapes of
SE could be considered.

Secondly, the position of original PSO is incapable to
represent the operators, SE length and SE height simulta-
neously, so the dimensions of PSO are defined as types of
operators so that each dimension is corresponding to one

Table 1: -e classical operations and corresponding expressions.

Name Expression Name Expression

Morphological gradient
(MG)

(f⊕ g)(n) − (fΘg)(n) Difference filter (DIF) (f •g)(n) − (f∘g)(n)
Black top-hat transform
(BTH)

(f •g)(n) − f(n)
Close and open average

(AC&O)
((f •g)(n) + (f∘g)(n))/2

White top-hat transform
(WTH)

f(n) − (f ∘g)(n) Open-close (OC) (f ∘g •g)(n)
Combination of WTH and
positive BTH (CWTH&PBTH)

2f(n) − (f ∘g)(n) − (f •g)(n) Close-open (CO) (f ∘g •g)(n)
Combination morphological
filter (CMF)

((f •g ∘g)(n) + (f ∘g •g)(n))/2 CO and OC gradient
(GCO&OC)

(f •g ∘g)(n) − (f ∘g •g)(n)
Combination morphological
filter hat (CMFH)

f(n) − (((f •g ∘g)(n) + (f ∘g •g)(n))/2) Morphology gradient
product operation (MGPO)

[(f •g)(n) − (f ∘g)(n)]·
[(f •g ∘g)(n) − (f ∘g •g)(n)]

Table 2: -e construction of flat SEs.

Scale Length Matrix form

1 2 {0, 0}
2 3 {0, 0, 0}
3 4 {0, 0, 0, 0}
n n + 1 {0, 0, . . ., 0, 0}

Table 3: -e construction of triangle SEs.

Scale Length Matrix form

1 3 h1{0, 1, 0}
2 5 h2{0, 1, 2, 1, 0}
3 7 h3{0, 1, 2, 3, 2, 1, 0}
n 2n+ 1 hn{0, 1, . . ., n, . . ., 1, 0}
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MF operator. Moreover, the position of a particle in PSO-
MF contains two parameters which are the height and length
of SE with different domain, respectively.

-irdly, considering the periodicity and pseudostatio-
narity of the faulty bearing signal, the kurtosis, which has
been widely used in bearing diagnosis, is applied as the index
of fitness value of PSO-MF. -e kurtosis is an index to reflect
the distribution characteristic of data sets [27]. Generally,
with higher kurtosis value, the signal is reckoned as carrying
more periodical information in the aspect of processing the
bearing signals [28].

According to the discussions above, the procedures of
PSO-MF are defined as follows:

Step 1. Construct the multiple-dimension particle swarm.
-e MF operator of each dimension is expressed as

MFd �[f, g(h, l)]
d
MF, (5)

where d indicates the dth dimension (i.e., operator), [· · ·]MF

represents the corresponding MF operator, and g(h, l) is the
SE with a height of h ∈ [0, 3] and length of l ∈ [2, 0.6T], in
which T is the theoretical time lag between two impulses
excited by the bearing defect.

Step 2. Randomize the value of the properties of each
particle; then, calculate the initial fitness value according to
the kurtosis formulation in the following equation:

Kurtosis �
 x(t) − μx( 4
 x(t) − μx( 2 2, (6)

where μx indicates the mean value of the data set. -e initial
positions of each particle are recorded as pdn,1, and the
positions of the particle with the maximum kurtosis in each
dimension are recorded as gd1 , where n � 1, 2, . . . , N and N
indicates the swarm size. In this paper, the swarm size is
assigned as 20.

Step 3. Introduce pdn,i and gdi into equation (3) to obtain a
new update pattern of particle velocity as follows:

vdn,i � ωvdn,i + c1r1 p
d
n,i − x

d
n,i  + c2r2 gdi − xdn,i , (7)

and update the position of each particle:

xdn,i � x
d
n,i + v

d
n,i, (8)

where i � 1, 2, . . . , I in which I is the iteration number,
which in the proposed method is valued as 100. In addition,
the learning factors and inertia factor are primary for the
computation cost of PSO, but the effects on the final result of
PSO-MF are limited. In the proposed method, the parameter
values follow the choice in the literature [29], where c1 �
c2 � 0.72 and ω � 1.19.

