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Abstract

Die-stacking technology allows conventional DRAM to be integrated

with processors. While numerous opportunities to make use of such

stacked DRAM exist, one promising way is to use it as a large cache.

Although previous studies show that DRAM caches can deliver per-

formance benefits, there remain inefficiencies as well as significant

hardware costs for auxiliary structures. This paper presents two

innovations that exploit the bursty nature of memory requests to

streamline the DRAM cache. The first is a low-cost Hit-Miss Pre-

dictor (HMP) that virtually eliminates the hardware overhead of

the previously proposed multi-megabyte MissMap structure. The

second is a Self-Balancing Dispatch (SBD) mechanism that dynam-

ically sends some requests to the off-chip memory even though the

request may have hit in the die-stacked DRAM cache. This makes

effective use of otherwise idle off-chip bandwidth when the DRAM

cache is servicing a burst of cache hits. These techniques, however,

are hampered by dirty (modified) data in the DRAM cache. To en-

sure correctness in the presence of dirty data in the cache, the HMP

must verify that a block predicted as a miss is not actually present,

otherwise the dirty block must be provided. This verification pro-

cess can add latency, especially when DRAM cache banks are busy.

In a similar vein, SBD cannot redirect requests to off-chip memory

when a dirty copy of the block exists in the DRAM cache. To relax

these constraints, we introduce a hybrid write policy for the cache

that simultaneously supports write-through and write-back policies

for different pages. Only a limited number of pages are permitted

to operate in a write-back mode at one time, thereby bounding the

amount of dirty data in the DRAM cache. By keeping the majority

of the DRAM cache clean, most HMP predictions do not need to be

verified, and the self-balancing dispatch has more opportunities to

redistribute requests (i.e., only requests to the limited number of dirty

pages must go to the DRAM cache to maintain correctness). Our

proposed techniques improve performance compared to the MissMap-

based DRAM cache approach while simultaneously eliminating the

costly MissMap structure.

1. Introduction

Advances in die-stacking technologies have made it possible to inte-

grate hundreds of megabytes, or even several gigabytes, of DRAM

within the same package as a multi-core processor [1, 8, 11, 20] or

a GPU [19]. To avoid dependencies on operating system vendors,

maintain software transparency, and provide benefit to legacy soft-

ware, recent papers have suggested that using die-stacked DRAM as

a large cache is a compelling approach [11, 12].

To reduce the overhead of supporting the tags in large, die-stacked

DRAM caches, recent work has considered embedding the tags di-

rectly alongside the data within the DRAM array, which avoids the

need for a dedicated external SRAM tag array (e.g., 96MB for a 1GB

DRAM cache) [4, 11]. Placement of the tags within the die-stacked

DRAM itself incurs a costly DRAM access even in the case where

the request eventually misses in the cache. Loh and Hill proposed

the MissMap, a multi-megabyte structure (much less overhead than a

dedicated SRAM tag array) that allows the DRAM cache controller

to skip the DRAM cache access when there is a cache miss [11].

While the MissMap provides a far more practical approach than

using a massive SRAM tag array, its implementation cost is still likely

to be prohibitively high to allow it to be deployed in commercial

products (e.g., 4MB for a 1GB DRAM cache). Furthermore, the

access latency of the MissMap is not trivial (the original paper used

a latency of 24 cycles, which is added to all DRAM cache hits and

misses). In this work, we point out that the MissMap approach

is overly conservative (i.e., maintaining precise information about

the DRAM cache’s contents is not necessary) and that it is actually

possible to speculate on whether a request can be served by the

DRAM cache or main memory. We introduce a light-weight, low-

latency Hit-Miss Predictor (HMP) that provides 97% accuracy on

average, with a hardware cost of less than 1KB.

We also propose a self-balancing dispatch (SBD) mechanism that

dynamically steers memory requests to either the die-stacked DRAM

cache or to the off-chip main memory depending on the instantaneous

queuing delays at the two memories. While the stacked DRAM can

provide higher bandwidth than the off-chip memory, overall system

bandwidth would be greater yet if both die-stacked and off-chip

memories could be efficiently exploited at the same time.

While the HMP and SBD techniques can potentially streamline

the design of a DRAM cache, these approaches are only useful

if they can still ensure correct execution. The source of potential

complication comes from dirty/modified data in the DRAM cache.

Both the HMP and SBD can potentially send a request to main

memory when the DRAM cache contains the most-recent, modified

value. Returning the stale value from off-chip memory could then

lead to incorrect program execution. Beyond a basic mechanism

to validate predictions, we also introduce a hybrid write policy that

forces the majority of the DRAM cache to operate in a write-through

mode, and only enables write-back for a limited set of pages that

have high write traffic. This results in a DRAM cache that is mostly

clean, thereby allowing the DRAM cache to avoid waiting on HMP

prediction verification and creates more opportunities for SBD to

freely send requests off-chip.

