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Abstract—Mosaicing entails the consolidation of information
represented by multiple images through the application of a reg-
istration and blending procedure. We describe a face mosaicing
scheme that generates a composite face image during enrollment
based on the evidence provided by frontal and semiprofile face
images of an individual. Face mosaicing obviates the need to store
multiple face templates representing multiple poses of a user’s
face image. In the proposed scheme, the side profile images are
aligned with the frontal image using a hierarchical registration
algorithm that exploits neighborhood properties to determine the
transformation relating the two images. Multiresolution splining is
then used to blend the side profiles with the frontal image, thereby
generating a composite face image of the user. A texture-based
face recognition technique that is a slightly modified version of the
C2 algorithm proposed by Serre et al. is used to compare a probe
face image with the gallery face mosaic. Experiments conducted on
three different databases indicate that face mosaicing, as described
in this paper, offers significant benefits by accounting for the pose
variations that are commonly observed in face images.

Index Terms—Face mosaicing, face recognition, multiresolution
splines, mutual information.

I. INTRODUCTION

T
HE PROBLEM of 2-D face recognition continues to pose

challenges even after several years of research in this

field [1]. State-of-the-art algorithms exhibit various degrees of

sensitivity to changes in illumination, pose, facial expressions,

accessories, etc. Designing pose-invariant algorithms is partic-

ularly very challenging, as discussed in the Face Recognition

Vendor Test 2002 report [2]. Several methods have been sug-

gested to address the issue of pose variations including the use

of active appearance models [3], morphable models [4], 3-D

facial imaging [5], multiple templates [6], and multiclassifier

fusion [7], [8]. In this paper, we propose an image fusion

scheme to generate the 2-D face mosaic of an individual during

enrollment that can be successfully used to match various poses

of a person’s face during authentication. Mosaicing uses the

frontal and side-profile face images (2-D) of a user to generate

an extended 2-D image. The goal is to adequately characterize
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an individual’s face in 2-D plane, without attempting to com-

pute the 3-D structure of the face. This avoids the complexity of

generating 3-D structure information from multiple registered

2-D images. Mosaicing also obviates the need to store multi-

ple templates of a user during enrollment, thereby optimizing

storage demands and processing time.

The potential of mosaicing facial images has not received

extensive attention in the literature. Table I summarizes the face

mosaicing techniques proposed by researchers. Yang et al. [11]

propose an algorithm to create panoramic face mosaics. Their

acquisition system consists of five cameras that simultaneously

obtain five different views of a subject’s face. In order to

determine the corresponding points in multiple face views, the

authors place ten colored markers on the face. Based on these

control points, their algorithm uses a series of fast linear trans-

formations on component images to generate a face mosaic.

Finally, a local smoothing process is carried out to smooth the

mosaiced image. Two different schemes are used to represent

the panoramic image: 1) one in the spatial domain and 2) the

other in the frequency domain. The frequency representation

and spatial representation are observed to result in an iden-

tification accuracy of 97.46% and an accuracy of 93.21%,

respectively, on a database of 12 individuals.

Liu and Chen [12] describe a face mosaicing technique

that uses a statistical model to represent the mosaic. Given

a sequence of face images captured under an orthographic

camera model, each frame is unwrapped onto a certain por-

tion of the surface of a sphere via a spherical projection.

A minimization procedure using the Levenberg–Marquardt

algorithm is employed to optimize the distance between an un-

wrapped image and the sphere. The statistical representational

model consists of a mean image and a number of eigenimages.

The novelty of this technique is given as follows: 1) the use

of spherical projection, as opposed to cylindrical projection,

which works better when there is head motion in both the

horizontal and vertical directions, and 2) the computation of

a representational model using both the mean image and the

eigenimages rather than a single template image. Although the

authors state that this method can be used for face recognition,

no experimental results have been presented in this paper. In

[13], the authors propose another algorithm in which the human

head is approximated with a 3-D ellipsoidal model. The face,

at a certain pose, is viewed as a 2-D projection of this 3-D

ellipsoid. All 2-D face images of a subject are projected onto

this ellipsoid via geometrical mapping to form a texture map

that is represented by an array of local patches. Matching is

accomplished by adopting a probabilistic model to compute

1083-4419/$25.00 © 2007 IEEE
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TABLE I
COMPARISON OF THREE EXISTING FACE MOSAICING SCHEMES

the distance of patches from an input face image. The authors

report an identification accuracy of 90% on the CMU Pose,

Illumination, and Expression (PIE) database [14].