Step 4. Calculate the kurtosis of MF operations with each
particle, and then compare with values of the former level.
Update pdn,i and gdi according to the particle with the largest
kurtosis.

Step 5. After repeating step 3 and 4 until the iteration meets
the limitation, the best solutions of each dimension will be
obtained. Select the dimension with the largest kurtosis as
the final output of PSO-MF.

Step 6. Apply the operator and SE selected by PSO-MF to
the bearing faulty signal, and then observe its waveform or
frequency spectrum if necessary.

In order to make a clearer view of the proposed method,
the flowchart of PSO-MF is illustrated as shown in Figure 1.

4. Simulation

-e actual systems of rotation machinery are normally
suffered from various known or unknown interference
resulting in lots of signal components that cannot be well
explained. -erefore, a simulated bearing faulty vibration
signal was firstly constructed to verify the effectiveness of
PSO-MF with certain signal components. -e simulated
signal is expressed as follows:

s(t) � s1(t) + s2(t) + s3(t) + η, (9)

where s1 represents a shaft-rotational interference trans-
mitted from wheel-track excitement, s2 and s3 are formed as
impulses excited by an outer-race defect at different reso-
nance frequency, and η is a white Gaussian white noise with
a signal-noise ratio of − 5 dB. -e formulation of sn is the
impulse response of a single degree of freedom mass-spring-
damper:

sn(t) � Ane
− βnt sinωn(t)u(t), (10)

where A indicates the amplitude of impulse, β is the coef-
ficient of structural damping, ω indicates the resonance
frequency of the impulse, and u(t) represents the response
of unit step. -e resonance frequencies of s1, s2, and s3 are set
as 500 Hz, 2000Hz, and 3500 Hz, respectively, and the
frequencies of shaft rotation and outer-race fault are
10.29 Hz and 83.33 Hz. In addition, slight noises of 10 dB are
separately added in s1, s2, and s3 as the interference of signal
collecting systems. Figure 2 illustrates the waveforms of s1,
s2, and s3, and the amplitude of s1 is assigned as the largest
since the impulses from the wheel-track are generally
dominant.

-e waveform, frequency spectrum, and envelope
spectrum of s(t) are depicted in Figure 3. -e impulses
excited by the wheel-track can be found clearly from the
waveform. However, the impulses of the bearing defect are
blurred. By observing the envelope spectrum, the frequency
of shaft rotation and its corresponding harmonics are
dominant, while the fault frequency and its 2nd–4th order
harmonics can be detected under the interference of shaft
rotation and noise.
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Input signal f, set MF operators, let D
indicate the amount of operators, d = 1

Initialize inertia factor ω, swarm size N,
iteration time I, learning factors c1 and c2.

Build up SE g(h,l) with random height 
h and length l, the position p = (h,l)

MFd = [ f, g(h,l)]d
MF

Calculate the kurtosis value K of MF

Let i = 1

for n = 1:N

for d = 1 :D

Update the local position pd
n,i, and the

velocity vd
n,i

Update the global best gi
d

i = 1 or K(gi
d) ≤ K(gd

i–1)

i < Ii = i + 1
Y

Y

Y

Y

N

N

Select the operator 
with largest K

N

Apply the operator and SE to f,
observe the envelope spectrum

Figure 1: Flowchart of proposed PSO-MF on the bearing fault signal.
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Figure 2: Waveforms of simulated signals: (a) s1, (b) s2, and (c) s3.
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After applying PSO-MF to the simulated signal, the
optimized SE parameters of each operator are obtained
and the outputs of the operators are calculated according
to equation (6). Table 4 lists the kurtosis of the operators.
-e operator (in this case, BTH) with highest kurtosis
among operators is regarded as the optimal solution. Since
the operations of MF are purposed variously, we only
collected 16 typical operators in the proposed method in
this paper.

-e optimal results of the collected operators are
shown separately in Figure 4. According to Figure 4, six
operations (including MG, DIF, BTH, WTH, GCO&OC,
and MGPO) are capable of detecting the fault charac-
teristic frequency with well performance. Others either
have strong interference or fail to reveal the fault fre-
quency. In this simulation case, the operator selected by
the proposed method is BTH, which is one of the best
performed operators that efficiently extracts the fault
frequency and its harmonics.