2. Background

2.1. DRAM Architectures

Most conventional caches are implemented with SRAM technology,

whereas this work considers die-stacked DRAM. DRAM consists of

arrays of bit-cells, where each bit-cell is comprised of a capacitor

to store charge and an access transistor to enable reading/writing of

the cell. Accessing bit-cells in a DRAM requires storing the bit-cell

values in a row buffer, and all read and write operations effectively
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operate directly on the row buffer (rather than the actual bit-cells).

When, the row is no longer needed (or often when a different row is

requested), the contents of the row buffer are written back into the

original row of bit-cells and then a new row may be accessed.

The DRAM access mechanism is quite different from SRAM

arrays. In the case of DRAM, an entire bank is occupied while the

row is open, and therefore any requests to other rows in this bank will

be delayed until the current operations complete (although operations

in independent banks may proceed concurrently subject to DRAM

timing and bus constraints). In an SRAM, the access paths are more

easily pipelined, and so even if a request has been sent to a particular

bank, subsequent requests need only wait a few cycles before they

can proceed.

2.2. Die-stacked DRAM Caches

Caches store two types of information: tags and data. In conventional

SRAM-based caches, these are stored in two physically distinct

structures (the tag and data arrays, respectively). For a DRAM cache,

one could consider an SRAM-based tag array, as shown in Figure 1(a),

but previous estimates have shown that such a structure would require

tens of megabytes of SRAM, and therefore this approach is not

practical considering that current L3 cache sizes are typically only

around 8 MB [2, 3].

… … 
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… 

DRAM 

(data) 

32 tags 32 data blocks 

29 data blocks 

… 
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Figure 1: DRAM cache organizations using (a) an SRAM tag array, (b)
tags embedded in the DRAM, and (c) tags in DRAM with a MissMap.

Instead, recent research has considered organizations where the

tags and data are directly co-located within the die-stacked DRAM,

as shown in Figure 1(b) [4, 11]. While this eliminates the unwieldy

SRAM tag array, it introduces two more problems. First, naively

accessing the cache could double the DRAM cache latency: one

access to read the tags, followed by another access to read the data

(on a hit). Second, for cache misses, the cost of the DRAM cache tag

access is added to the overall load-to-use latency.

Loh and Hill observed that the tags and data reside in the same

DRAM row, and so the actual latency of a cache hit can be less than

two full accesses by exploiting row buffer locality [11]. That is, the

DRAM row is opened or activated into the row buffer only once, and

then tag and data requests can be served directly out of the row buffer

at a lower latency compared to two back-to-back accesses to different

rows. They also proposed a hardware data structure called a MissMap

that precisely tracks the contents of the DRAM cache, as shown in

Figure 1(c). Before accessing the DRAM cache, the MissMap is first

consulted to determine whether the requested cache block is even

resident in the cache. If the block is not in the cache (i.e., miss), the

request can be sent directly to main memory without incurring the

tag-check cost of the DRAM cache. For a 512MB DRAM cache, the

MissMap needs to be about 2MB in size (which provides tracking of

up to 640MB of data), and a 1GB cache would need a 4MB MissMap.

While Loh and Hill argue that part of the L3 cache could be carved

out to implement the MissMap, using the AMD OpteronTM processor

that consumes 1MB of its L3 to implement a “Probe Filter” as an

example [2], it seems unlikely that designers would be willing to

sacrifice half of their L3 to implement the MissMap.1

3. Motivation

In this section, we identify inefficiencies with the previously proposed

DRAM cache organizations. First, we explain why the MissMap is

overly conservative, which ultimately leads us to consider more

speculative techniques with significantly lower overheads (both in

terms of hardware cost and latency). Second, we describe scenarios

where a conventional cache organization under-utilizes the available

aggregate system bandwidth, which motivates our proposal for a Self-

Balancing Dispatch mechanism. Third, we discuss how the presence

of dirty/modified data in the DRAM cache can potentially limit how

aggressively we can speculate on or rebalance DRAM cache requests.

3.1. The Overkill of the MissMap

The MissMap tracks memory at page (or other coarse-grain) granu-

larity. Each MissMap entry consists of a tag that stores the physical

page number, and a bit-vector that records which cache blocks from

this page are currently resident in the DRAM cache. The bit vector

is precisely maintained such that each time a new cache block is

inserted, its corresponding bit in the vector will be set; conversely,

when a cache block is evicted, its bit will be cleared. Furthermore, if a

MissMap entry is evicted, then all dirty lines from the corresponding

victim page must also be evicted and written back.

