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ABSTRACT

We introduce the value-and-criterion filter structure, a
new framework for designing filters based on mathematical
morphology.  The value-and-criterion filter structure is
more flexible than the morphological structure, because it
allows linear and nonlinear operations other than just the
minimum and maximum to be performed on the data.  One
particular value-and-criterion filter, the Mean of Least
Variance (MLV) filter, finds the mean over the
“subwindow” of data with the smallest variance within an
overall window.  The ability of the MLV filter to smooth
noise while preserving and enhancing edges and corners is
demonstrated.  An example application of the MLV filter
in improving the contrast of magnetic resonance images is
also shown.

1.  INTRODUCTION

This paper introduces a new framework for image filter-
ing, the value-and-criterion filter structure, which is based
on the concepts of mathematical morphology.  The mor-
phological opening and closing operators exhibit a regular
subwindow structure that results naturally from the sequen-
tial application of operations in a sliding filter window, or
structuring element.  This subwindow structure is the
basis for the value-and-criterion filter structure, which
allows the use of both linear and nonlinear operations with
the shape-based constructs of mathematical morphology.

The morphological opening and closing operators are
each made up of two sequential ordering operations.
Opening is a sliding minimum operation (erosion) fol-
lowed by a sliding maximum operation (dilation); closing
is dilation followed by erosion.  At each point in an
image, the opening is the maximum of several minima,
and the closing is the minimum of several maxima.  A
value-and-criterion filter also gets its output from an opera-
tor acting on the results of a first stage.  However, instead
of a single first operator such as erosion or dilation, a
value-and-criterion filter has two different operations in the
first stage.  One of the first-stage operators (the criterion
operator) provides information used to decide which of the

values from the other first-stage operator (the value opera-
tor) will be the final output.  This new filter structure is
significant because it unifies many different types of filters
with both linear and nonlinear operators into a single
mathematical formalism.

The idea of choosing among several local neighborhoods
based on a criterion other than the output of the filtering
operation has been used many times before in schemes for
edge-preserving smoothing [1-5].  Typically, these
smoothing algorithms output the mean of a local neigh-
borhood that has the smallest variance.  For example,
Kuwahara [1] defined a smoothing filter that finds the quad-
rant of a filtering window that has the smallest sample
variance, and outputs the mean of that quadrant.  The idea
behind this smoothing technique is that regions containing
edges will have a higher variance than more homogeneous
regions, and so the mean is taken over smooth regions and
not across edges.

In the value-and-criterion filter structure, letting the
value function be the mean and the criterion function be
the variance yields a filter similar to the edge-preserving
filters described above.  We call this filter the Mean of
Least Variance (MLV) filter.  The MLV filter has a more
regular structure of local neighborhoods and examines
more such neighborhoods than the earlier filters.  The
value-and-criterion filter structure also suggests an efficient
way to compute the filters, since the two operations in the
first stage may be performed independently.

2.  THE VALUE -AND-CRITERION FILTER
STRUCTURE

The value-and-criterion filter structure has two functions
which act on the original image f(x).  These functions are
the "value" function, V, and the "criterion" function, C,
and are defined over a structuring element N.  The
"selection" operator, S, acts on the output of the criterion
function and is defined over the structuring element Ñ, a
180° rotation of N.  If g(x) denotes the output of a value-
and-criterion filter, and v(x) and c(x) denote the output of
V and C, respectively, then the output of the filter is
defined by equations (1)–(3) below.
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where Ñx denotes the translation of Ñ such that it is
centered at position x.

Note that more than one value of ′x  may be chosen by
the selection operator if two or more values of the criterion
function in the window are equal.  In this case, the above
definition may give more than one value of v(x) for out-
put.  Some method of deciding among these values is
required.  Two potential solutions are:  (1) to average all
the selected values of v( ′x ) to yield the final output, and
(2) to choose the value of v( ′x ) closest to the value of f(x)
(that is, such that f x( ) − v ′x( )  is minimum) as the final

output, settling ties consistently in favor of either the
higher [v( ′x )>f(x)] or lower [v( ′x )<f(x)] value.  The
examples in this work use the second solution, and settle
ties in favor of the higher value.  This solution is less
resistant to noise at f(x) than the first solution, but per-
forms better at sharp, noiseless edges (where ties are
likely).  The first solution provides better noise reduction
in some situations, but sometimes blurs sharp edges
slightly.

Morphological opening is a value-and-criterion filter
where V and C are both the minimum operator and S is
the maximum operator.  Similarly, closing is a value-and-
criterion filter where V and C are the maximum operator
and S is the minimum operator.  New filters can be
designed with the value-and-criterion structure where V and
C are not the same.  An example of one of these new
filters is the Mean of Least Variance (MLV) filter
discussed below.

