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Abstract. Perturbed geodesics are trajectories of particles moving on

a semi-Riemannian manifold in the presence of a potential. Our purpose
here is to extend to perturbed geodesics on semi-Riemannian manifolds the

well known Morse Index Theorem. When the metric is indefinite, the Morse

index of the energy functional becomes infinite and hence, in order to ob-
tain a meaningful statement, we substitute the Morse index by its relative

form, given by the spectral flow of an associated family of index forms. We

also introduce a new counting for conjugate points, which need not to be
isolated in this context, and prove that our generalized Morse index equals

the total number of conjugate points. Finally we study the relation with

the Maslov index of the flow induced on the Lagrangian Grassmannian.

1. Introduction

A semi-Riemannian manifold is a smooth n-dimensional manifold M en-
dowed with a (pseudo) metric given by a nondegenerate symmetric two-form g
of constant index ν. We denote by D the associated Levi–Civita connection and
by D/dx the covariant derivative of a vector field along a smooth curve γ. Let
I be an interval on the real line. Let V be a smooth function defined on I ×M .
A perturbed geodesic abbreviated as p-geodesic is a smooth curve γ: I →M which
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satisfies the differential equation

(1.1)
D

dx
γ′(x) +∇V (x, γ(x)) = 0

where ∇V denotes gradient of V (x,−) with respect to the metric g.
From the viewpoint of analytical dynamics, the data (g, V ) define a mechani-

cal system on the manifoldM , with kinetic energy g(v, v)/2 and time dependent
potential energy V . Solutions of the differential equation (1.1) are trajectories
of particles moving on the semi-Riemannian manifold in the presence of the po-
tential V . If the potential vanishes we get trajectories of free particles and hence
geodesics on M . This motivates the suggestive name, “perturbed geodesics”,
already adopted in [36] for the periodic case. If the potential V is time indepen-
dent then, modulo reparametrization, perturbed geodesics become geodesics of
the Jacobi metric associated to (g, V ). The total energy

e =
1
2
g(γ(x))(γ′(x), γ′(x)) + V (γ(x))

is constant along such trajectories and when V is bounded from above the solu-
tions of (1.1) with energy e greater than supm∈M V (m) are nothing but repara-
metrized geodesics for metric [e− V ]g on M with total energy one (see [1]).
In what follows we will consider perturbed geodesics connecting two given

points of M and we will normalize the domain by taking as I the interval [0, 1].
A vector field ξ along γ is called a Jacobi field if it verifies the linear differ-

ential equation

(1.2)
D2

dx2
ξ(x) +R(γ′(x), ξ(x))γ′(x) +Dξ(x)∇V (x, γ(x)) = 0,

where R is the curvature tensor of D.
Given a p-geodesic γ, an instant x ∈ (0, 1] is said to be a conjugate instant

if there exists at least one non zero Jacobi field with ξ(0) = ξ(x) = 0. The
corresponding point q = γ(x) on M is said to be a conjugate point to the point
p = γ(0) along γ.
Let I be the n-dimensional vector space of all Jacobi fields along γ verifying

ξ(0) = 0. The number m(x) = dim {ξ ∈ I : ξ(x) = 0} is called the geometric
multiplicity of x. Thus x is a conjugate instant if and only if m(x) > 0. Let
I[x] = {ξ(x) : ξ ∈ I} ⊂ Tγ(x)M . Denoting with ⊥ the orthogonal with respect
to the metric g, the rank theorem applied to the homomorphism ξ ∈ I → ξ(x)
gives m(x) = codim I[x] = dim I[x]⊥.
We will say that a conjugate instant x is regular if the restriction of the

form gγ(x) to I[x]⊥ is a non degenerate quadratic form and that γ is a regular
p-geodesic if all the conjugate instants along γ are regular. It is easy to see that
regular conjugate instants are isolated and therefore any regular p-geodesic γ
has only a finite number of conjugate instants.
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The conjugate index of a regular p-geodesic γ is defined by

(1.3) icon(γ) =
∑
x∈(0,1]

sign (g|I[x]⊥)

where sign denotes the signature of a quadratic form.
It is easy to see that both the regularity and icon(γ) are preserved under

small enough p-geodesic perturbations of a regular p-geodesic. For geodesics on
a semi-Riemannian manifold this was proved in [19] and [16], where it was also
shown that the sum in (1.3) is not a topological invariant of γ if the geodesic is
not regular.
In what follows we will shortly describe some known results in the geodesic

case. If the metric is Riemannian the conjugate points along a geodesic are always
regular and sign (g|I[x]⊥) = m(x). The regularity of all conjugate points implies
then that icon(γ) is a topological invariant. The celebrated Morse index theorem
states that the Morse index µMorse(γ) of the geodesic γ, considered as a critical
point of the energy functional, equals the total multiplicity

∑
x∈]0,1]m(x) of

conjugate points along the geodesic.
The regularity property and the Morse index theorem, appropriately re-

stated, continue to be true for time-like and light-like geodesics on Lorentz man-
ifolds. Everything turns to be as before, eventually after passing to a quotient
space of the space of Jacobi fields (see [6] for the proof of this result and its ap-
plications to relativity). However the above approach breaks down for space-like
geodesics or for geodesics of any causal character on general semi-Riemannian
manifolds. In this case not only the Morse index of a geodesic fails to be finite
but also the conjugate points can accumulate. Moreover, they can disappear
under a small perturbation. Thus, in order to formulate the Morse index the-
orem for geodesics and p-geodesics on semi-Riemannian manifolds, one has to
extend (1.3) to a topological invariant of general p-geodesics and find some kind
of renormalized Morse index as a substitute for the right hand side.
The first breakthrough for this problem in the geodesic case was obtained by

Helfer in [19]. His substitute for the Morse index is a spectral index defined as
the sum of Krein signatures of negative real eigenvalues of the Jacobi differential
operator, viewed as a self-adjoint operator on a Krein space. Recently, in a series
of papers, Piccione, Tausk and their collaborators [27], [33], [16], [8], [32] initiated
a sort of critical review of Helfer’s work, improving and completing his results.
They fixed a technical gap in Helfer’s argument in [8]. In [27], following Helfer,
they defined conjugate index by equation (1.3) for any geodesic, irrespective
of whether it is regular or not, but they gave an example which shows that
this naive definition does not work in the non regular case. However the correct
expression for the conjugate index of a degenerate conjugate point was not given,
and therefore they conclude that the Morse index theorem holds true for regular
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geodesics only. Their main result in [33], [16] is an expression for the spectral
index as the difference between Morse indices of the index form (the Hessian)
restricted to some special subspaces of the domain. Similar decomposition was
already stated by Helfer in [19] without proof.

What we propose here is a different definition of the two sides in the Morse
index theorem which extends to perturbed geodesics as well. This allows us to
handle both the problem with the Morse index and the accumulation of conjugate
points, providing a new and, we believe, interesting proof of this theorem.

The Hessian hγ of the energy functional at a p-geodesic γ is a bounded
Fredholm quadratic form. If moreover hγ is nondegenerate, the p-geodesic γ is
called nondegenerate. Together with a nondegenerate p-geodesic γ we consider
a path γ̃ of perturbed geodesics canonically induced by γ on the manifold Ω(M)
of all H1-paths on M (see Section 3). As generalized Morse index of γ we take
the negative of the spectral flow of the family of Hessians of the energy functional
along the canonical path γ̃.

Roughly speaking, the spectral flow of a path of Fredholm quadratic forms or,
what is the same, the spectral flow of the path {At}t∈[a,b] of self-adjoint Fredholm
operators arising in the Riesz representation of the forms, is the integer given by
the number of negative eigenvalues of Aa that become positive as the parameter t
goes from a to b minus the number of positive eigenvalues of Aa that become
negative. It is easy to see that if one of (and hence all) the operators in the
path have a finite Morse index, then the spectral flow of a path A is nothing but
the difference between the Morse indices at the end points. Thus spectral flow
appears to be the right substitute of the Morse index in the framework of strongly
indefinite functionals. For example, in [12], it substitutes the Morse index in
defining a grading for the Floer homology groups. In [11] it plays the same role in
the formulation of a bifurcation theorem for critical points for strongly indefinite
functionals. In general the spectral flow depends on the homotopy class of the
whole path. However in the specific case of the energy functional associated to a
mechanical system things are simpler. In this framework, spectral flow depends
only on the endpoints of the path and therefore it can be considered as a relative
form of Morse index in the sense of [13].