Face mosaicing has also been used in nonbiometric appli-

cations such as facial animation and rendering [16], and 3-D

face image generation [17]. However, these algorithms generate

the face mosaic using complex models that do not necessarily

preserve the biometric features of the face.

The concept of mosaicing may be viewed as an exercise in

information fusion. When multiple images of a subject’s face

are available at the time of enrollment, a common approach

is to treat these images (also known as gallery images) as

independent entities; thus, when a probe (query) image is pre-

sented to the system, it is compared against each gallery image

independently, and the resulting set of scores consolidated to

generate a single score (e.g., via the sum rule) indicating the

proximity of the probe image with the subject in the database.

This is fusion at the match-score level. However, in the case of

mosaicing, multiple images of a subject’s face are fused into a

single entity in the image domain itself. Hence, this could be

viewed as fusion at the raw-data (i.e., image) level.

The remainder of this paper is organized as follows. The

proposed face mosaicing algorithm is described in Section II.

In Section III, we present a face recognition algorithm for

matching mosaiced faces. The proposed face recognition

algorithm is a modification of the C2-feature-based face

recognition algorithm [18], [19]. Section IV discusses the

database used to validate the performance of the proposed

face mosaicing and recognition algorithm. Experimental results

are presented in Section V, and conclusions are presented in

Section VI.

II. PROPOSED FACE MOSAICING ALGORITHM

This section describes the face mosaicing algorithm used

to consolidate the evidence presented by multiple pose im-

ages of the same face. It is assumed, therefore, that, at the

time of enrollment, multiple poses of an individual’s face

are available. The face is segmented (localized) from each

image using the gradient vector flow technique (see [20] for

details). A pair of face images, typically representing the

frontal and profile views of an individual, are mosaiced af-

ter aligning them using a hierarchical registration algorithm.

Registered images are mosaiced using the multiresolution

splines algorithm based on Gaussian and Laplacian pyra-

mids [21]. Multiresolution splines also perform blending as

an integral part of mosaicing, thereby offering some inherent

advantages.

A. Hierarchical Registration Model

Before mosaicing, it is necessary to transform the images

obtained during enrollment into a common image domain.

The process of finding the transform that aligns one image

to another is called image registration. As described earlier

in Section I, existing face mosaicing algorithms use some

form of affine transformation for registration. However, these

algorithms do not consider the nonlinear deformation that is

present in the images. In this section, we propose a hierarchical

registration algorithm in which we first perform approximate

registration using an affine transformation model [22]. The

affine transformed images are then finely registered using a

mutual-information-based registration algorithm [23], [24], re-

sulting in more exact alignment between the images.

1) Affine Transformation Model: Let I1 = I(x, y, t1) and

I2 = I(x, y, t2) be the two images to be mosaiced. Here, I1
is the source image, and I2 is the target image, i.e., I1 has to

be suitably transformed in order to align it with I2. The pixel

coordinates are represented using x and y spanning the domain

of the image. The relationship of the pixels and their intensities

between the two images can be modeled as

I(x, y, t1) =
I(a1x + a2y + a3, a4x + a5y + a6, t2) − a7

a8

(1)

where a1, a2, a4, and a5 are the affine parameters summarizing

the rotation, scaling, and shear; a3 and a6 are the translation

parameters; and a7 and a8 are the parameters that embody

changes in brightness and contrast, respectively. The following

error function is minimized in order to estimate these

parameters:

Error(a)=
∑

x,y

[

I(x, y, t1)

− I(a1x+a2y+a3, a4x+a5y+a6,t2)−a7)

a8

]2

(2)

where a = (a1, a2, . . . , a8)
T . Approximating this error

function using the first-order truncated Taylor series expansion

gives [22]

Error(a)=
∑

x,y

[

It(x, y, t)−
(a1x+a2y+a3 − x)Ix(x, y, t)

a8

+
(a4x+a5y+a6−y)Iy(x, y, t)−a7

a8

]2

(3)
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where Ix(·), Iy(·), and It(·) are the spatial and temporal

derivatives of I(·). This error function can be minimized by

differentiating with respect to a, i.e., dError(a)/da = 0. The

solution of (3) is

a =

[

∑

x,y

ATA

]−1 [

∑

x,y

Ab

]