An important difference between the subwindow struc-
ture of the value-and-criterion filters and that of the earlier
edge-preserving smoothing filters is the number and regu-
larity of the subwindows within the overall filter window.
In the edge-preserving smoothing filter structures described
previously, there are fewer subwindows, or the subwin-
dows are irregularly shaped and/or differently sized.  In the
value-and-criterion structure with an n × n square structur-
ing element, there are n2 subwindows within a square
overall window of size (2n-1) × (2n-1).  Thus, the num-
ber of subwindows within the overall window grows
quickly as the size of the structuring element increases.
Because the previous filter structures were not as computa-
tionally efficient as the value-and-criterion structure, they
only considered several (often four, but sometimes as
many as seven) subwindows, and the subwindows were
only defined for a particular window shape.  The value-and-
criterion structure, however, identifies all the subwindows
of the same shape and size within an overall window.  (In
fact, the overall window of a value-and-criterion filter is
defined by the subwindows.)  Yet because of their more
efficient definition, value-and-criterion filters execute

considerably faster than previous implementations of
related smoothing filters.

One way that is often convenient for implementing a
value-and-criterion filter on a computer is to form a com-
plex image where the real part consists of the output of the
criterion stage, and the imaginary part contains the output
of the value stage of the filter.  The selection operator is
then applied only to the real part of the complex image
(while still keeping the imaginary part attached), and the
filter output is the imaginary part of the result of the selec-
tion operator.  This is merely a way to avoid explicitly
indexing the output of the value operator separately from
that of the criterion operator, but it considerably improves
the speed of the algorithm in some high-level languages
and image processing applications.

3.  MEAN OF L EAST V ARIANCE (MLV) F ILTER

3.1.  Definition
The Mean of Least Variance (MLV) filter is a standard

value-and-criterion filter where the value function is the
sample mean, the criterion function is the sample variance,
and the selection operator is the minimum.  Since the
sample variance requires the sample mean for its computa-
tion, the V and C functions are not really independent in
this case.  The MLV filter is described by equations (4)–(6)
below.
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Note that the 1
N

 term in the definition of c(x) is a nor-

malization constant and does not affect the selection opera-
tor (minimum); therefore, it may be removed from equa-
tion (5) without changing the operation of the filter.
Also, recall that if several values of ′x  satisfy the selec-
tion criterion, the value of v( ′x ) closest to f(x) is chosen,
with ties settled in favor of higher values.

The MLV filter acts on an effective window of
W  = N  ⊕  Ñ , where ⊕  denotes morphological dilation.
For example, a 1-D structuring element N of length 5
leads to an effective window W of length 9, and a 2-D
square structuring element of size 3×3 produces an overall
window that is 5×5 square.  The MLV filter outputs the
sample mean of the subwindow N with the smallest vari-
ance within the overall window W.  This filter is similar
to those described in [1-5], but its subwindow structure is
more thorough than any of the previous filters.  The
number of subwindows N in the overall window W is



equal to the number of points in N.  The value-and-
criterion structure also suggests a very efficient implemen-
tation of the MLV filter, in contrast to the previous filters,
which computed each subwindow separately for every win-
dow location.  Note also that the definition of the MLV
filter does not specify a dimensionality, so that 1-D, 2-D,
and 3-D filters can all be defined using equations (4)-(6).
Earlier filters were limited to 2-D applications.

3.2.  Properties
The MLV filter preserves sharp edges between homoge-

neous regions in an image, since structuring elements
(subwindows) containing an edge typically have a higher
variance than those that do not.  Thus, the sample mean
output by the MLV filter is from a subwindow that does
not contain an edge.  The MLV filter also sharpens blurred
edges that are not perfect steps.  This is illustrated in the
one-dimensional example below (Fig. 1).  The structuring
element (N) is five points long in this example.

original signal
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Fig. 1.  Edge-enhancing effect of 1-D MLV filter (|N| = 5).

In addition to sharpening edges, the MLV filter with a
square structuring element preserves 90° corners.  This is
similar to the behavior of morphological filters, and is
related to the shape-based aspects of the filter structure.  To
demonstrate the excellence of the MLV filter at preserving
corners, we use the technique described in [6] to determine
the corner response of the MLV filter for corners of all
angles.  This method computes the fraction of binary cor-
ners of various angles preserved by a filter.  This fraction
is found by integrating the filtered image over the area of
the original binary corner within a “region of interest” the
size of the overall filter window.  The original corner is
assumed to have its vertex at an inside corner of the region
of interest, and one edge aligned with the horizontal image
axis.

According to this technique, the MLV filter preserves a
greater percentage of all acute binary corners than the
median filter and the morphological opening.  The MLV
filter perfectly preserves corners of 90° or more, as does the
morphological opening.  The corner response of the MLV
filter compared to morphological opening and the median
filter is shown in Fig. 2.  The fractional preservation of a

binary corner for each filter is plotted in polar form for
angles from -180° to +180°.  A value of 1 indicates perfect
preservation and a value of 0 indicates complete removal of
the corner in the area of the filter window.  The fractional
preservations shown below were estimated using a 13×13
square structuring element for the MLV filter, and using a
63×63 square filter window for the median filter.  The
response of the morphological opening is given in a
general form (for continuous space) in [6].
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Fig. 2.  Fractional corner preservation of the MLV filter,
median filter, and morphological opening (square windows).