In this simulation case, the output of PSO-MF is one of
the best-performing operators. It tentatively proves that the
proposed method effectively selects the best solution among
several operators and their corresponding SE (certain op-
erators with equal performance may coexist, but it is no need
to recognize them entirely). In order to further testify the
performance of the proposed method, a set of measured data
were used in the next chapter.

5. Experiment: Fault Diagnosis for Axle
Box Bearing

-e experiment of this paper was conducted on a running
rig by Southwest Jiaotong University (SWJTU) and CRRC

Corporation. -e test rig is shown in Figure 5(a). -e axle
box supported the tested wheel set during the operation
and was forced by a statical load. -e accelerator was
mounted on the surface of the axle box as shown in
Figure 5(b). Two types of bearing defect, including outer
race and rolling element fault, were manually made as
demonstrated in Figures 5(c) and 5(d). -e type of railway
vehicle bearing is generally adopted by double-row tapered
roller bearing; therefore, the inner-race fault is difficult to
be made without heavily damaging the bearing. Alterna-
tively, the inner-race faulty data conducted by Case
Western Reserve University (CWRU) was applied in our
experiment (the data set has been widely researched and the
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Figure 3: -e time-domain and frequency-domain of the simulation signal: (a) the waveform, (b) the spectrum, and (c) the envelope
spectrum.

Table 4: -e kurtosis values of collected operations of the simu-
lated signal.

Operator Kurtosis

Dilation 13.63
Morphological gradient (MG) 14.64
Open 2.98
Difference filter (DIF) 14.74
White top-hat transform (WTH) 28.88
Close-open (CO) 9.68
Combination morphological filter (CMF) 3.95
Combination morphological filter hat (CMFH) 19.49
Erosion 4.59
Close 13.45
Close and open average (AC&O) 4.97
Black top-hat transform (BTH) 29.79
Combination of WTH and positive BTH
(CWTH&PBTH)

11.38

Open-close (OC) 2.78
CO and OC gradient (GCO&OC) 15.03
Morphology gradient product operation (MGPO) 22.02
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details of the test rig can be referred from [30, 31]).
Moreover, the vibration environment of the test rig is
simpler than the practical operation, while conducting an
experiment of faulty bearing in practical operation is
dangerous for passengers and extraordinarily costly. Al-
ternatively, a set of normal data, measured from the axle
box of a CRH vehicle during the actual operation, was
added on the test rig data as an addition colored noise from
the wheel-track system. -e sampling frequency of the
signal from CWRU is 12 kHz, while the signal from SWJTU
and practical operation are both sampled by 10 kHz. -e
signal from CWRU was downsampled to 10 kHz when
synthesizing the inner-race fault and actual operating
signal.

-e theoretical calculations of the characteristic fre-
quencies of outer race, inner race, and rolling element are
expressed as follows [32]:

f BPFO �
Zf r
2

1 −
d

D
cos α ,

f BPFI �
Zf r
2

1 −
d

D
cos α ,

f BSF �
Df r
2 d

1 −
d

D
cos α 2⎛⎝ ⎞⎠,

(11)

where fr is the shaft rotating frequency and Z, d, D, and α
indicate the rollers number, roller diameter, pitch diameter,
and angle of contact, respectively. -e working condition
and corresponding fault frequency are listed in Table 5. Note
that the speed of the inner-race case is an approximation
speed according to the wheel diameter ratio of the signal
from SWJTU.
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Figure 4: -e spectra of collected operations of the simulated signal. (a) Dilation. (b) Erosion. (c) MG. (d) Close. (e) Open. (f ) AC&O. (g)
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In the following experimental cases, the frequency
spectra of all operators will be demonstrated to testify the
effectiveness of the proposed selecting scheme. Moreover,
three popular diagnostic methods, including envelope
analysis (EA), enhance envelope spectrum (EES) and au-
tocorrelation spectrum (AC), are applied to compare with
the performance of the proposed method.

5.1.2eCaseofOuter-RaceFault. -e first experiment case is
using the data collected from the bearing with outer-race
fault. -e data collected from actual operation (called op-
erating signal in this paper for brevity) are segmented from
the data with a uniform speed of 78 km/h to approximately
match the speed of the testing rig (due to the limitation of the
field-experimental conditions, the speed is the most ap-
proximate uniform velocity to 100 km/h). Figure 6 dem-
onstrates the waveforms of operating signal, testing data, the
synthesized signal, and its corresponding frequency spec-
trum. -ere is a dominant frequency of 50 Hz in Figure 6(d)
known as the power frequency. Moreover, three resonance

bands could be roughly observed of which the low-frequency
band seems to be more dominant.