We also change the counting of conjugate points. The papers [19], [33] follow
the lines of the proof of the Morse index theorem by Duistermaat [10], which
essentially leads to consider as the “total number of conjugate points” along γ
the Maslov index of the flow line induced on the Lagrangian Grassmanian by
the associated Hamiltonian flow. We define the conjugate index µcon by means
of a suspension of the complexified family of boundary value problems defining
Jacobi fields. The resulting boundary value problem is parameterized by points of
the complex plane. The conjugate instants are in one to one correspondence with
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points in the complex plane where the determinant of the associated fundamental
matrix vanishes. This determinant defines a smooth map from an open subset
of the complex plane into the plane. A well known topological invariant that
counts algebraically the zeroes of a map is the Brouwer degree. In order to keep
signs according to the Riemannian case we define the conjugate index µcon as
the minus the degree of this map. With this said, our main theorem takes the
standard form.

Theorem 1.1. Let (M, g) be a semi-Riemannian manifold, V : I ×M → R
a smooth potential and γ: I → M a nondegenerate perturbed geodesic. Then
µspec(γ) = µcon(γ).

While µspec(γ) has an intrinsic, i.e. coordinate free definition through the
spectral flow of Hessians, the conjugate index is constructed using an appropriate
choice of coordinates along the perturbed geodesic. The above theorem shows in
particular the independence of conjugate index from the various choices involved
in the construction.
The classical Morse index theorem is a special case of Theorem 1.1. When

the metric is Riemannian µspec(γ) = µMorse(γ) while µcon(γ) =
∑
x∈]0,1]m(x).

Our interest in this problem was partially motivated by the questions about
the stability of the focal index raised in [27]. However the main reason that lead
us to the present formulation of the Morse index theorem in terms of the spectral
flow is because of the relevance of this invariant to bifurcation of critical points
of strongly indefinite functionals found in [11]. Our purpose is to combine the
index theorem with the results in [11] in order to study bifurcation of perturbed
geodesics on semi-Riemanian manifolds. This is done in [29].
A few words about our definition of conjugate index are in order. It is very

close to other topological invariants that arise in bifurcation theory. To some
extent it was suggested by the approach to Hopf bifurcation in [20] and that of
potential operators in [22] where analogous invariants are treated in this way.
The simplest topological invariants which detect gauge anomalies are also of
this form [4]. Related ideas in the context of Sturm–Liouville boundary value
problems can be found in [14].
Three beautiful papers [5], [18], [34] have strongly influenced the method

of proof of Theorem 1.1. This proof has some interest in its own. It was found
in trying to understand the relation between the Morse index and regularized
determinants for families of boundary value problems discussed in [26]. Although
we did not quite succeed in this, yet we believe that the proof of our theorem shed
some light on that question. Even in the case of Riemannian manifolds it gives
a new proof of the classical Morse Index Theorem. Previous proofs either used
the variational characterization of eigenvalues of a self-adjoint operator (which
cannot be used in the semi-Riemannian case) or the homotopy properties of
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Lagrangian Grassmannian Λn. Here we substitute the later with the standard
properties of topological degree and operators in the trace class.

Other variants of our proof can be easily conceived. A more topological but
less elementary one should be along the following lines: the family of complex
self-adjoint operators has an index bundle in K(S2) ≡ Z whose first Chern class
can be easily related to the spectral index as in [7]. On the other hand one
can try to relate this class to the conjugate index by deforming the clutching
function of this bundle to the map bz in Section 4. This will make the Morse
index theorem reminiscent of the Atiyah–Singer index theorem for families of
complex self-adjoint Fredholm operators.

On the other hand, after Floer’s work, results of type spectral flow equals
Maslov index became increasingly popular. See for example [13], [34] and the
references there. The paper of Nicolaescu [30] places them into the realm of
index theorems for one parameter families of real self-adjoint Fredholm operators.
Index theorems for variational problems with general Lagrangians and general
boundary conditions, e.g. focal points for geodesics starting from a sub-manifold
[37], [32], can be also cast in the above form and indeed can be easily deduced
as particular cases of the main theorem in [34].

We consider here only perturbations of the geodesic energy functional by
a potential because, as we mentioned above, this is the most general framework
on which the generalized Morse index has an intrinsic, geometric meaning. For
more general Lagrangians, as for example in [37], it still can be defined but it
depends on the choice coordinates. On the contrary our theory is general enough
to cover trajectories of a mechanical system while keeping the geometric content
of the geodesic case.

The paper is structured as follows: in Section 2 we shortly review the spec-
tral flow of one parameter families of quadratic functionals of Fredholm type.
In Section 3 we give the variational formulation of our geometric problem and
introduce the spectral index. In Section 4, using the orthonormal parallel triv-
ialization along the p-geodesic, we define the conjugate index and compute it
in terms of the associated Green function. Theorem 1.1 is proved in Section 5,
while Section 6 is devoted to the relation with the Maslov index.

This is a second, slightly enlarged version, of the paper. The first version
circulated in the form of a preprint from January 2003. We were unaware of the
paper [37] at that time.

Finally, let us point out that the main idea in [32] (i.e. that on semi Rie-
mannian manifolds the spectral flow detects among conjugate points those that
are bifurcation points), the one in [15] (that at degenerate conjugate points this
can be computed by means of partial signatures) and the main idea in this paper
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(that conjugate points can be also counted using topological degree of a Wron-
skian) belong to the same project and were all conceived in discussions connected
with the Ph.D. thesis of A. Portaluri at Polytechnic University of Turin.

2. Spectral flow for paths of Fredholm quadratic forms

The informal description of the spectral flow of a path of self-adjoint oper-
ators given in the introduction can be made rigorous in many different ways.
Beginning with [5], several different approaches to this invariant appeared in the
literature. Here we will use the approach in [11]. We will need their construction
in a slightly generalized form since our goal is to give an intrinsic, i.e. coordinate
free, construction of the generalized Morse index.
The tangent space to the manifold of paths on a semi-Riemannian manifold

has a natural Hilbertable structure but not a natural Riemannian metric on it.
Therefore we have to work directly with paths of bounded quadratic (equiva-
lently bilinear) forms arising as Hessians of the energy functional and not with
self-adjoint operators representing them with respect to a given scalar product.
Fortunately the spectral flow, being a topological invariant, depends only on the
path of quadratic forms and not, as the name could misleadingly suggest, on the
spectrum of the operators representing the form. Below we will give the very
simple proof of this nontrivial fact. Then we will be able to define spectral flow
of a family of Fredholm quadratic forms on a Hilbert bundle over the interval
[0, 1] which is the object that intrinsically arises in our framework.
Let S, T be two invertible self-adjoint operators on a Hilbert space H such

that S−T is compact. Then the difference between spectral projections of S and
T corresponding to a given spectral set is also compact. Denoting with E−( · )
and E+( · ) the negative and positive spectral subspace of an operator, it follows
then that E−(S) ∩ E+(T ) and E+(S) ∩ E−(T ) have finite dimension [11], [3].
The relative Morse index of the pair (S, T ) is defined by

µrel(S, T ) = dim {E−(S) ∩ E+(T )} − dim {E+(S) ∩ E−(T )} .

It is easy to see that when the negative spectral subspaces of both operators
are finite dimensional µrel(S, T ) is given by the difference µMorse(S) − µMorse(T )
between Morse indices.
A bounded self-adjoint operator A is Fredholm if kerA is finite dimensional.

The topological group GL(H) of all automorphisms of H acts naturally on
the space of all self-adjoint Fredholm operators ΦS(H) by cogredience sending
A ∈ ΦS(H) to S∗AS. This induces an action of paths in GL(H) on paths in
ΦS(H). It was shown in [11, Theorem 2.1] that for any path A: [a, b] → ΦS(H)
there exist a path M : [a, b] → GL(H), and a symmetry J (J 2 = id) such that
M∗(t)A(t)M(t) = J +K(t) with K(t) compact for each t ∈ [a, b].
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Let A: [a, b] → ΦS(H) be a path such that A(a) and A(b) are invertible
operators.

Definition 2.1. The spectral flow of the path A is the integer

sf(A, [a, b]) ≡ µrel(J +K(a),J +K(b)),

where J +K is any compact perturbation of a symmetry cogredient with A.

