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ABSTRACT

We introducethe value-and-criterionfilter structure, a

values from the other first-staggperator (thevalue opera-
tor) will be the final output. Thigiew filter structure is
significant because it unifies many different types of filters

new framework for designing filters based on mathematicalwith both linearand nonlinear operatorsnto a single

morphology. Thevalue-and-criterionfilter structure is
more flexible than the morphological structubecause it

mathematical formalism.
The idea of choosing among several local neighborhoods

allows linearandnonlinear operations other than just the based on ariterion other than the output of the filtering
minimum and maximum to be performed on the data. Oneoperation has been used many tirbefore inschemes for

particular value-and-criteriorfilter, the Mean of Least
Variance (MLV) filter, finds the mean over the
“subwindow” of datawith the smalleswariancewithin an
overall window. The ability of the MLV filter t&mooth
noise while preservingndenhancingedges andorners is
demonstrated. An exampégplication of the MLVfilter
in improving the contrast of magnetiesonancémages is
also shown.

1. INTRODUCTION

This paper introduces a new framework ifoagefilter-
ing, thevalue-and-criteriorilter structure, which idased
on the concepts of mathematicabrphology. Themor-
phological opening and closingperatorsexhibit aregular
subwindow structure that results naturally from sequen-

tial application of operations in a sliding filter window, or

structuring element. Thisubwindow structure is the
basis for thevalue-and-criterionfilter structure, which

edge-preserving smoothing [1-5]. Typically, these
smoothing algorithms output theean of a locaheigh-
borhoodthat has the smallestariance. For example,
Kuwahara [1] defined a smoothing filter that finds tuad-

rant of a filteringwindow that has the smallestample
variance, and outputs the mean of thaadrant. The idea
behind this smoothing technique is that regions containing
edges will have a highefariancethan more homogeneous
regions, and so the mean is taken over smooth regions and
not across edges.

In the value-and-criterionfilter structure, letting the
value function be the meaand the criterion function be
the varianceyields a filter similar to theedge-preserving
filters describedabove. We call this filter thMean of
Least Variance (MLVYilter. The MLV filter has amore
regular structure oflocal neighborhoodsand examines
more such neighborhoods than tharlier filters. The
value-and-criterion filter structure also suggests#igient
way to compute the filters, since the two operations in the
first stage may be performed independently.

allows the use of both linear and nonlinear operations with 2. THE VALUE-AND-CRITERION FILTER

the shape-based constructs of mathematical morphology.

The morphological openingnd closing operators are
each made up ofwo sequential orderingoperations.
Opening is a sliding minimunoperation (erosionYol-
lowed by a slidingnaximum operation (dilation); closing
is dilation followed by erosion. Ateach point in an
image, the opening is the maximum s#veralminima,
andthe closing is the minimum oeveralmaxima. A
value-and-criterion filter also gets its output fromagera-
tor acting on the results of a first stagelowever,instead

STRUCTURE

The value-and-criterion filter structure h@eo functions
which act on the original imad#éx). These functions are
the "value" function,V, andthe "criterion" function,C,
and aredefined over a structuring elemenN. The
"selection" operatorS, acts on the output of theiterion
function and is definedver the structuring elememt, a
180° rotation ofN. If g(x) denotegshe output of avalue-
and-criterionfilter, andv(x) andc(x) denotethe output of

of a single firstoperatorsuch as erosion or dilation, a V and C, respectively, then the output of the filter is
value-and-criterion filter has two different operations in the defined by equations (1)—(3) below.

first stage. One of the first-staggperators (thecriterion
operator) provides informatiomsed todecidewhich of the



V(X) V{ f(X); N} 1) considerably fasterthan previous implementations of
related smoothing filters.