(4)

where A = (xIx, yIx, xIy, yIy, Ix, Iy,−I,−1)T , and

b = It − I + xIx + yIy. The output of this minimization

problem gives the eight optimal parameters. Using these

parameters, the source face image I1 is transformed to obtain

the registered face image IR. In this manner, the affine model

performs a coarse registration of the two images. However,

local regions such as the eyes and mouth still need to be finely

aligned in order to remove the degeneracies that are present in

the transformed image.

2) Mutual-Information-Based Transformation Model: In

two coarsely registered face images, the neighborhood of the

corresponding regions may not be rigorously identical. This

is due to differences in the geometry and local deformations

that are present in the constituent images. Subpixel shifting

can also occur, leading to differences in the two images. Thus,

a fine alignment is necessary to account for these nonlinear

deformations.

Let I2 be the target face image and IR be the face image,

which is coarsely registered with respect to I2 using the affine

transformation that is described in Section II-A1. For fine

registration, we transform IR such that the mutual information

between I2 and IR is maximized [24]. Mutual-information-

based image registration is widely used in medical imaging [24]

and other related applications. Mutual information between two

face images M(I2, IR) can be represented as

M(I2, IR) = H(I2) + H(IR) −H(I2, IR) (5)

where H(·) is the entropy of the image. Here, maximiz-

ing the mutual information involves maximizing the en-

tropy, i.e., H(I2) and H(IR), and minimizing the joint

entropy H(I2, IR). Two images are considered to be optimally

registered when the mutual information between them is max-

imum. Mutual-information-based registration is however sen-

sitive to changes that occur in the distributions, as a result

of differences in overlap region. So, we use the weighted

normalized mutual information for face images, which can be

written as

M̂(I2, IR, c) = c

(

H(I2) + H(IR)

H(I2, IR)

)

(6)

where c (0 < c ≤ 1) is a weighting parameter that controls the

amount of localization in the similarity measure. This method

is a modification over the one proposed by Hill et al. [23].

The modified function that is represented by (6) is used for the

fine registration of I2 and IR. The transformation parameters

computed from the affine transformation model a are used

Fig. 1. Image registration using the proposed hierarchical registration algo-
rithm. Frontal and profile images are first placed at the center of a 256 × 256
image space. (a) Input profile image. (b) Input frontal image. (c) Profile image
registered with respect to the target frontal image.

Fig. 2. Masks generated from two profile images.

as the initial transformation parameters, along with c = 0.01.

Thus, a total of nine parameters are used as the initial trans-

formation parameters for this model. A set of mutual infor-

mation values between I2 and IR is computed by varying the

parameters with a small step size (≈0.01) in both the positive

and negative directions. Parameters are varied in the range of

[−a/5,a/5]. The mutual information is computed for all pos-

sible combinations of the parameters, and the transformation

parameters corresponding to the maximum mutual information

are selected for fine registration. To account for the nonlinearity

that is present in face images, the mutual-information-based

registration is performed in blocks with a size of 8 × 8. The

coarsely registered profile image IR is transformed using these

parameters to obtain the final registered image. Fig. 1 shows

a profile image I1 transformed with respect to the frontal

image I2.

B. Mask Generation

Once a pair of images are registered, the next step involves

blending the two images into a single entity. This entails the

development of a spatial mask indicating the pixelwise contri-

bution of the individual images to the final mosaiced image.

Since the facial structure is different for every individual,

a dynamic runtime mask generation algorithm is used. The

mask is computed using the local phase correlation between

the two images. The two images are first tessellated into

blocks of size 8 × 8. Next, the phase correlation between

corresponding blocks from the two face images is computed.

When a correlation peak is observed, the block is labeled as

a match; otherwise, it is labeled as a nonmatch. This results

in a cluster of match/nonmatch blocks. The boundary of

the matched region is selected as the boundary of the mask.



SINGH et al.: MOSAICING SCHEME FOR POSE-INVARIANT FACE RECOGNITION 1215

Fig. 3. Levels in the Gaussian pyramid expanded to the original size to see the effects of the low-pass filter. (a) Level 0, (b) level 1, (c) level 2, and (d) level 3.