It follows from the properties of the relative Morse index that the left hand
side is independent of J ,M and that the above definition is nothing but a rig-
orous version of the heuristic description of the spectral flow given in the intro-
duction [11].
The spectral flow sf(A, [a, b]) is additive and invariant under homotopies with

invertible end points. It is clearly preserved by cogredience. For paths that are
compact perturbations of a fixed operator it coincides with the relative Morse
index of its end points.
A Hilbertable structure on a Hilbert space H is the set of all scalar products

on H equivalent to the given one. A Fredholm quadratic form is a function
q:H → R such that there exists a bounded symmetric bilinear form b = bq:H ×
H → R with q(u) = b(u, u) and with ker b of finite dimension. Here ker b =
{u : b(u, v) = 0 for all v}. The space Q(H) of bounded quadratic forms is a
Banach space with the norm defined by ‖q‖ = sup {|q(u)| : ‖u‖ = 1}. The set
QF (H) of all Fredholm quadratic forms is an open subset of Q(H) that is stable
under perturbations by weakly continuous quadratic forms. A quadratic form is
called nondegenerate if the map u→ bq(u,−) is an isomorphism between H and
H∗. By Riesz representation theorem, for any choice of scalar product 〈 · , · 〉 in
the Hilbertable structure, QF (H) is isometrically isomorphic to ΦS(H). Clearly
this isometry sends the set of all non-degenerate quadratic forms onto GL(H).
From the Fredholm alternative applied to the representing operator it follows
that a Fredholm quadratic form q is non-degenerate if and only if ker bq = 0.
A path of quadratic forms q: [a, b]→ QF (H) with nondegenerate end points

q(a) and q(b) will be called admissible.

Definition 2.2. The spectral flow of an admissible path q: [a, b]→ QF (H)
is given by

sf(q, [a, b]) = sf(Aq, [a, b])

where Aq(t) is the unique self-adjoint operator such that
〈
Aq(t)u, u

〉
= q(t)(u)

for all u ∈ H.

That this is independent from the choice of the scalar product in a given
structure follows from the invariance of the spectral flow under cogredience.
Indeed let 〈 · , · 〉1 be a scalar product equivalent to 〈 · , · 〉 and let Aq(t), Bq(t) be
such that

〈
Aq(t)u, u

〉
=
〈
Bq(t)u, u

〉
1 = q(t)(u) for all u ∈ H.
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Denoting by H1 the vector space H endowed with the scalar product 〈 · , · 〉1,
there exists a positive self-adjoint operator D:H → H1 such that 〈u, v〉1 =
〈Du, v〉 for all u, v ∈ H. Therefore D = id∗ where id is considered as a map from
H1 into H. Moreover, we have that Aq(t) = DBq(t). Finally, by invariance under
cogredience we get

sf(Aq, [a, b]) = sf(DBq, [a, b]) = sf(id∗Bqid, [a, b]) = sf(Bq, [a, b]),

which is what we wanted to show.

We list below some properties of the spectral flow of an admissible path of
quadratic forms that we will use later. They need not be proved here since they
follow easily from the representation formula in the Definition 2.2 and the anal-
ogous properties of the spectral flow for paths of self-adjoint Fredholm operators
proven in [11].

• (Normalization) Let q ∈ C ([a, b];QF (H)) be such that q(t) is non-de-
generate for each t ∈ [a, b]. Then sf(q, [a, b]) = 0.
• (Cogredience) Let M ∈ C ([a, b];L(H1,H)) be a path of invertible op-
erators between the Hilbert spaces H and H1 and let p be the path of
quadratic forms on H1 defined by p(t)(v) = q(t)[M(t)−1v]. Then

sf(p, [a, b]) = sf(q, [a, b]).

• (Homotopy invariance) Let h ∈ C([0, 1] × [a, b];QS(H)) be such that
h(s, t) is non-degenerate for each s ∈ [0, 1] and t = a, b. Then

sf(h(0, · ), [a, b]) = sf(h(1, · ), [a, b]).

• (Additivity) Let c ∈ (a, b) be a parameter value at which q(c) is non-de-
generate. Then

sf(q, [a, b]) = sf(q, [a, c]) + sf(q, [c, b]).

We will also need a formula that leads to the calculation of the spectral flow
for paths with only regular crossing points.

If a path q: [a, b] → QF (H) is differentiable at t then the derivative q̇(t) is
also a quadratic form. We will say that a point t is a crossing point if ker bq(t) 6=
{0}, and we will say that the crossing point t is regular if the crossing form
Γ(q, t), defined as the restriction of the derivative q̇(t) to the subspace ker bq(t),
is nondegenerate. It is easy to see that regular crossing points are isolated and
that the property of having only regular crossing forms is generic for paths in
QF (H). From [11, Theorem 4.1] we obtain:
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Proposition 2.3. If all crossing points of the path are regular then they are
finite in number and

(2.1) sf(q, [a, b]) =
∑
i

signΓ(q, ti).

A generalized family of Fredholm quadratic forms parameterized by an inter-
val is a smooth function q:H → R, where H is a Hilbert bundle over [a, b] and q
is such that its restriction qt to the fiber Ht over t is a Fredholm quadratic form.
If qa and qb are non degenerate, we define the spectral flow sf(q) = sf(q, [a, b]) of
such a family q by choosing a trivialization M : [a, b]×Ha → H and defining

(2.2) sf(q) = sf(q̃, [a, b])

where q̃(t)u = qt(Mtu).

It follows from cogredience property that the right hand side of (2.2) is inde-
pendent of the choice of the trivialization. Moreover, all of the above properties
hold true in this more general case, including the calculation of the spectral flow
through a non degenerate crossing point given in Proposition 2.3 provided we
substitute the usual derivative with the intrinsic derivative of a bundle map.

3. The spectral index

Given a smooth n-dimensional manifold M , let Ω be the manifold of all
H1-paths in M . Elements of Ω = H1(I;M) are maps γ: I → M such that
for any coordinate chart (U, φ) on M the composition φ ◦ γ: γ−1(U) → Rn be-
longs to H1(γ−1(U);Rn). It is well known that Ω is a smooth Hilbert man-
ifold modelled by H1(I;Rn). We will denote with τ :TM → M the projec-
tion of the tangent bundle of M to its base, and by H1(γ) the Hilbert space
H1(γ) = {ξ ∈ H1(I;TM) : τ ◦ ξ = γ} of all H1-vector fields along γ. The tan-
gent space TγΩ at γ can be identified in a natural way with H1(γ). For all this
the basic reference is [23].

By [23, Proposition 2.1], the map

(3.1) π: Ω→M ×M, π(γ) = (γ(0), γ(1))

is a submersion and therefore for each (p, q) ∈M ×M the fiber of π

(3.2) Ωp,q = {γ ∈ Ω : γ(0) = p, γ(1) = q}

is a submanifold of codimension 2n whose tangent space TγΩp,q = ker Tγπ is
identified with the subspace H10 (γ) of H

1(γ) defined by

(3.3) H10 (γ) = {ξ ∈ H1(γ) : ξ(0) = ξ(1) = 0}.
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Since π is a submersion, it follows that the family of Hilbert spaces H10 (γ) form
a Hilbert bundle TF (π) = ker Tπ over Ω, called the bundle of tangents along
the fibers of π.
To each pair (g, V ), where g is a semi-Riemannian metric on M and V : I ×

M → R is a smooth potential where I = [0, 1], there is associated an energy
functional E: Ω→ R defined by

(3.4) E(γ) =
∫ 1
0

1
2
g(γ′(x), γ′(x)) dx−

∫ 1
0
V (x, γ(x)) dx.

It is well known that E is a smooth function and hence so are the restrictions Ep,q
of E to Ωp,q. We will be interested in the critical points of Ep,q. The differential
of Ep,q at a point γ ∈ Ωp,q is given by the restriction of dE to H10 (γ). It is easy
to see that for ξ ∈ H10 (γ)

(3.5) dEp,q(γ)[ξ] =
∫ 1
0
g

(
D

dx
ξ(x), γ′(x)

)
dx−

∫ 1
0
g(∇V (x, γ(x)), ξ(x)) ds.

By standard regularity arguments one shows that if dEp,q(γ)[ξ] = 0 for all ξ
then γ is smooth and then performing integration by parts one obtains that the
critical points of Ep,q are precisely the smooth paths γ between p and q that
verify the equation (1.1) of perturbed geodesics.
Let us recall that if N is a Hilbert manifold and n is a critical point of

a smooth function f :N → R then the Hessian of f at n is the quadratic form
hn on TnN given by hn(v) = v(χ(f)), where χ is any vector field defined on
a neighbourhood of n such that χ(n) = v. Through the identification of TγΩp,q
with H10 (γ) a well know result in Calculus of Variations yields the Hessian of
Ep,q at γ. This is the quadratic form hγ :H10 (γ) → R whose associated bilinear
form Hγ :H10 (γ)×H10 (γ)→ R is given by

Hγ(ξ, η) =
∫ 1
0
g

(
D

dx
ξ(x),

D

dx
η(x)
)
dx

−
∫ 1
0
g(R(γ′(x), ξ(x))γ′(x) +Dξ(x)∇V (x, γ(x)), η(x)) dx.

Proposition 3.1. The form hγ is a Fredholm quadratic form. Moreover, hγ
is non degenerate if and only if 1 is not a conjugate instant.