After applying the PSO-MF to the synthesized data, the
kurtosis of the optimal solutions of each operator was ob-
tained and recorded as shown in Table 6. -e output of the
PSO-MF in this case is the BTH. -e frequency spectra of the
filtered signals are demonstrated in Figure 7. Most of the
operators failed to extract the fault frequency except MG,
DIF, BTH, and WTH. MG and BTH have the best envelope
performance by the evidence of the clearer harmonic fre-
quency. It is indefinite to evaluate the better performance
between MG and BTH since the relative amplitude of the 1st

harmonic of BTH is slightly higher than MG; however, the
interference noise of MG is relatively lower. -erefore, the
performances of MG and BTH are regarded as equivalent.

After the optimal solution was acquired via PSO-MF, the
spectra, illustrated in Figure 8, of other signal processing
methods mentioned above were conducted. -e envelope
spectrum is shown in Figure 8(b), of which harmonics of
faulty frequency are vaguely observed. -e enhanced en-
velope spectrum and autocorrelation spectrum have better

Loading
device

Wheelset
Axle box
bearing

Driving
wheel

(a)

Outer race
fault

(c) (d)
Roller fault

(b)
Accelerometer

Axle box

Figure 5: Photos of the bearing test rig from SWJTU: (a) the test rig, (b) the installation of the sensor, (c) the defect of outer race, and (d) the
defect of rolling element.

Table 5: Fault characteristic frequencies of tested bearing.

Defect type Speed (Km/h) Motor speed (rpm) Shaft rotation frequency (Hz) Fault characteristic frequency (Hz)

Rolling element 50 308 5.14 16.82
Outer race 100 616.88 10.28 83.26
Inner race 280 1730 28.83 156.12
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performance than the envelope spectrum because of the
more obvious harmonics and the revelation of the 4th

harmonic. -e outcome of PSO-MF is undoubtedly the best
extraction of the fault information due to the clear and
sufficient detection of the fault frequency and its corre-
sponding harmonics. -erefore, in this case, PSO-MF is
testified to realize the fault information more accurately and
efficiently comparing with the other three methods.

5.2. 2e Case of Rolling Element Fault. -e data of rolling
element were secondly analyzed by PSO-MF. -e speed of
the operating signal is 58 Km/h which is as close as possible
to the speed of the test rig. -e waveforms of the operating
signal, testing data, and synthesized data are depicted as

shown in Figure 9(a)–9(c). -e spectrum of the synthesized
signal is shown in Figure 9(d) which suffered from the same
power frequency interference as the outer-race faulty signal.
After exploiting PSO-MF to the faulty signal, the kurtosis
values of each dimension are listed in Table 7. -e operator
with the highest kurtosis is BTH which is marked by blue
shading.

-e spectra of the MF operations are illustrated in
Figure 10. -e rolling elements spin with the rotation of the
bearing cage during the bearing operation, and the fre-
quency of the rolling element defect is modulated by the
frequency of the bearing cage. -e frequency of the bearing
cage is normally much less than the frequency of the rolling
element; therefore, the spectrum of the rolling element
normally presents as the frequency families which consisted
of the fault frequency and the frequencies spaced at the cage
rotational frequency. According to Figure 10, the effective
operators are MG, DIF, BTH, and WTH where the red dot
circles represent the frequency families of the rolling element
fault. Among these operators, the performance of WTH is
slightly worse than other effective operators since some fault
frequency families are relatively indistinct. -e selection of
PSO-MF (BTH) is one of the well-performed operators,
which verified the effectiveness of the proposed optimizing
scheme.