The mask values on one side of the boundary is set to “0,”

while the other side is set to “1” (e.g., “1” may correspond

to the frontal face image and “0” to the profile face image).

If there are any isolated blocks with the label match, they are

reassigned the label nonmatch and do not contribute to the

mask boundary. Generally, the correlation peak is found in a

thin vertical region containing the eye (left eye for left profile

image and right eye for right profile image). Fig. 2 shows the

sample masks that are generated for a left and right profile face

image with respect to an arbitrary frontal image. This mask is

used during the blending process as will be seen in the next

section.

C. Stitching and Blending

For blending the two images into a single mosaic, we use

multiresolution splines [21]. Image splining (i.e., blending) can

be performed based on a simple spline-weighting function1

straddling the boundary of the two images, but the quality of

the stitched image depends on the step size (or window) that

is chosen. A large step size may lead to blurring, whereas a

small step size may result in discontinuities at the boundary.

To overcome this problem, Burt and Adelson [21] used mul-

tiresolution splines to determine different step sizes for the

various frequency components constituting the boundary. The

crux of this technique involves computing a Gaussian pyramid

of subimages, followed by a Laplacian pyramid, based on the

two images to be mosaiced; the pyramid structure is used

to estimate the spline weighting function that relies on the

frequency-domain information of the image.

A sequence of low-pass-filtered images is obtained by iter-

atively convolving each of the constituent images with a 2-D

Gaussian filter kernel. The resolution and sample density of

the image between successive iterations (levels) is reduced, and

therefore, the Gaussian kernel operates on a reduced version

of the original image in every iteration. The resultant images

G0, G1, . . . , GN may be viewed as a “pyramid,” with G0 hav-

ing the highest resolution (lowermost level) and GN having the

lowest resolution (uppermost level) (see Fig. 3). Let w(m,n)
represent the Gaussian kernel with dimensions of 5 × 5 and a

reduction factor of 4. The reduce operation can be written as

Reduce (I(i, j)) =

5
∑

m=1

5
∑

n=1

w(m,n)I(2j + m, 2j + n). (7)

1The term splining is used to refer to a transition function that indicates the
weighting of pixels that are associated with the two images at the boundary (see
[21] for details).

Fig. 4. Laplacian pyramid of a profile image from level 0 to level 6.

Fig. 5. Laplacian pyramid of a frontal image from level 0 to level 6.

A Gaussian pyramid Gl is defined as

G0 = I (8)

Gl = Reduce[Gl−1], 0 < l < N. (9)

As shown in Fig. 3, the effect of convolution is to blur the

image, thereby reducing the filter band limit by an octave

between levels while reducing the sample density by the same

factor. The Gaussian pyramid has the effect of a low-pass filter

to soften the edges of the mask.

The multiresolution spline, as described in [21], requires

bandpass images, as opposed to low-pass images. Bandpass

images are computed by interpolating (resizing) the image

at each level of the Gaussian pyramid and then subtracting

it from the next lowest level. This results in a sequence of

bandpass images that may be viewed as a Laplacian pyra-

mid (L0, L1, . . . , LN ), as shown in Figs. 4 and 5. The term

Laplacian is used since the Laplacian operator resembles the

difference of Gaussian-like functions. These bandpass images

are a result of convolving the difference of two Gaussians

with the original image. The steps used to construct this pyra-

mid can also be used to exactly recover the original image.
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Fig. 6. Laplacian pyramid of the mosaiced image from level 0 to level 6.

The process described previously may be summarized as fol-

lows:

Ll = Gl − Expand[Gl+1], 0 ≤ l < N. (10)

Here, the Expand[·] operator interpolates a low-resolution

image to the next highest level and can be written as

Gl,k(i, j) = 4

2
∑

m=−2

2
∑

n=−2

w(m,n)Gl,k−1

(

i−m

2
,
j − n

2

)

.