3.3.  Example
An example of the enhancement of boundaries between

homogeneous regions by the MLV filter is shown in the
figures below.  Fig. 3 is a magnetic resonance image
(MRI) of a human head in coronal section.  A common
image analysis task for this type of image is segmenting
the different types of tissues in the brain into different
classes [7].  The MLV filter works well as a pre-filter for
this problem, since it smoothes noise in homogeneous
regions and sharpens the boundaries between regions.

Gerig [8] used anisotropic diffusion to reduce noise and
improve the contrast of magnetic resonance images.  These
effects are similar to those of the MLV filter.  One major
difference is that anisotropic diffusion requires many itera-
tions to yield a good result, whereas the MLV filter pro-
duces most of its improvement in the first pass.  Both
techniques require parameters to be chosen that affect the
output.  Anisotropic diffusion requires choosing the num-
ber of iterations and a parameter that affects the level of
noise smoothing and the ability of the filter to preserve
edges.  For the MLV filter, the size and shape of the
structuring element must be chosen.  The size of the
structuring element directly influences the degree of noise



smoothing by the filter, and the size and shape both affect
the preservation of fine details in the image.

Since a “noiseless original” image corresponding to the
noisy MRI cannot be found, standard techniques for esti-
mating image quality and the signal-to-noise ratio cannot
be used.  Gerig estimated the noise in MRIs by finding the
8×8 regions with the smallest standard deviation in the tis-
sue and background areas of the image.  The assumption
behind this method is that an area with the smallest varia-
tion represents a homogeneous region of the tissue (or
background) and therefore the standard deviation of this
region represents the amount of noise in these regions.
This method will automatically choose areas with the low-
est noise as well, so the noise estimate is probably low.
The same 8×8 regions are used to estimate the noise in the
filtered image when comparing it to the unfiltered image.

Using this noise estimation technique, Gerig found for
anisotropic diffusion that the ratio of the noise estimates
of the filtered to the unfiltered image ranged between 0.15
to 0.20 for background and between 0.27 and 0.30 for tis-
sue for images of a formalin fixed human brain [8].  This
means that anisotropic diffusion reduced the estimated
standard deviation of the noise in the tissue regions to one-
third to one-fourth of the original value.

The results of one iteration of the MLV filter with a
5×5 structuring element on the original MR image of a
human head are shown in Fig. 4.  One iteration of the
MLV filter with a 3×3 structuring element is shown in
Fig. 5.  The edges between different types of tissue are
more distinct in the filtered images than in the original,
and the noise in the image is reduced by filtering.
Estimating the noise from the 8×8 regions with the small-
est standard deviation in the tissue and background areas of
the image, the ratio of the filtered to unfiltered noise for
one iteration of the MLV filter with a 5×5 structuring
element is 0.00 for background and 0.28 for tissue.  For
the background region, the MLV filter reduces the entire
8×8 region to a constant gray level (assuming the filtered
image is rounded to integer gray level values).  Therefore,
a single pass of the 5×5 MLV filter provides noise reduc-
tion and edge enhancement similar to many passes of
Gerig’s anisotropic diffusion method.  For the MLV filter
with a 3×3 structuring element, the ratios are 0.33 for
background and 0.66 for tissue, indicating slightly less
noise reduction than for anisotropic diffusion.  However,
the smaller structuring element does preserve fine details in
the image better than the 5×5 structuring element does.

Another nonlinear filter that is often used to suppress
noise while preserving edges is the median filter.
However, the median filter does not improve the contrast
of images because it does not sharpen edges or preserve
corners, unlike the MLV filter.  The results of 5×5 square
median filtering of the original image are shown in Fig. 6.
The edges in the median-filtered image are not nearly as
distinct as in the MLV-filtered image, although both filters
remove noise quite well.

4.  CONCLUSIONS

The value-and-criterion filter structure is useful for
designing filters with various linear and nonlinear opera-
tors that also have the shape-based characteristics of mor-
phological filters.  Value-and-criterion filters extend easily
to three dimensions, and the structure is computationally
more efficient than similar filters defined previously.  An
important example of a value-and-criterion filter is the
MLV filter, which uses the variance of local areas to
determine which mean to use as the output of the filter.
The MLV filter exhibits edge-enhancing noise smoothing
behavior, and results in images that are significantly
sharper than median-filtered images.
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Fig. 3.  Magnetic resonance image of human head
(coronal section)

Fig. 5.  Image filtered by the MLV filter
(3×3 structuring element)

Fig. 4.  Image filtered by the MLV filter
(5×5 structuring element)

Fig. 6.  Image filtered by a 5×5 square median filter