Figure 10 shows the spectra of PSO-MF, envelope, en-
hance envelope, and autocorrelation, respectively. -e
spectrum of PSO-MF is zoomed in as shown in Figure 11(a)
where the red rectangles indicate the frequency of the
bearing cage. Note that the harmonics of the rolling element
passing frequency are appeared double the theoretical fre-
quency since the rolling element defect generates two im-
pulses by impacting both inner and outer in a single rotation
period. It is obvious that the envelope spectrum, enhanced
envelope spectrum, and autocorrelation spectrum are failed
to recognize the pattern of the rolling element defect under
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Figure 6: -e outer-race fault signal and operating signal: (a) the waveform of operating signal, (b) the waveform of test rig signal, (c) the
waveform of synthesized signal, and (d) the spectrum of synthesized signal.

Table 6: -e kurtosis values of collected operations of the outer-
race fault signal.

Operator Kurtosis

Dilation 1.33
Morphological gradient (MG) 2.61
Open 1.13
Difference filter (DIF) 2.76
White top-hat transform (WTH) 3.38
Close-open (CO) 0.86
Combination morphological filter (CMF) 0.94
Combination morphological filter hat (CMFH) 2.33
Erosion 1.02
Close 1.07
Close and open average (AC&O) 0.98
Black top-hat transform (BTH) 6.39
Combination of WTH and positive BTH
(CWTH&PBTH)

1.32

Open-close (OC) 0.98
CO and OC gradient (GCO&OC) 3.01
Morphology gradient product operation (MGPO) 4.56
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Figure 7: -e spectra of collected operations of the outer-race fault signal. (a) Dilation. (b) Erosion. (c) MG. (d) Close. (e) Open. (f ) AC&O.
(g) DIF. (h) BTH. (i) WTH. (j) CWTH&PBTH. (k) Close-open. (l) Open-close. (m) CMF. (n) GCO&OC. (o) CMFH. (p) MGPO.
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Figure 8: -e spectra of comparison methods of the outer-race fault signal: (a) PSO-MF, (b) envelope spectrum, (c) enhanced envelope
spectrum, and (d) autocorrelation spectrum.
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the heavy interference of power frequency and wheel-track
excitement.

5.3.2eCase of Inner-Race Fault. -e third case is the inner-
race data from CWRU. -e speed of the operating signal is
246 km/h. -e waveforms are shown in Figure 12 since the
interference of the test data is extremely low, and the am-
plitude of the operating signal is adjusted to be over-
whelming. -e spectrum of the synthesized data is shown in
Figure 12(d).

After processing PSO-MF to the faulty signal, the kur-
tosis values of the collected operators were obtained as
presented in Table 8. -e output of PSO-MF in this case is
WTH. -e corresponding optimization outputs of each

operator are illustrated in Figure 13, where the red triangles
indicate the frequency modulated by rotation frequency. It
can be found that MG, DIF, BTH, WTH, and GCO&OC are
capable of revealing the inner-race fault pattern. -e output
of PSO-WTH is WTH, which appears as the most sufficient
pattern with clearest characteristic and modulated
frequencies.

-e further comparisons among EA, EES, and AC are
shown in Figure 14. Figure 14(a) shows the zoom-in
spectrum of the output of PSO-MF, and the inner-race
frequency and its harmonics can be observed clearly.
Moreover, since the inner-race defect spins with the shaft
rotation, frequencies modulated by shaft rotation, appear
around the fault frequency spacing at the shaft rotation
frequency, are exposed by PSO-MF distinctly. On the
contrary, the envelope spectrum, enhanced envelope spec-
trum, and autocorrelation spectrum are incapable of real-
izing the fault information under the overwhelming
interference of the operating signal.

6. Discussion

6.1. 2e Selection and Performance of the Collected
Operators. To date, the operators and shapes of SE are
variously proposed and testified in many researches, which
make the full collection of all operators become extremely
difficult and time consuming. -e intention of the proposed
method is to build up a scheme to solve the choosing
problem for each certain signal; hence, only some typical
operators are selected. It is acceptable and applicable to add
some emerging operators into the proposed method which
may hopefully improve the effect of MF. As claimed in the
introduction, different operators may fit for different types
of signals and the best operator for all faulty signals barely
exists. In our cases, some operators (such as morphological
gradient, black top-hat, white top-hat, and difference filter)
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Figure 9: -e rolling element fault signal and operating signal: (a) the waveform of the operating signal, (b) the waveform of the test rig
signal, (c) the waveform of the synthesized signal, and (d) the spectrum of the synthesized signal.

Table 7: -e kurtosis values of collected operations of the rolling
element fault signal.