(11)

Note that Gl,k in (11) denotes “expanding” Gl k number of

times. Various features of the face are segregated by scale in

different levels of the pyramid. Hence, as shown in Figs. 4–6,

the textural features of face are preserved over multiple levels

of the pyramid. Let L1 and L2 represent the Laplacian pyramids

of the two images that are being splined (i.e., blended). Let GR
be the pyramid associated with the Gaussian-weighted mask

discussed in Section II-B. The multiresolution spline LS is then

computed as

LSl(i, j) = GRl(i, j)L1l
(i, j) + (1 −GRl(i, j))L2l

(i, j)
(12)

where l is the level of the pyramid. The splined images at vari-

ous levels are expanded and summed together to obtain the final

face mosaic, as shown in Fig. 7. Gradient-vector-flow-based

active contour model is used to extract the face boundary of

the mosaiced face.

III. FACE RECOGNITION USING MODIFIED

C2 FEATURES

Several different texture-based face recognition algorithms

have been proposed in the literature [25], [26]. However, most

of the current texture-based face recognition algorithms fail

to explicitly account for important spatial statistics between

texture elements. Spatial statistics are important when ana-

lyzing facial textures that have similar texture frequency but

differ in the distribution of texture elements. Face recognition

algorithms should also handle small distortions and preserve the

local feature geometry. In [18], a generic model-based feature

extraction algorithm, which extracts visual features from an ob-

ject using the fundamentals of a biological visual system, is pro-

posed. The model is a feedforward hierarchy consisting of four

layers of computational units: simple S units and complex C

units. The simple S units combine their inputs with Gaussian-

like tuning to increase object selectivity. The complex C units

pool their inputs through a maximum operation to achieve scale

and shift invariance. The feature extractor is a Gabor filter bank

consisting of 16 different filters and four different orientations,

resulting in 64 different maps when applied to a circular image

patch. Each filter is parameterized based on its scale, width, and

frequency. The 64 maps are arranged in eight bands (see [18]

for details about the filter bank). The C2 algorithm operates as

follows.

• The input face image is subjected to the Gabor filter bank

described previously, resulting in 64 maps arranged in

eight bands. These maps constitute the S1 feature set.

• The C1 feature set is obtained by computing the maxi-

mum response over all scales in each band for all four

orientations. A large pool of patches Pi=1,...,K is extracted

at random positions from all the training images. These

patches are extracted for all four orientations, and the radii

of these patches vary from 4 to 16.

• For each feature set C1, the value Y is computed across all

the bands for all image patches X at all positions P using

the following equation:

Y = exp
(

−γ‖X − P‖2
)

(13)

where γ is the aspect ratio. These patches are set as the

prototypes or centers of S2 units. The S2 units behave as

radial basis function during recognition.

• The maximum over all positions and scales for each S2

map gives the C2 features, which are shift and scale

invariant.

Serre et al. [18] have demonstrated superior recognition

performance due to these features on different face and tex-

ture databases. For our purposes, we have modified this ba-

sic feature extraction algorithm to make it compatible with

a face mosaicing application. In the modified algorithm, the

filter bank is generated with 2-D log polar Gabor transforms.

The functional form of a 2-D log polar Gabor G can be

written as

Gr0,θ0
(r, θ) = exp(−2π2σ2)

×
[

(ln(r) − ln(r0))
2 s2 + (ln(r) sin(θ − θ0))

]

(14)

and the position of the filter in the Fourier domain is defined by

r00 =
√

2, r0i = 2i ∗ r00, θ0i = i ∗ 2π

Nθ

(15)

where r00 is the smallest possible frequency, Nθ is the number

of filters on the unit circle, and at index E, σE and sE are

further defined as

σE =
1

ln(r0)π sin(π/Nθ)

√

ln 2

2
(16)

sE =
ln(r0)π sin(π/Nθ)

ln 2

√

ln 2

2
. (17)
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Fig. 7. (a)–(c) Frontal and profile input images. (d) Mosaiced face generated using (a)–(c). (e) Final mosaiced and cropped face image.

Fig. 8. Examples of images from the CMU PIE database.

Fig. 9. Images from the WVU multispectral face database. (a) Visible spectrum. (b) SWIR spectrum.