c(x) C{ f(x); N} @ One way that is often convenient for implementing a
_ L . N . value-and-criteriorfilter on a computer is to form eom-
o(x) = V({X X O e(x) = S{C(X)’ }}) ®) plex image where the real part consists of the output of the
- _ - . criterion stage, and the imaginary part containsotigput
where Ny denotesthe translation ofN such that it IS of the value stage of the filter. The selectaperator is
centered at positiox. thenappliedonly to thereal part of the compledxmage
Note that more than one value 8f may be chosen by (while still keeping the imaginary pasttached)and the
the selection operator if two or more values ofchterion filter output is the imaginary part of the result of geec-

function in thewindow areequal. Inthis case, theabove  tion operator. This isnerely a way to avoidxplicitly
definition may give more than one valuewk) for out- indexing theoutput of the valueperator separately from
put. Somemethod of deciding among these values is that of the criterion operator, but ¢onsiderably improves
required. Two potential solutionsare: (1) toaverage all  the speed ofthe algorithm in some high-levédnguages
the selectedvalues ofv(X") to yield the final output, and and image processing applications.

(2) to choose the value ofX’) closest to the value dfx)

(that is, such thaltf (x) — v(x’)| is minimum) as thdinal 3. MEAN OF LEAST VARIANCE (MLV) FILTER

output, settling ties consistently ifavor of either the
higher p(X')>f(x)] or lower [M(X')<f(x)] value. The
examples in this work use tleecondsolution, andsettle
ties infavor of the higher value. This solution is less
resistant to noise dfx) than the first solution, buper-
forms better at sharp, noiselesslges (whereties are
likely). The first solutionprovides bettenoise reduction

in some situations, but sometimes blwbkarp edges
slightly.

Morphological opening is avalue-and-criterion filter
where V and C areboth the minimumoperatorand S is V(X) =1 z f(y) @)
the maximum operator. Similarly, closing isvalue-and-
criterion filter where V and C are the maximumoperator
and S is the minimum operator. Newfilters can be _ 1
designed with the value-and-criterion structure whérand c(x) = INJ
C arenot the same. Arexample of one of these new yON,
fiters is the Mean of LeastVariance (MLV) filter
discussed below. MLy MLV{ f(x); N} =

An importantdifference betweenthe subwindowstruc- . .
ture of thevalue-and-criteriorfilters andthat of theearlier V({X'Z x' ORy; c(x') = min[c(y): yd Nx]})
edge-preservingmoothing filters is the numbeand regu-
larity of the subwindows within the overall filtgvindow. Note that theﬁ term in the definition of(x) is a nor-
In the edge-preserving smoothing filter structudescribed o IN| )
previously, there are fewersubwindows, or the subwin- Malization constant and does not affect the selectjna-
dows are irregularly shaped and/or differently sized. In thetor (minimumy;therefore, itmay beremovedfrom equa-
value-and-criterion structure with arx n squarestructur- ~ tion (5) without changing the operation of the filter.
ing element,there are n2 subwindowswithin a square Also, recall that if severalvalues of X' satisfy theselec-

3.1. Definition

The Mean of LeasVariance(MLV) filter is a standard
value-and-criteriorfilter wherethe value function is the
sample mean, the criterion function is the sanvaléance,
and the selectioroperator isthe minimum. Since the
sample variance requires the sample meartfatomputa-
tion, the V and C functionsarenot really independent in
this case. The MLV filter is described by equatié¢fs-(6)
below.

f(y) - v(3)” ©)

©)

overall window ofsize (d-1) x (2n-1). Thus, thenum- tion criterion, the value of( X") closest tof(x) is chosen,
ber of subwindowswithin the overallwindow grows  With ties settled in favor of higher values.
quickly as the size of the structuring elemémtreases. The MLV filter acts on aneffective window of