Proof. We begin by constructing a Riemannian metric related to g. Since g
is a non-degenerate symmetric form, we can split TM as direct sum of T+M and
T−M such that the restriction of g± to T±M is positive definite and negative
definite respectively.
Let j be the endomorphism of TM = T+M ⊕ T−M given by j(u+ + u−) =

u+−u−. We define a new metric g by g(u, v) = g(ju, v). Then g is a Riemannian
metric on M and j represents g with respect to g.
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The metric g induces a scalar product in H10 (γ) given by

〈ξ, η〉H10 =
∫ 1
0
g

(
D

dx
ξ(x),

D

dx
η(x)
)
dx.

By the very definition of g we have

(3.6)
∫ 1
0
g

(
D

dx
ξ(x),

D

dx
η(x)
)
dx = 〈Jγξ, η〉H10

where Jγ(ξ)(x) := j(γ(x))ξ(x) namely Jγ is pointwise j.
Clearly Jγ is bounded with J 2γ = I, and hence the quadratic form

(3.7) dγ(ξ) =
∫ 1
0
g

(
D

dx
ξ(x),

D

dx
ξ(x)
)
dx

is non degenerate being represented by Jγ ∈ GL(H10 (γ)). On the other hand
hγ = dγ − cγ where

(3.8) cγ(ξ) =
∫ 1
0
g(R(γ′(x), ξ(x))γ′(x) +Dξ(x)∇V (x, γ(x)), ξ(x)) dx.

The form cγ is the restriction to H10 (γ) of a quadratic form defined on
the space C0γ(TM) of all continuous vector fields over γ. Since the inclusion
H10 (γ) ↪→ C0γ(TM) is a compact operator, it follows that cγ is weakly continuous
and therefore hγ is Fredholm being a weakly continuous perturbation of a non
degenerate form.
For the second assertion we notice that if Hγ(ξ, η) = 0 for all η ∈ H10 (γ)

then, again by regularity, ξ is smooth. Integrating by parts in (3.6), we obtain
that ξ must verify the Jacobi equation (1.2) with Dirichlet boundary conditions.
The converse is clear. Therefore ker hγ = {0} if and only if the instant 1 is not
conjugate to 0. �

Remark 3.2. That the quadratic form hγ is Fredholm can be proved without
introducing the metric g. However it is of some interest to notice that the use of
g combined with a parallel trivialization of the tangent bundle along γ produces
a concrete construction of the abstract reduction of the path of hessians to a path
of compact perturbation of a symmetry J used in our definition of the spectral
flow in Section 2.

From now on let p, q ∈ M be fixed points and let γ be a p-geodesic from
p to q such that 1 is not a conjugate instant. Such a p-geodesic will be called
nondegenerate. In order to define the spectral index of a nondegenerate p-geodesic
γ we will consider the path induced by γ on Ω.
Namely, for each t ∈ [0, 1] let γt ∈ Ω be the curve defined by γt(x) = γ(t · x).

Since γ is a critical point of Ep,q it follows from (1.1) that γt is a critical point
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of the functional Et: Ωp,γ(t) → R defined by

(3.9) Et(γ) =
∫ 1
0

1
2
g(γ′(x), γ′(x)) dx−

∫ 1
0
t2V (tx, γ(x)) dx.

In other words, each γt is a p-geodesic for the potential Vt(x,m) = t2V (tx,m).
Let ht:H10 (γt)→ R be the Hessian of Et at the critical point γt. By Proposi-

tion 3.1, ht is degenerate if and only if 1 is a conjugate instant for γt. In particular
h1 = hγ is non degenerate. Moreover, h0 is nondegenerate as well. Indeed, γ0 ≡ p
is a constant path which is a critical point of E0. An H1-vector field ξ along p
is simply a path ξ ∈ H1(I;Tp(M)) and hence

h0(ξ) = dp(ξ) =
∫ 1
0
g

(
D

dx
ξ(x),

D

dx
ξ(x)
)
dx

which is nondegenerate by the previous discussion.
Let us consider the canonical path of p-geodesics γ̃: [0, 1] → Ω defined by

γ̃(t) = γt. Clearly, the family of Hessians ht, 0 ≤ t ≤ 1, defines a smooth
function h on the total space of the Hilbert bundle H = γ̃∗TF (π) over [0, 1],
that is a Fredholm quadratic form at each fiber and non degenerate at 0 and
at 1. The spectral flow sf(h) of such a family is well defined by (2.2) of the
previous section.

Definition 3.3. The generalized Morse index µspec(γ) of a p-geodesic γ is
the integer

(3.10) µspec(γ) = −sf(h).

For pertubed geodesics on Riemannian manifolds the following holds.

Proposition 3.4. If the metric g is Riemannian then the Morse index
µMorse(γ) (i.e. the dimension of the maximal negative subspace of the Hessian
of hγ) is finite and

(3.11) µspec(γ) = µMorse(γ).

Proof. The first assertion is well known. It follows from the fact that in
the Riemannian case each hγ is a weakly continuous perturbation of a positive
definite form dγ . The dimension of the maximal negative subspace of this form
coincides with the dimension of the negative spectral space of any self-adjont
operator representing the form. But this subspace is finite dimensional because
the operator is essentially positive, i.e. compact perturbation of a positive one.
In order to prove the second assertion we observe that, with respect to the

scalar product defined by formula (3.6) (with J = id) on H10 (γt), the form ht
is represented by an essentially positive operator of the form id − Ct with Ct
compact self-adjoint. By [11, Proposition 3.9] the spectral flow of a family of
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essentially positive operators is the difference between the Morse indices at the
end points. Applying this to any trivialization of H we have that

µspec(γ) = −µMorse(γ0) + µMorse(γ1) = µMorse(γ). �

4. The conjugate index

In this section we introduce a topological invariant that counts the alge-
braic number of conjugate points along a nondegenerate p-geodesic γ and which
coincides with the expression (1.3) in the case of a regular p-geodesic.
Given a perturbed geodesic γ we will use a particular trivialization of γ∗(TM)

by choosing a g-frame E along γ made by n parallel vector fields {e1, . . . , en}.
Here a g-frame means that the vector fields ei are point-wise g-orthogonal and
moreover g(ei(x), ei(x)) = εi, where εi = 1 for i = 1, . . . , n − ν, and εi = −1 if
i ≥ n− ν + 1, for all x ∈ [0, 1]. Such a frame induces a trivialization

(4.1) ME : I × Rn → γ∗(TM)

of γ∗(TM) defined by ME(x, u1 . . . un) =
∑n
i=1 uie

i(x).
Writing the vector field ξ along γ as ξ(x) =

∑n
i=1 ui(x)e

i(x), inserting the
above expression in the equation (1.2) of Jacobi fields and taking g product
with ej , we reduce the Jacobi equation (1.2) to a linear second order system of
ordinary differential equations

εiu
′′
i (x) +

n∑
j=1

Sij(x)uj(x) = 0, 1 ≤ i ≤ n,

where Sij = g(R(γ′, ei)γ′ +Dei∇V ( · , γ), ej).
Putting u(x) = (u1(x), . . . , un(x)) and S(x) = (Sij(x)), the above system

becomes

(4.2) Ju′′(x) + S(x)u(x) = 0

where J is the symmetry

(4.3) J =
(
idn−ν 0
0 −idν

)
.

Under the trivialization ME , the metric g on γ∗(TM) goes into indefinite
product of index ν on Rn given by 〈u, v〉ν = 〈Ju, v〉 where 〈 · , · 〉 is the Eu-
clidean scalar product on Rn. Since both R(γ′,−)γ′ and the Hessian D−∇V (·, γ)
are g-symmetric endomorphisms of γ∗(TM) it follows that the matrix S(x) is
symmetric.
Now let us apply the same argument to each p-geodesic γt introduced in

the previous section, using the induced parallel g-frame Et = {e1t , . . . , ent } with
eit(x) = e

i(t · x). The corresponding trivialization MEt transforms the equation
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for Jacobi fields on γt into a one parameter family of second order systems of
ordinary differential equations

(4.4) Ju′′(x) + St(x)u(x) = 0

where S(t, x) = St(x) is smooth in [0, 1]× [0, 1] and S∗t = St.
By definition of Sij and γt it follows that

(St)ij(x) = g(R(γ′t(x), e
i
t(x))γ

′
t(x) +Deit(x)∇V (x, γt(x)), e

j
t (x))

= t2[g(R(γ′(t · x), ei(t · x))γ(t · x)
+Dei(t·x)∇V (t · x, γ(t · x)), ej(t · x))] = t2Sij(t · x).

Hence we have

(4.5) St(x) = t2S(t · x).