According to Field [27], log Gabor functions are able to

encode the images more efficiently compared to Gabor trans-

forms since a Gabor transform would overrepresent the low-

frequency components and underrepresent the high-frequency

components. In addition, log polar Gabor functions impart

rotation- and scale-invariant properties. In [18], 64 filters are

used in the filter bank in order to mimic the functional ability of

biological cells in the visual cortex. We modify this filter bank

to include the Gaussian low-pass information. The filter bank

therefore comprises of 16 filters at four orientations, along with

the eight centers that surround differences of Gaussian filters

and four low-pass Gaussian filters. So, the modified filter bank

consists of 76 filters, which are used to compute the final C2

features. The size of the C2 feature vector varies for different

face images. To efficiently match the mosaiced image with a

non-mosaiced image, we use a learning-based 2ν support vector

machine (SVM) classifier [28], [29]. The classifier is trained

with the features extracted from 148 mosaiced and 900 non-

mosaiced face images of 108 individuals. This trained classifier

is used to perform classification [30].

IV. DATABASE USED FOR EVALUATION

To validate the performance of the proposed face mosaicing

and recognition algorithms, we used two databases.

1) CMU PIE Face Database: The CMU PIE [14] face data-

base contains images from 68 individuals with variations

in pose, illumination, and expression. For mosaicing, we

use the images with variation in pose, i.e., the images

labeled as c27, c37, c22, c11, and c34 from both sessions.

Fig. 8 shows the two sets of images of an individual
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TABLE II
IDENTIFICATION ACCURACY OF MULTIPLE FACE RECOGNITION

ALGORITHMS ON THE THREE DATABASES

from the CMU PIE database. For each individual, the

set of face images with neutral expression is used as

the gallery image set. The images from the three other

sessions, which have minimum variation in lighting and

expression, are chosen as probe images.

2) WVU Multispectral Face Database: We assembled a

multispectral face database of 40 individuals. The data-

base contains face images in both the visible and short-

wave infrared (SWIR) light spectrum. For each spectral

channel, images are captured in two different sessions,

with seven images in each session. The seven images

correspond to one frontal image, three left profile images,

and three right profile images. Successive images are

separated by a pose angle of approximately 20◦. Fig. 9

shows examples of images from the database. Various

researchers have demonstrated the superior performance

of face recognition on SWIR images [31]–[35].

V. EXPERIMENTAL RESULTS

A. Performance Evaluation of Modified C2-Feature-Based

Face Recognition Algorithm

We first validate the performance of the proposed face

recognition algorithm described in Section III using the non-

mosaiced face images. The 2ν-SVM classifier [28], [29] is

trained using the C2 features extracted from the 620 labeled

non-mosaiced training face images of the CMU PIE (68 × 5)

and the WVU visible-light (40 × 7) databases. The classifier

learns the genuine and impostor features from these training

images prior to performing classification [18].

Recognition performance is evaluated separately for the two

visible-light face databases. For evaluating the performance on

the CMU PIE data set, all the training images are used as

gallery images, and face images from the other sessions are

used as probe images. Similarly, for the WVU visible-light face

database, the training images are used as the gallery images, and

the rest of the images are used as probe images to compute the

identification performance. The performance of the proposed

recognition algorithm is also compared with five existing face

recognition algorithms.

1) Principal component analysis (PCA) [36].

2) Fisher linear discriminant analysis (FLDA) [37].

Fig. 10. ROC indicating the performance of multiple face recognition al-
gorithms on the three databases. (a) CMU PIE, (b) WVU visible-light, and
(c) WVU SWIR face databases.
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TABLE III
PERFORMANCE OF FACE MOSAICING BASED ON DIFFERENT INPUT IMAGE SEQUENCES

3) Local feature analysis (LFA) [38] refers to a class of

algorithms that extract a set of geometrical features and

distances from facial images and use these features as the

basis for face representation and comparison. Hopfield

network is used to extract the output, which represents

uncorrelated local features.

4) 2-D log polar Gabor transform [39].

5) Original C2 features [18].

A similar experiment is conducted for evaluating the

performance on the SWIR database. For training the classi-

fier, 280 (= 40 × 7) labeled non-mosaiced images from the

WVU SWIR face database are used. These images are further

used as gallery images, and the remaining 280 SWIR images

are used as probe images. Identification accuracy for all the

recognition algorithms is shown in Table II, and the receiver

operating characteristic (ROC) plots are shown in Fig. 10. The

results indicate that the modified C2-based feature extraction

algorithm outperforms the other recognition algorithms for both

the visible-light and SWIR face databases. The images contain

variation in pose and expression, which leads to changes in the

number and position of the features that are present in indi-

vidual images. Therefore, several face recognition algorithms

that are appearance-based or feature-based do not perform well.