Because the previous filter structures weot ascomputa- W = N O N, where[] denotesmorphological dilation.
tionally efficient asthe value-and-criteriorstructure, they ~ For example, a 1-D structuring elemeNit of length 5
only consideredseveral (oftenfour, but sometimes as !eads to an effective window of length 9,and a 2-D
many asseven) subwindowsand the subwindowswere square structuring element of S|ze33pr(_)duces an overall
only defined for a particular window shape. Taue-and- ~ Window that is 5 square. The MLV filter outputs the
criterion structure, however, identifiedl the subwindows ~ Sample mean of the subwinddwwith the smallesvari-

of the same shape and size within an overall window. (mancewnhln the overallwindow W.  This filter is similar
fact, the overallwindow of a value-and-criteriofilter is ~ t0 those described in [1-Sjut its subwindow structure is
defined bythe subwindows.) Yebecause otheir more ~ more thorough than any of the previous filters. ~ The
efficient definition, value-and-criterion filters execute ~ number of subwindow$l in the overallwindow W is



equal tothe number of points ilN. The value-and-

binary cornerfor eachfilter is plotted in polar form for

criterion structure also suggests a very efficient implemen-angles from -180° to +180°. A value ofifddicatesperfect

tation of the MLV filter, in contrast to the previous filters,

preservation and a value of O indicates complete removal of

which computed each subwindow separately for every win-the corner in tharea ofthe filter window. Thefractional

dow location.

Note also that the definition of the MLV preservations shown belowere estimatedusing a 1313

filter does not specify a dimensionality, so that 1-D, 2-D, square structuring element for the MLV filtemdusing a

and 3-D filters canall be defined using equations (4)-(6).
Earlier filters were limited to 2-D applications.

3.2. Properties

The MLYV filter preservesharpedgesbetween homoge-
neous regions in an image, since structurglgments
(subwindows)containing anedgetypically have a higher
variancethan those that do not. Thus, the samplean
output by the MLV filter is from asubwindowthat does
not contain an edge. The MLV filter also sharpblusred
edgesthat arenot perfectsteps. This is illustrated in the
one-dimensional example beldig. 1). Thestructuring
element ) is five points long in this example.

----B--- original signal
—o—— MLV filtered

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Fig. 1. Edge-enhancing effect of 1-D MLV filtgN| = 5).

In addition tosharpening edgethe MLV filter with a
squarestructuring elemenpreserves 90orners. This is
similar to the behavior of morphological filterand is
related to the shape-based aspects of the filter structure.
demonstrate the excellencetbe MLV filter at preserving
corners, we use thiechniquedescribed in6] to determine
the cornerresponse of the MLV filter focorners of all
angles. Thismethod computes the fraction of binayr-
ners of various anglgsreserved by dilter. This fraction
is found byintegrating thefiltered image over thearea of
the original binary corner within ‘aegion of interest” the
size of the overall filter window. The originabrner is
assumed to have its vertex at an inside corner ofetien
of interest, and one edge aligneith the horizontaimage
axis.

According tothis techniquethe MLV filter preserves a
greater percentage Il acute binary corners than the
medianfilter andthe morphological opening. The MLV

63x63 squarefilter window for the median filter. The
response of the morphological opening is given in a
general form (for continuous space) in [6].
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Fig. 2. Fractional cornepreservation ofthe MLV filter,

median filter, and morphological opening (square windows).

3.3. Example
An example of theenhancement of boundariéstween
homogeneous regions by the MLV filter is shown in the
figures below. Fig. 3 is amagneticresonance image
T@VRI) of a humanhead incoronal section. A common
image analysis task fdahis type of image is segmenting
the different types of tissues in the brain intdifferent
classes [7]. The MLV filter works well aspae-filter for
this problem, since it smoothes noise hemogeneous
regions and sharpens the boundaries between regions.
Gerig [8] usedanisotropic diffusion taeducenoise and
improve the contrast of magnetic resonance imagésse
effects are similar to those of the MLV filter. Omajor
difference isthat anisotropidiffusion requiresmany itera-
tions toyield a goodresult, whereagshe MLV filter pro-
ducesmost of its improvement in the first passBoth
techniguegequireparameters to be chosé¢mat affect the
output. Anisotropidiffusion requireschoosing the num-
ber of iterationsand aparameterthat affectsthe level of

filter perfectly preserves corners of 90° or more, as does th@oise smoothingnd the ability of the filter topreserve

morphological opening. Theornerresponse of the MLV
filter compared tamorphological openingnd the median
filter is shown in Fig. 2. Théractional preservation of a

edges. For the MLV filter, the sizeand shape of the
structuring element must be chosen. The size of the
structuring elemendirectly influenceghe degree ofnoise



smoothing by the filter, and the siaedshape bothaffect
the preservation of fine details in the image.