The trivialization MEt induces a one to one correspondence between solutions
u = (u1, . . . , un) of the Dirichlet problem

(4.6) Ju′′(x) + St(x)u(x) = 0, u(0) = 0 = u(1)

and Jacobi fields over γt vanishing at 0, 1. On the other hand ξ → ξt is a bijection
between Jacobi fields over γ vanishing at 0 and t with the Jacobi fields over γt
vanishing at 0, 1. It follows then that t ∈ (0, 1] is a conjugate instant for γ if and
only if the boundary value problem (4.6) has a nontrivial solution.

We now will take into account the complexified problem (4.6) by considering
the operator Ju′′+St(x)u acting on complex valued vector functions u: I → Cn.
Let O be the bounded domain on the complex plane defined by

(4.7) O = {z = t+ is ∈ C : 0 < t < 1, −1 < s < 1}.

For any z = t+ is ∈ O let us consider the closed unbounded operator

Az:D(Az) ⊂ L2(I;Cn)→ L2(I;Cn)

with domain D(Az) = H2(I;Cn) ∩H10 (I;Cn), defined by

(4.8) Az(u)(x) = Ju′′(x) + Sz(x)u(x)

where Sz(x) = St(x) + is id.

The two parameter family Az of unbounded self-adjoint Fredholm opera-
tors of H = L2(I;Cn) is a perturbation of a fixed unbounded operator Ju′′ by
smooth family S:O → L(H) of bounded operators Sz defined by the pointwise
multiplication by the matrix Sz.
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Let us consider now the associated family of first order Hamiltonian systems.
Putting v = Ju′, the equation Ju′′(x) + Szu(x) = 0 becomes equivalent to{

u′(x) = Jv(x),

v′(x) = −Sz(x)u(x),
for all x ∈ [0, 1].

Taking w = (u, v) ∈ C2n, the above system can be rewritten as the complex
Hamiltonian system

(4.9) w′(x) = σHz(x)w(x)

where

(4.10) σ =
(
0 −id
id 0

)
is the complex symplectic matrix, while Hz(x) is the matrix defined by

(4.11) Hz(x) =
(
−Sz(x) 0
0 −J

)
.

Let Ψz(x) be the fundamental solution of (4.9). The matrix Ψz(x) is the unique
solution of the Cauchy problem

(4.12)

{
Ψ′z(x) = σHz(x)Ψz(x) for x ∈ [0, 1],
Ψz(0) = id.

Consider the block decomposition of Ψz(x)

Ψz(x) =
(
az(x) bz(x)
cz(x) dz(x)

)
and let bz = bz(1) be the upper right entry in the block decomposition of Ψz(1).

The matrix bz can be also described directly in terms of the solutions of (4.4)
as follows: for each i, 1 ≤ i ≤ n, let ui be a solution of the initial value problem

Ju′′(x) + Szu(x) = 0, ui(0) = 0, u′i(0) = ei,

where e1, . . . , en is the canonical basis of Cn, then bz = (u1(1), . . . , un(1))T .
Our definition of the conjugate index is based on the following elementary

observation (compare [28, Lemma 1.5]).

Lemma 4.1. The following three statements are equivalent:

(a) kerAz 6= {0},
(b) Im(z) = 0 and t = Re(z) is a conjugate instant,
(c) det bz = 0.
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Proof. Since the spectrum of self-adjoint operator is real, kerAz 6= 0 can
occur only at z = t+ is with s = 0. But functions belonging to the kernel of At
are precisely the solutions of the boundary value problem (4.6). Therefore t must
be a conjugate instant. The converse is clear. Hence the equivalence between (a)
and (b) is proved.
Now let u ∈ kerAz. From the block decomposition of w(1) = Ψz(1)w(0) and

the boundary conditions u(0) = 0 = u(1) we get bzu′(0) = 0. Thus, if det bz 6= 0
we have u′(0) = 0 and hence u ≡ 0, which yields ker Az = {0}. On the other
hand, if det bz = 0, taking 0 6= v0 ∈ ker bz, w0 = (0, v0) and u(x) equal to the
first component of Ψz(x)w0, we have u(x) 6≡ 0 and u ∈ ker Az. This proves the
equivalence between (b) and (c). �

Consider now ρ:O → C given by ρ(z) = det bz. Since kerA0 = kerA1 = {0}
it follows that 0 6∈ ρ(∂O). Under this conditions the Brouwer degree deg (ρ,O, 0)
of the map ρ inO with respect to 0 is defined [9]. Brouwer’s degree is a topological
invariant that counts with multiplicities the number of zeroes of ρ in O and since
the zeroes of ρ correspond to conjugate instants of the p-geodesic we make the
following:

Definition 4.2. The conjugate index µcon (γ) of a nondegenerate p-geodesic
γ is the integer

(4.13) µcon (γ) = −deg (ρ,O, 0).

That the right hand side is independent from the choice of O follows from
the excision property of degree.
The algebraic multiplicity of an isolated, but not necessarily regular, conju-

gate instant t0 can now be defined by

(4.14) µcon(γ, t0) = −deg(ρ,O′, 0),

where O′ is any open neighbourhood of the point z0 = (t0, 0) in O containing
no other zeroes of the map ρ.
If all conjugate instants are isolated then µcon (γ) is the sum of the algebraic

multiplicities of the conjugate instants.
In Section 6 we will show that if t0 is a regular conjugate instant, then

µcon (γ, t0) coincides with sign
(
g|I[t0]⊥

)
.

If all data are analytic, the multiplicities of the conjugate points can be com-
puted using an algorithm for computation of degree of a polynomial plane vector
vector-field whose origins can be traced back to Kroenecker and Ostrogradski.
Below we shortly sketch a calculation of this type in a special case.
Assuming M, g and V analytic, by uniqueness of solutions of ordinary dif-

ferential equations we have that the restriction of ρ to the real axis is a real



86 M. Musso — J. Pejsachowicz — A. Portaluri

analytic function which does not vanish identically and hence has only isolated
zeroes. Therefore ρ has a finite number of zeroes of the form zi = (ti, 0) with
t1 < . . . < tk. Taking isolating neighbourhoods Oi as before we get

µcon (γ) =
k∑
i=1

µcon (γ, ti) = −
k∑
i=1

deg (ρ, Oi, 0).

Fix a conjugate instant tj and let zj = (tj , 0). With our assumptions ρ is a real
analytic map from C ∼= R2 into itself. Let P and Q be the non vanishing homo-
geneous polynomials of lowest degree (respectively, m and n) that arise in the
(real) Taylor series of the map ρ at the point zj .
Then we have

(4.15) ρ(z) = ρ(t, s) = (P (t− tj , s) + f(t, s), Q(t− tj , s) + g(t, s))

with |f(z)| = O(|z|m+1) and |g(z)| = O(|z|n+1) for z ranging on a bounded set.
We will present the computation of µcon(γ, tj) upon the extra assumption:

(H1) The point zj is an isolated zero of the homogeneous map η = (P,Q).

The general algorithm for the degenerate case can be found in [24, Chapter I,
15] and [25, Appendix].
We first show that the local multiplicity of ρ and η at zj are the same using

a well known argument. Without loss of generality we can assume zj = 0. By
homogeneity of P and Q and compactness of the unit circle we can find two
positive constants A and B such that for each z 6= 0 either A|z|m < P (z) and
|f(z)| < B(|z|m+1) or A|z|n < Q(z) and |g(z)| < B(|z|n+1). It follows from this
inequalities that the homotopy h(λ, z) = (P (z)+λf(z), Q(z)+λg(z)), 0 ≤ λ ≤ 1
does not vanishes on the boundary of the circle with center at 0 and radius R =
A/B. Therefore µcon(γ, tj) = −deg (ρ,Oi, 0) = −deg (η,B(0, R), 0). The right
hand side can be computed directly from the coefficients of P and Q as follows:
we first observe that 0 is an isolated zero for η if and only if N0(s) = P (1, s) and
N1(s) = Q(1, s) do not have common real root and |P (0, 1)|+ |Q(0, 1)| > 0.
Assumingm ≥ n, let us consider polynomials N0, . . . , Nl, defined inductively

by the Euclidean algorithm, namely Ni+1(s) is the rest of the division of Ni−1(s)
by Ni(s). The final polynomial Nl(r) is the greatest common divisor of the
polynomials N0 and N1.
Choose r in R such that r is not root of any of the polynomials Ni. We

denote by m(r) the number of sign changes of the corresponding values Ni(r).
The number m(r) becomes constant for r sufficiently large. We denote with
m+ this value. Analogously, we denote by m− the common value of m(r) for r
negative and of sufficiently large absolute value. From the above discussion and
[24, Theorem 10.2] we have the following formula for the conjugate index at a
degenerate point.
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Lemma 4.3. If M,V are analytic and if (H1) holds at a conjugate point tj
of γ, then

µcon(γ, tj) = −
(
1 + (−1)m+n

) m+ −m−
2

.