However, the texture-based recognition algorithm results in

better performance and exhibits tolerance to these variations.

Table II and the ROC plot in Fig. 10 show that the modified C2-

feature-based face recognition algorithm gives an improvement

of 1.3% on the CMU PIE database and about 0.7% on the WVU

multispectral database.

A mosaiced face image is expected to contain all the features

in a face, while the frontal and side profile images have only

a limited number of features. To match a mosaiced face with a

non-mosaiced face image, we need a recognition algorithm that

efficiently extracts the local features from the face and com-

pares them by assigning proper weights to the features while

appropriately accounting for missing features. To facilitate this,

we use a local representation based on the textural features

obtained using the modified C2 feature extraction algorithm

in order to evaluate the performance of the proposed face

mosaicing algorithm.

B. Performance Evaluation of the Face Mosaicing and

Recognition Algorithm

The CMU PIE training set contains 68 mosaiced and 340

non-mosaiced labeled images, the WVU visible-light training

set contains 40 mosaiced and 280 non-mosaiced labeled face

images, and the WVU SWIR training set contains 40 mosaiced

and 280 non-mosaiced labeled face images. The experimental

setup here is used to compute the matching performance on all

three databases separately.

• C2 features extracted from the mosaiced and non-

mosaiced training images are used to train the

2ν-SVM-based classifier.
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Fig. 11. Mosaiced images generated with the optimal input sequence. (a) CMU PIE face database [14]. (b) WVU visible-light face database. (c) WVU SWIR
face database.

• C2 features extracted from the mosaiced face images are

used as the gallery features.

• On all three databases, two sets of experiments are

conducted.

1) The first set of experiments is performed to compute

the optimal sequence and number of face images that

are used for mosaicing (Section V-B1).

2) In the second experiment, the performance of match

score fusion techniques [8] such as sum rule and

min/max rules is compared with mosaiced images

(image-level fusion) (Section V-B2).

1) Optimal Sequence for Face Mosaicing: The CMU PIE

database contains two left and two right profile face images

with successive images having a difference of approximately
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Fig. 12. Block diagram illustrating the difference between (a) image mosaic-
ing and (b) match score fusion.

22.5◦, while the WVU multispectral database contains three left

and three right profile face images with a difference of about

20◦ between successive images. To find the optimal sequence

and number of images for mosaicing, the frontal image of a

subject is mosaiced with various combinations of the profile

face images. In all sequences, an equal number of left and

right profile images is used, and the difference in pose between

successive profile images and the frontal image is approxi-

mately the same. This ensures that the extent of information on

both “sides” of the mosaiced face is the same. Thus, we have

four possible input sequences for the CMU PIE database [14]

and eight possible input sequences for the WVU multispectral

database.

Mosaiced face images are generated, with the training data

set representing all possible input sequences. The verification

and identification performance is evaluated by matching a mo-

saiced face image with all the probe non-mosaiced face images.

Verification accuracy is computed at 0.001% false accept rate.

Table III shows the results of this experiment. For the CMU PIE

database, the input sequence “c37–c27–c11” results in the best

verification and identification accuracy of 96.54% and 96.88%,

respectively. For both visible-light and SWIR images from the

WVU multispectral database, the input sequence “p4–p1–p5”

results in the best performance. This suggests that increasing

the number of input images for face mosaicing does not guar-

antee better performance. Experiments on all the databases

indicate that the best result is obtained when the mosaic is

generated using profile images having a difference of about 45◦

with the frontal image. Fig. 11 shows samples of mosaiced im-

ages that are generated using the optimal sequence for all three

databases.

2) Comparing Face Mosaicing With Match Score Fusion

Algorithms: We next compare the performance of fusion at

the image level (mosaicing) with a few fusion operators at the

match-score level (sum rule and min/max rules). Fig. 12 shows

the steps that are involved in generating the final match score

using these two methods. In the case of mosaicing, the gallery is

assumed to contain only those mosaiced images corresponding

to the optimal sequence obtained from the previous experiment.

However, in the case of score fusion, all training images are

used as gallery images. The experimental setup is summarized

below.