Since a “noiseless original” imagm®rresponding to the
noisy MRI cannot bdound, standardtechniques for esti-
mating image qualitandthe signal-to-noise ratigannot

4. CONCLUSIONS

The value-and-criterionfilter structure is useful for
designing filters with various lineaand nonlinearopera-

be used. Gerig estimated the noise in MRIs by finding thetors that alschavethe shape-basedharacteristics of mor-
8x8 regions with the smallest standard deviation in the tis-phological filters. Value-and-criteriorfilters extendeasily

sueandbackground areas dhe image. The assumption
behind this method is that ameawith the smalleswaria-
tion represents a homogeneous regiontleé tissue (or
background)and therefore the standarddeviation of this
region representthe amount of noise in these regions.
This method will automatically choose areas with Ithe-
est noise as well, so the noise estimate is probafly

to threedimensionsandthe structure is computationally
more efficientthan similar filtersdefinedpreviously. An
important example of aalue-and-criterionfilter is the
MLV filter, which uses thevariance oflocal areas to
determinewhich mean to use as the output of the filter.
The MLV filter exhibits edge-enhancingoise smoothing
behavior, and results in images thatre significantly

The same 88 regions are used to estimate the noise in thesharper than median-filtered images.

filtered image when comparing it to the unfiltered image.
Using this noise estimatiorechnique, Gerigound for
anisotropic diffusiorthat the ratio of the noise estimates
of the filtered to theaunfilteredimagerangedbetween0.15
to 0.20 for backgroundndbetween0.27 and0.30 for tis-
sue for images of a formaliiixed human brain [8]. This
means that anisotropidiffusion reducedthe estimated
standard deviation of the noise in the tissue regiorené
third to one-fourth of the original value.
The results of one iteration of the MLV filter with a

5x5 structuring element on the original MR image of a

humanhead areshown in Fig. 4. One iteration of the
MLYV filter with a 3x3 structuring element is shown in
Fig. 5. The edgesbetween differentypes of tissue are
more distinct in théfiltered images than in the original,
and the noise in the image igeduced by filtering.
Estimating the noise from thex8 regions with the small-
est standard deviation in the tissarad background areas of
the image, the ratio of thidtered to unfilterednoise for
one iteration of the MLV filter with a %5 structuring
element is 0.00or backgroundand0.28 for tissue. For
the backgroundregion, the MLV filter reducesthe entire
8x8 region to a constant gray level (assumingfiltexed
image is rounded to integer gray level value$herefore,
a single pass of thex5 MLV filter providesnoise reduc-
tion and edgeenhancemensimilar to many passes of
Gerig’s anisotropic diffusion method. For the MifNter
with a 3x3 structuring element, the raticse 0.33 for
backgroundand 0.66 for tissue, indicating slightly less
noisereductionthan for anisotropic diffusion. However,

the smaller structuring element does preserve fine details in

the image better than the% structuring element does.

Another nonlinear filter that is oftensed tosuppress
noise while preservingedges is the median filter.
However, themedianfilter doesnot improve thecontrast
of imagesbecause it doemot sharpenedges or preserve
corners, unlike the MLV filter. The results okD square
median filtering of the original image are showrfFig. 6.
The edges inthe median-filteredimage are not nearly as
distinct as in the MLV-filtered image, although both filters
remove noise quite well.
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Fig. 3. Magnetic resonance image of human head Fig. 4. Image filtered by the MLV filter
(coronal section) (5%5 structuring element)

Fig. 5. Image filtered by the MLV filter Fig. 6. Image filtered by @& square median filter
(3x3 structuring element)