In [27] the authors defined the conjugate index using the formula (1.3) irre-
spectively whether the geodesic is regular or not. They constructed an example of
a geodesic with an isolated conjugate point and such that the associated Maslov
index does not coincide with the equation (1.3). The correct multiplicity at such
a point is not given by sign g|I[t]⊥ . It can be computed either using the algo-
rithm for calculation of the degree of an analytic vector field in our approach or
a well known formula for the Maslov index in terms of partial signatures in the
approach chosen in [15]. Let us remark in this respect that the multiplicity of
a conjugate point, as defined in (4.14), coincides with the analogous multiplicity
defined in terms of the partial signatures in [15]. This follows immediately from
Proposition 6.1. However we were unable to find any direct relation between
the invariants m± arising in the above lemma with the partial signatures at the
given point.
We close this section with a proposition which provides a way to compute the

number defined by the formula (4.13) in terms of the trace of the Green kernel
of (4.8). This is essentially a known result [26], [17]. We include the proof here
for the sake of completeness.
Let us recall first that a compact operator K is said to be of trace class if the

series of the square roots of eigenvalues of K∗K is convergent. The trace class
T is a bilateral ideal contained in the ideal of all compact operators K. There
is a well defined linear functional Tr on T which has the usual properties of the
trace. In particular if both AB and BA are in T then TrAB = TrBA.
Our calculations below can be better formalized using operator-valued dif-

ferential one-forms. By a slight abuse of notation we will denote by dAz the
differential of the bounded part Sz of the family Az, and consequently we will
denote by dAz A−1z the operator valued one-form given by

(4.16) dAz A−1z = ∂tSzA−1z dt+ i∂sSzA−1z ds = ∂tStA−1z dt+ iA−1z ds

defined on the set {z ∈ O : Az has a bounded inverse}.
This notation incorporates the action on the left (resp. right) of an operator

valued function on a one-form in the natural way, by multiplying on the left (or
right) the coefficients of the form. In the same vein, the trace Tr θ of an operator
valued one form θ = E dt+F ds is the complex valued one form TrE dt+TrF ds.

Proposition 4.4. The form dAz A−1z is a trace class valued form and

(4.17) µcon(γ) = −
1
2πi

∫
∂O
Tr dAz A−1z .
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Proof. By Lemma 4.1, Az has a bounded inverse A−1z for all z ∈ ∂O.
Moreover, the operator A−1z is an integral operator of the form

(4.18) A−1z (u)(x) =
∫ 1
0
Kz(x, y)u(y) dy

with the Green kernel Kz(x, y) given by

(4.19) Kz(x, y) = CK̃z(x, y)D∗,

where C = (I, 0), D = (0, I) and K̃z(x, y) is the 2n× 2n matrix defined by

(4.20) K̃z(x, y) =

{
−Ψz(x)PzΨz(y)−1 0 ≤ x < y ≤ 1,
Ψz(x)(I − Pz)Ψz(y)−1 0 ≤ y < x ≤ 1,

with

(4.21) Pz =
(
0 0
b−1z 0

)
Ψz(1)

(see [17, Chapter XIV, Theorem 3.1]).
Since the kernel in (4.19) is of class C0,1, it follows from a well known theorem

of Fredholm that the operator A−1z is of trace class and therefore form dAzA−1z
is T -valued.
In order to prove the formula (4.17) we will first calculate Tr dAz A−1z using

the fact that the trace of an integral operator belonging to the trace class can
be computed integrating the trace of its kernel [17]. For z ∈ ∂O from (4.10) and
(4.11) we get

Tr dAzA−1z =
∫ 1
0
Tr [dSz(x)Kz(x, x)] dx = −

∫ 1
0
Tr [σdHz(x)K̃z(x, x)] dx.

On the other hand,

−Tr [σ dHz(x)K̃z(x, x)] = Tr [σdHz(x)Ψz(x)PzΨ−1z (x)]
=Tr [dΨ′z(x)PzΨ

−1
z (x)− σHz(x) dΨz(x)PzΨ−1z (x)]

=Tr [dΨ′z(x)PzΨ
−1
z (x)−Ψ′z(x)Ψ−1z (x) dΨz(x)PzΨ−1z (x)]

=
d

dx
Tr [dΨz(x)PzΨ−1z (x)].

From this, integrating in x, a direct computation yields

Tr dAzA−1z = Tr [dΨz(1)PzΨ−1z (1)] = Tr dbzb−1z = d log ρ(z),

since Tr dbzb−1z coincides with the logarithmic differential of det bz.
Integrating over ∂O we finally obtain

1
2πi

∫
∂O
Tr dAz A−1z =

1
2πi

∫
∂O
d log ρ(z) ,
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which is precisely the degree deg (ρ, O, 0) by the well known formula relating
the degree of a map on the open set O with the winding number of its restriction
to the boundary (see [9, Chapter 1, Section 6.6]). �

5. Proof of Theorem 1.1

Let γ̃: [0, 1] → Ω, γ̃(t) = γt be the canonical path defined in Section 3 and
let h:H → R be the generalized family of quadratic forms whose restriction ht
to the fiber H10 (γt) of the Hilbert bundle H = γ̃∗TF (π) is the Hessian of Et
at γt. The parallel trivialization MEt of γ

∗
t TM defined by formula (4.1) induces

a trivialization of H, under which h is transformed into the family of Fredholm
quadratic forms ĥt on H10 ([0, 1];Rn) given by ĥt(u) = ht(

∑n
i=1 uie

i
t). Using the

computation of the previous section we obtain

(5.1) ĥt(u) =
∫ 1
0
〈Ju′(x), u′(x)〉 dx−

∫ 1
0
〈St(x)u(x), u(x)〉 dx

where J is given by (4.3) and St is the smooth family of symmetric matrices
introduced in (4.5).
By definition of the generalized Morse index of γ, we have

(5.2) µspec(γ) = −sf(h) = −sf(ĥ, [0, 1]).

We will reduce the calculation of sf(ĥ, [0, 1]) to that of a path having only reg-
ular crossing. In order to obtain this we will apply a perturbation result of
Robbin and Salamon in [34] to the path of operators Ã = {Ãt}{t∈[0,1]} where
Ãt:D(Ãt) ⊂ L2(I;Rn) → L2(I;Rn) is the closed, real self-adjoint operator de-
fined on D(Ãt) = H2(I;Rn) ∩H10 (I;Rn) by

(5.3) Ãt(u)(x) = Ju′′(x) + St(x)u(x).

Notice that the restriction {At : t ∈ [0, 1]} of the previously defined family
{Az} given by formula (4.8) to the real axis is nothing but the complexification
of the path Ã.
Since Ãt = JD2 + St is a compact differentiable perturbation of JD2, it

verifies all the assumptions in [34, Theorem 4.22] and hence there exist a δ > 0
arbitrarily close to zero such the path Ãδt = Ãt + δI has only regular crossing
points. Regular crossing for paths of unbounded operators has the same meaning
as for paths of quadratic forms. Namely, t0 is a regular crossing point if the
crossing form Γ(Ãδ, t0), defined as the restriction of the quadratic form

(5.4) 〈Ṡtu, u〉L2 =
∫ 1
0
〈Ṡt(x)u(x), u(x)〉 dx

to ker Ãδt0 , is non degenerate. Regular crossing points are isolated and thus
Ker Ãδt 6= {0} only at a finite number of points 0 < t1 < . . . < tk < 1.
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Let ĥδt (u) = ĥt(u)+δ||u||L2/2. From equation (5.1), using once more integra-
tion by parts, we obtain that Ker ĥδt = Ker Ãδt . Moreover, by the very definition
of the crossing form, at each crossing point tj the forms Γ(ĥδ, tj) and Γ(Ãδ, tj)
coincide. Taking δ small enough, using the homotopy invariance of spectral flow
and Proposition 2.3 we obtain

µspec(γ) = −sf(ĥδ, [0, 1]) = −
k∑
j=1

signΓ(ĥδ, tj) = −
k∑
j=1

signΓ(Ãδ, tj).

On the other hand, the complexified path {Aδt : t ∈ [0, 1]} has the same
crossing points as Ãδ because KerAδt is the complexification of KerÃδt and
signΓ(Aδ, tj) = signΓ(Ãδ, tj) because a real symmetric matrix and its complex-
ification have the same eigenvalues. This together with the previous calculation
gives

(5.5) µspec(γ) = −
k∑
j=1

signΓ(Aδ, tj).