• Image fusion: The gallery contains mosaiced images cor-

responding to the optimal sequence from one session,

and the probe consists of the mosaiced and non-mosaiced

images from the rest of the sessions. Images are matched

using the proposed face recognition algorithm. Results of

this experiment for the three databases are shown in the

first row of Tables IV–VI.

• Score fusion: The gallery consists of all the non-mosaiced

images from one session. The probe images correspond

to all the non-mosaiced as well as mosaiced images (gen-

erated using the optimal input sequence) from the other

sessions. Results are shown in the second and third rows

of Tables IV–VI.

Tables IV–VI show the identification accuracies for all three

experiments on CMU PIE, WVU visible-light, and WVU

SWIR face databases, respectively. The results from the three

tables are summarized below.

• The modified C2-feature-based face recognition method

gives good performance for images having variations in

size and content, making it particularly useful for recog-

nizing mosaiced faces.

• A matching accuracy of 100% is obtained when both the

gallery and probe images are mosaiced images.

• Matching mosaiced images with non-mosaiced images

gives higher accuracy compared to matching a non-

mosaiced image with other non-mosaiced profiles.

• The proposed face mosaicing algorithm (image-level fu-

sion) gives better performance compared to the sum rule

and min/max rules (score fusion algorithms).

• SWIR face recognition (using non-mosaiced as well as

mosaiced images) results in better matching performance

compared to visible-light face recognition. This may be

attributed to the illumination-invariant characteristic of

SWIR images. Fig. 13 illustrates the match scores gen-

erated using visible-light and SWIR images. The match

scores are obtained using the modified C2-feature-based

recognition algorithm. It is evident from this example
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TABLE IV
IDENTIFICATION ACCURACY ON THE CMU PIE DATABASE BEFORE AND AFTER FUSION [14]

TABLE V
IDENTIFICATION ACCURACY ON THE WVU VISIBLE-LIGHT FACE DATABASE BEFORE AND AFTER FUSION

TABLE VI
IDENTIFICATION ACCURACY ON THE WVU SWIR FACE DATABASE BEFORE AND AFTER FUSION

that the match scores obtained using SWIR images are

more discriminating compared to that of visible-light face

images.

• The performance of the proposed face mosaicing and

recognition algorithm lies between 96.85% and 100% for

all three databases.

Fig. 14 shows the ROC curve as a result of comparing

mosaiced face images with other mosaiced and non-mosaiced

images. The verification time using a mosaiced image is ∼6 s,

while that using the score-fusion-based approach is between

8–12 s (in a Matlab environment). For the score fusion scheme,

the matcher has to be invoked multiple times corresponding

to each subject. Furthermore, if M is the memory required

to store one face image (in bytes), the memory requirement

without mosaicing is between 5M and 7M , whereas it is

approximately 1.1M for the mosaiced image. These results

show that image mosaicing enhances the performance of face

recognition algorithms while reducing the memory requirement

and the matching time.
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Fig. 13. Match scores obtained using the modified C2-feature-based algo-
rithm. A value of “1” indicates a perfect match, while a “−1” represents a
perfect reject. (a) WVU visible-light database. (b) WVU SWIR database.

VI. CONCLUSION

The primary goal of this paper is to demonstrate the role

of face mosaicing in enhancing the matching performance of

a face recognition system. Given multiple images of a face

during enrollment, the mosaicing algorithm blends them into

a single entity by employing a multiresolution splining scheme.

Experiments reported on three different databases suggest that

fusing information at the image level is better than fusing infor-

mation at the match-score level in the context of this work. A

modified version of the C2 algorithm, originally developed by

Serre et al., was used to extract features from the mosaiced and

non-mosaiced face images. The modified algorithm is observed

to perform very well both in the verification and identification

modes of operation.

Fig. 14. Performance of the recognition algorithm with mosaiced face image
as the gallery image (a) CMU PIE database [14]. (b) WVU visible-light
database. (c) WVU SWIR database.
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As part of our future work, we plan to evaluate the perfor-

mance of 2-D face mosaicing against that of 3-D face models

with respect to matching accuracy. Furthermore, we will inves-

tigate the role of mosaicing in perturbing the biometric content

of the human face. Finally, we will examine the use of facial

symmetry to create face mosaics when the frontal image is not

available and only the left and right profiles are available.
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