Operator Kurtosis

Dilation 1.88
Morphological gradient (MG) 33.28
Open 1.19
Difference filter (DIF) 53.37
White top-hat transform (WTH) 64.62
Close-open (CO) 0.66
Combination morphological filter (CMF) 1.06
Combination morphological filter hat (CMFH) 24.88
Erosion 2.12
Close 1.22
Close and open average (AC&O) 1.09
Black top-hat transform (BTH) 119.38
Combination of WTH and positive BTH
(CWTH&PBTH)

35.23

Open-close (OC) 1.18
CO and OC gradient (GCO&OC) 43.63
Morphology gradient product operation (MGPO) 3.66
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Figure 10: -e spectra of collected operations of the rolling element fault signal. (a) Dilation. (b) Erosion. (c) MG. (d) Close. (e) Open. (f )
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are stably effective and some operators (CO&OC gradient
and morphology gradient product operation) are mostly
functional while some operators do not work for the data.
Note that the outputs shown in Figures 4, 7, 10, and 13 are
not sufficient to judge the performance of these operators
but only the support the PSO-MF when dealing with dif-
ferent bearing fault signals.

6.2.2e Phase and Speed of Operating Signal. -ere are some
constraints in the field test of the operating vehicle, so the
uniform operating speed is hard to perfectly match the speed
of the testing rig. -e different speed will cause the difference
of phase in a signal with limited length. However, according

to the analyses in our experiments, the intervention of the
operating signal does not eliminate the pattern of bearing
faults but only raises the difficulty for diagnosing. Consid-
ering the phase difference, the operating signals containing
wheel-track excitement are added as a set of colored noise;
therefore, the corresponding analyses of operating signals
were neglected so that the revelation of fault patterns can be
more highlighted in this paper.

7. Conclusion

In this paper, to improve the performance of the mor-
phological filter on diagnosing defects of railway vehicle
bearing, the morphological filter based on particle swarm
optimization was proposed. -e main idea of the proposed
method is firstly setting multiple dimensions to represent
some typical operators and searching the optimal solutions
of each dimension by the index of kurtosis and then selecting
the best solutions among the various dimensions. -e se-
lection scheme and diagnosis performance were verified by
the analysis of a group of bearing fault signals added with
wheel-track interference. Some characteristics can be found
in PSO-MF. Firstly, the optimization scheme is capable of
selecting the best solution (or one of the best solutions)
among the collected operators. Secondly, by applying kur-
tosis as the fitness function, the optimized solution of MF
reduces the interference of shaft rotation or wheel-track
excitement. -irdly, the PSO-MF has advanced performance
on fault diagnosis under the cases with heavy colored noise.
Although the performance of PSO-MF on bearing diagnosis
of the railway vehicle is excellent, there is still a lot of room
for improvement. Only the SE shapes of flat and triangle are
considered in the proposed method, and more shape vari-
ants can be considered in the future work. -e computation
of PSO-MF is time consuming; the improvement of the
calculation speed of PSO will largely enhance the efficiency
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Figure 12: -e inner-race fault signal and operating signal: (a) the waveform of the operating signal, (b) the waveform of the test rig signal,
(c) the waveform of the synthesized signal, and (d) the spectrum of the synthesized signal.

Table 8: -e kurtosis values of collected operations of the inner-
race fault signal.

Operator Kurtosis

Dilation 1.19
Morphological gradient (MG) 15.65
Open 1.69
Difference filter (DIF) 14.65
White top-hat transform (WTH) 32.07
Close-open (CO) 1.05
Combination morphological filter (CMF) 1.16
Morphology gradient product operation (MGPO) 3.56
Erosion 1.96
Close 1.90
Close and open average (AC&O) 1.18
Black top-hat transform (BTH) 26.71
Combination of WTH and positive BTH
(CWTH&PBTH)

15.06

Open-close (OC) 1.61
CO and OC gradient (GCO&OC) 12.90
Combination morphological filter hat (CMFH) 15.06
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Figure 13: -e spectra of collected operations of the inner-race fault signal. (a) Dilation. (b) Erosion. (c) MG. (d) Close. (e) Open. (f ) AC&O.
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of PSO-MF. With the continuous collection of operators, it
will be interesting to compare with as many operators as
possible when analyzing the bearing fault signal.
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