Now let us compute the perturbation on the other side of the equality in
Theorem 1.1. Let bδz(x) be the upper right entry in the block decomposition
of the fundamental matrix Ψδz(x) associated to the perturbed family Aδz and
let ρδ(z) = det bδz(1). By the continuous dependence of the flow with respect
to the initial condition, we can take δ small enough so that |ρδ(z) − ρ(z)| <
infz∈∂O |ρ(z)|. Then h(t, z) = tρδ(z)+(1− t)ρ(z) is an admissible homotopy and
therefore by the homotopy invariance of degree

(5.6) −µcon(γ) = deg(ρ,O, 0) = deg(ρδ,O, 0).

Taking closed disjoint neighbourhoods Dj of (tj , 0) in O with piecewise smooth
boundary from the additivity of degree and from Lemma 4.1 we obtain

(5.7) −µcon(γ) =
k∑
j=1

deg(ρδ,Dj , 0) =
k∑
j=1

1
2πi

∫
∂Dj
Tr dAδz(Aδz)−1.

Comparing (5.5) with (5.7), we see that the proof of the Theorem 1.1 will be
complete if we prove the identity

(5.8)
1
2πi

∫
∂Dj
Tr dAδz (Aδz)−1 = signΓ(Aδ, tj) for any j = 1, . . . , k.

The rest of the section will be devoted to the proof of (5.8). On the basis of
the previous discussion we can assume that At has only regular crossing points
and drop δ from our notations.
The idea of the proof is as follows: in a standard way one can find a path Pt of

finite rank projectors defined on a neighbourhood of tj such that Pt reduces At
and hence also Az with <z = t. By a well-known theorem, after a t-dependent
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unitary change of coordinates, the family can be locally reduced by a single
projector. Using this reduction equation (5.8) follows from the corresponding
statement in finite dimensions where it can be shown to be true by an elemen-
tary calculation. This works well for bounded operators. However in our setting
a problem arises. Under change of coordinates the transformed family is not any
more a bounded perturbation of a fixed operator and there is a problem with
the definition of the one form in (5.8). We will avoid all the technicalities related
to the differentiability of general families of unbounded operators by rewriting
all the forms in terms of bounded operators. For this we will deal simultane-
ously with Az as closed operators and also as bounded operators with respect
to the graph norm on the domain. Notational ambiguities usually arise in such
a situation. Hence, even at cost of being clumsy, we will carefully distinguish
both operators on our notation and we will do the same with the corresponding
families of spectral projectors.
We will denote by W the Hilbert space H2(I;Cn)∩H10 (I;Cn) endowed with

the graph norm of Ju′′ and, as before, H will denote L2(I;Cn). Let j̃ be the
inclusion of W into H. The family Az = Az ◦ j̃ is a family of bounded operators.
Moreover, since the operator j̃ is compact we have that A−1z = j̃ ◦A−1z is a com-
pact operator whenever A−1z exists and is bounded. On the other hand, being
dAz = dAz ◦ j̃, we have also that

(5.9) dAz ◦ A−1z = dAz ◦A−1z .

For a fixed j, choose a positive number µ > 0 such that the only point in the
spectrum of Atj in the interval [−µ, µ] is 0 and then choose η small enough such
that neither µ nor −µ lies in the spectrum of At for |t− tj | < η. For such a t, let
Pt be the orthogonal projection in H onto the spectral subspace associated to
the part of the spectrum of At lying in the interval [−µ, µ]. Then AtPt = PtAt
on the domain of At. In other words Pt reduces the operator At.
From the integral representation of Pt given by

(5.10) Pt =
1
2πi

∫
C
(At + λ id)−1 dλ,

where C is a symmetric curve in the complex plane surrounding the spectrum in
(−µ, µ), one can show that the projector Pt factors through j̃. Indeed, defining
Rt:H →W by

Rt =
1
2πi

∫
C
(At + λ j̃)−1 dλ,

we have Pt = j̃ ◦Rt. Moreover, if Qt = Rt ◦ j̃, we have that Q2t = Qt and hence
each Qt is a projector belonging to L(W ).
By [21, Chapter II, Section 6] there exist two smooth paths U and V of

unitary operators of H and W respectively, defined in [tj − η, tj + η], such that
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Utj = idH , Vtj = idW and such that

(5.11) PtUt = UtPtj , QtVt = VtQtj .

Taking eventually a smaller η, we can consider the smooth operator valued
function Nz = U−1t Az Vt defined on some open neighbourhood of the closed
domain Dj = [tj − η, tj + η]× [−1, 1] together with the differential one-form

(5.12) θ = dNz N−1z

We claim that θ take values in T (H), where T (H) is the trace class, and
that

(5.13) Tr dAz A−1z = Tr dNz N−1z .

Indeed, denoting by dot the ordinary derivative with respect to t and using
A−1z = j̃ ◦A−1z we obtain

dNzN
−1
z = − U−1t U̇t dt+ U−1t AzV̇tV −1t A−1z Ut dt(5.14)

+ U−1t ṠtA−1z Ut dt+ iU−1t A−1z Ut ds.

The coefficients of all terms in the right hand side of (5.14) belong to the trace
class. The last two because A−1z ∈ T (H). For the first two let us recall that Ut
is a solution of the Cauchy problem

(5.15)

{
U̇tU

−1
t = [Ṗt, Pt],

Utj = I,

where [Ṗt, Pt] is the commutator. Since the spectral subspace associated with
the part of the spectrum of At lying in the interval [−µ, µ] is finite dimensional
it follows that [Ṗt, Pt] is of trace class and indeed a finite rank operator. Thus
by (5.15) we have that U̇t = [Ṗt, Pt]Ut is of trace class and hence so is U−1t U̇t.
The same argument shows that V̇tV −1t ∈ T (H) and this completes the proof of
the first assertion.
In order to show that (5.13) holds we first notice that by definition of Rt

U̇tU
−1
t = [Ṗt, Pt] = j̃Ṙtj̃Rt − j̃Rtj̃Ṙt = j̃Dt,

where Dt = Ṙtj̃Rt −Rtj̃Ṙt. In the same way we get V̇tV −1t = Dtj̃.
By commutativity of the trace

TrU−1t U̇t = Tr U̇tU
−1
t = Tr j̃Dt = TrDtj̃ = Tr V̇tV

−1
t .

From this, taking in account that

Tr [U−1t AzV̇tV
−1
t A

−1
z Ut] = Tr V̇tV

−1
t

it follows that
Tr [−U−1t U̇t + U−1t AzV̇tV −1t A−1z Ut] ≡ 0.
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Finally, substituting the above in (5.14) and summing up, we obtain

Tr dNzN−1z = Tr [U
−1
t (ṠtA−1z dt+ iA−1z ds)Ut] = Tr dAzA−1z ,

since the trace do not change under conjugation. This proves (5.13).
From the very definition of the one form θ = dNzN−1z it follows easily that

dNzN
−1
z Ptj = PtjdNzN

−1
z

for every z ∈ Dj belonging to its domain and hence Ptj reduces the coefficients
of θ.
Let Hj = ImPtj = KerAtj . Under the splitting H = Hj ⊕H⊥j we can write

θ as a matrix of one forms

(5.16) θ =
(
θ0 0
0 θ1

)
,

where θ0 = dNzN−1z |Hj and θ1 = dNzN−1z |H⊥j .
Taking traces,

(5.17)
1
2πi

∫
∂Dj
Tr θ =

1
2πi

∫
∂Dj
Tr θ0 +

1
2πi

∫
∂Dj
Tr θ1.

We claim that the last term in (5.17) vanishes. In order to prove this we
observe first that N−1z |H⊥j exists for all z ∈ Dj and not only on the boundary.
On the other hand since both Utj̃ and j̃Vt verify the differential equation Ẇ =
[Ṗt, Pt]W with the same initial condition W (tj) = j̃ we have that Utj̃ = j̃Vt
everywhere. It follows then that Nz = U−1t AtVt + isj̃. Substituting this into
the expression dNzN−1z |H⊥j and writing it in the form Ezdt + Fzds, a direct
computation yields ∂sEz = ∂tFz. Since Dj is simply connected the one form
Tr θ1 is exact and its integral over ∂Dj vanishes.
Combining with (4.8) and (5.13), we obtain

(5.18)
1
2πi

∫
∂Dj
Tr dAzA−1z =

1
2πi

∫
∂Dj
Tr (dNzN−1z )|Hj ,

where the right hand side is an integral of the trace form on a finite dimensional
space Hj .
Now let us turn our attention to the signature. At this point we will identify

the finite dimensional subspace Hj = KerAtj with ImQtj = KerNtj . With this
identification j̃: ImQtj → Hj becomes the identity. Let us consider the path of
symmetric endomorphisms M : [tj − η, tj + η] → L(Hj) given by Mt = Nt|Hj .
Writing down the definition of Nt we find that for all u, v ∈ Hj

〈Ṁtu, v〉L2 =− 〈U−1t U̇tU−1t AtVtu, v〉L2

+ 〈U−1t ȦtVtu, v〉L2 + 〈U−1t AtV̇tu, v〉L2 .
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Putting t = tj in the above formula and using the fact that At is symmetric
we notice that the first and the last term in the right hand side of the above
equation vanish. Therefore

(5.19) signΓ(Mt, tj) = signΓ(A, tj).

In view of (5.19) and (5.18) Theorem 1.1 follows from the following result

Proposition 5.1. If M is the path defined above and if Mz = Mt + isid,
for z ∈ Dj, then

signΓ(M, tj) =
1
2πi

∫
∂Dj
Tr dMzM−1z .

Proof. By Kato’s Selection Theorem [21, Chapter II, Theorem 6.8] there
exists smooth functions λ1(t), . . . , λnj (t) representing for each t the eigenvalues
of the symmetric matrix Mt. Equivalently, Mt is similar to a smooth path of
matrices ∆t having the form ∆t = diag [λ1(t), . . . , λnj (t)]. By [21, Chapter II,
Theorem 5.4], Tr Ṁt =

∑nj
i=1 λ̇i(t).

Putting ∆z = ∆t + is id,

Tr dMzM−1z = Tr d∆z∆
−1
z =

nj∑
l=1

d(λl(t) + is)(λl(t) + is).−1

Now by elementary integration

(5.20)
1
2πi

∫
∂Dj
d(λl(t) + is)(λl(t) + is)−1

=


0 if λl(tj − η)λl(tj + η) > 0,
1 if λl(tj − η)λl(tj + η) < 0and λl(tj + η) > 0,
−1 if λl(tj − η)λl(tj + η) < 0and λl(tj + η) < 0.

Summing over l = 1, . . . , nj in (5.20) and using Proposition 5.1 we obtain

(5.21)
1
2πi

∫
∂Dj
Tr dMzM−1z = µ(Mtj−η)− µ(Mtj+η) = signΓ(M, tj).

This completes the proof of the Theorem 1.1. �

6. Relation with the Maslov index

Let us consider again the path Ã of real unbounded self-adjoint operators
defined by (5.3). According to the results of Section 4, we have that t ∈ [0, 1] is
a conjugate instant along γ if and only if ker Ãt 6= {0}. Let Ψt(x) be the solution
to the initial value problem

(6.1)

{
Ψ′t(x) = σHt(x)Ψt(x) for x ∈ [0, 1],
Ψt(0) = I,
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where σ and Ht(x) are matrices defined as in (4.10) and (4.11) with z = t, but
with real coefficients this time.

The path Ψt = Ψt(1), t ∈ [0, 1] is a path of real symplectic matrices i.e.
ΨtσΨ∗t = σ. Since the symplectic group acts on the manifold Λn of all Lagrangian
subspaces of R2n, the action of the path Ψ on fixed Lagrangian subspace l pro-
duces a path on Λn. This path can be used in order to count conjugate points
of γ.

Let us recall that in terms of the complex structure σ the manifold Λn can
be defined as the submanifold of the Grassmanian Gn(2n) whose elements are
n-dimensional subspaces l of R2n such that σ(l) is orthogonal to l. Given a path of
Lagrangian subspaces λ: [a, b]→ Λn and a fixed Lagrangian subspace l such that
λa and λb are transverse to l, there is a well defined integral-valued homotopy
invariant µl (λ, [a, b]), called Maslov index [35], which counts algebraically the
number of crossing points of λ with l i.e. points t ∈ [a, b] at which λt fails to be
transverse to l. Here we take l = {0} × Rn and λt = Ψt(l). With this choice,
we have that t is a conjugate instant along γ if and only if λt ∩ l 6= {0}. Since
conjugate instants cannot accumulate at 0 we can find an ε > 0 such that there
are no conjugate instants in [0, ε]. The Maslov index of λ: [ε, 1] → Λn is well
defined and independent of the choice of ε.

The Maslov index of a p-geodesic is defined by µMaslov(γ) = µl (λ, [ε, 1]).

Proposition 6.1.

(6.2) µspec(γ) = µcon(γ) = µMaslov(γ).

Proof. We will be rather sketchy here since the arguments are very close
to those used in the first part of the previous theorem. A different approach in
the geodesic case can be found in [32].

There is a natural identification of the tangent space to the manifold Λ(n)
at a given point l in Λ(n) with the set of quadratic forms on l which allows to
express the Maslov index of a generic path as a sum of the signatures of the
crossing forms at points of regular crossing analogous to that in Proposition 2.3
for the spectral flow. In terms of this identification the crossing form Γ(λ, t) of a
path λ at a given point t can be constructed as follows: let M :U → L(Rn;R2n)
be a smooth path of monomorphisms defined on a neighbourhood U of t such
that ImMs = λs. By [35], the crossing form at t is the quadratic form defined
by

(6.3) Γ(λ, t)v = 〈σṀtw,Mtw〉 for v ∈ λt ∩ l, Mtw = v.

The resulting form is independent of the choice of the frame M .
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As before, a crossing point t is regular if the crossing form Γ(λ, t) is non-de-
generate. For paths with only regular crossing points the Maslov index can be
computed by µl(λ, [a, b]) =

∑
t Γ(λ, t).

From the above discussion the paths ĥt, Ãt and the path λt = Ψt(l) defined
in [ε, 1] have the same crossing points. The crossing form Γ(λ, t) can be easily
computed in this case taking asM the second column of the block decomposition
of

Ψt =
(
at bt
ct dt

)
.

Then Mtw ∈ l if and only if btw = 0.
It turns out that λt ∩ l = {(0, v) : v = dtw} and

Γ(λ, t)(0, v) = −〈ḃtw, dtw〉 = −〈Jdtw, dtw〉 = −〈Jv, v〉

by (6.1). Identifying λt ∩ l with Vt = Im dt, the crossing form is −〈Jv, v〉.
On the other hand, by (5.4), for u ∈ kerAt

(6.4) Γ(A, t)u = −
∫ 1
0
〈Ṡt(x)u(x), u(x)〉 dx.

where as before · denotes the derivative with respect to t.
For any s ∈ (0, 1], the function us(x) = u(sx/t) solves the Cauchy problem

(6.5)

{
Ju′′s (x) + Ss(x)us(x) = 0 for all x ∈ [0, 1],

us(0) = 0, u′s(0) =
s

t
u′(0).

If we differentiate the equation in (6.5) with respect to s and we evaluate at
s = t, we get{

Ju̇′′t (x) + Ṡt(x)ut(x) + St(x)u̇t(x) = 0 for all s ∈ [0, 1],
u̇t(0) = 0, u̇′t(0) = 0.

Taking into account that u ∈ ker Ãt and the previous computation, integrating
by parts we get

Γ(Ã, t)(u) =
∫ 1
0
〈Ju̇′′t + Stu̇t(x), ut(x)〉 dx = −〈Ju′t(1), u̇t(1)〉

Since ut(x) = u(x), u̇t(x) = (x/t)u′(x) we get

Γ(Ã, t)(u) = −1
t
〈Ju′(1), u′(1)〉.

The above calculation shows that the isomorphism sending u ∈ ker Ãt into
tu′(1) ∈ Vt transforms Γ(Ã, t) into Γ(λ, t). We conclude that the regular crossings
of Ã correspond to the regular crossings of λ and moreover the crossing forms
have the same signature. Now the assertion (6.2) follows from (6.3) and the
perturbation argument used in the proof of the main theorem. �
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We close this section by showing, as promised, that in the case of a regular
geodesic µcon(γ) = µspec(γ) coincides with the expression given by formula (1.3).
Let us observe that if ξ ∈ I then for any Jacobi field η along γ the function

given by g(Dξ(x)/dx, η(x)) is constant (to prove this it is enough to use (1.2)
in the expression for the derivative of this function). In particular, if also η ∈ I
then g(Dξ(x)/dx, η(x)) ≡ 0. This shows that for any Jacobi field ξ ∈ ker Ã the
covariant derivative Dξ(t)/dx belongs to I[t]⊥.
Let M : ker Ãt → I[t]⊥ be the monomorphism defined by

Mu = t
D

dx

( n∑
i=1

ui

(
x

t

)
ei(x)
)
.

By dimension counting M is an isomorphism. On the other hand, using our
previous calculation we get

g(Mu,Mu) = −〈Ju′(1), u′(1)〉 = tΓ(Ã, t).

Taking signatures and summing over all conjugate points we obtain the de-
sired conclusion.
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