Loh and Hill mentioned that it is possible to allow the MissMap to

have false positives [11]. That is, if the MissMap says that a block is

present in the DRAM cache when in fact it is not, then there is only

a performance impact as the system needlessly pays for the latency

of the DRAM cache before going to main memory. However, if the

MissMap reports that a line is not present when in fact it is (false

negative), the request would be sent to main memory and returned to

the processor. If the DRAM cache contains this block in a dirty state,

then this can lead to incorrect program execution.

On a DRAM cache miss (whether the MissMap said so or not),

the system sends the request to main memory. When the response

1Assuming a 4MB MissMap to support a 1GB DRAM cache and a baseline L3 cache
size of 8MB. If such a system employed a Probe Filter as well, then only 3MB out of the
original 8MB L3 would actually be available as a cache!
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Figure 2: Example scenario illustrating under-utilized off-chip mem-
ory bandwidth in the presence of very high DRAM cache hit rates
when considering (a) raw bandwidth in Gbps, and (b) in terms of re-
quest service bandwidth.

returns, the data are sent back to the L3 and the processor, and the

data are also installed into the DRAM cache.2 Prior to the installation

of a new cache block, a victim must be selected. Furthermore, if the

victim has been modified, then it must also be written back to main

memory.

Note that when selecting a victim, the DRAM tags are checked.

Therefore, if the system issued a request to main memory even though

a modified copy of the block is in the DRAM cache, this can still be

detected at the time of victim selection. Given this observation, the

constraint that the MissMap must not allow false negatives is overly

conservative. False negatives are tolerable so long as responses from

memory are not sent back to the processor before having verified that

a dirty copy does not exist in the DRAM cache.

Based on these observations, we propose a DRAM cache organi-

zation that can speculatively issue requests directly to main memory

regardless of whether the decisions are “correct” or not. Section 4

describes a predictor design that exploits spatial correlation and the

bursty nature of cache traffic to provide a light-weight yet highly

accurate DRAM cache hit-miss predictor.

3.2. Under-utilization of Aggregate System Bandwidth

Die-stacked DRAM can potentially provide a substantial increase in

memory bandwidth. Previous studies have assumed improvements

in latency of 2×, 3× and as much as 4× compared to conventional

off-chip DRAM [8, 11, 20]. At the same time, the clock speed can be

faster, bus widths wider, and independent channels more numerous [9,

11]. Even with a rough estimate of half the latency, twice the channels,

and double-width buses (compared to conventional off-chip memory

interfaces), the stacked DRAM would provide an 8× improvement in

bandwidth. In an “ideal” case of a DRAM cache with a 100% hit rate,

the memory system could provide an eight-fold increase in delivered

bandwidth, as shown in Figure 2(a). However, the off-chip memory

is completely idle in this scenario, and that represents 11% ( 1
1+8 ) of

the overall system bandwidth that is being wasted.

Figure 2(b) shows the same scenario again, but instead of raw

bandwidth (in terms of Gbps), we show the effective bandwidth in

2For this study, we assume that all misses are installed into the DRAM cache. Other
policies are possible (e.g., write-no-allocate, victim-caching organizations), but these are
not considered here.

terms of requests serviced per unit time. Note that a request to

main memory only requires transferring a single 64B cache block,

whereas a request to a tags-in-DRAM cache requires transferring

three tag blocks (64B each) and finally the data block. Therefore, the

sustainable effective bandwidth of the DRAM cache is only twice

that of the off-chip memory (8× the raw bandwidth, but 4× the

bandwidth-consumption per request). In this case, a 100%-hit rate

DRAM cache would leave 33% of the overall effective bandwidth

unused ( 1
1+2 ). While the DRAM cache typically does not provide a

100% hit rate, hits often come in bursts that can lead to substantial

queuing delays from bank and bus contention.

Apart from the available bandwidth, bank and bus conflicts at the

DRAM cache can lead to increased queuing delays, some of which

could potentially be mitigated if some of these requests could be

diverted to the off-chip memory. In practice, other timing constraints,

resource conflicts, and specific access patterns and arrival rates would

affect the exact amount of bandwidth available for both the DRAM

cache and the off-chip memory. However, this simple example high-

lights that there will be times where the system will have some idle

resources, and we propose a Self-Balancing Dispatch technique to

capitalize on these resources.

3.3. Obstacles Imposed by Dirty Data

Dirty data in the DRAM cache can severely restrict the aggressiveness

of speculatively sending requests to main memory, as the copy in

main memory is stale and its usage can result in incorrect executions.

Likewise, dirty data prevents the system from exploiting idle main-

memory bandwidth because accesses to dirty data must be sent to the

DRAM cache regardless of how busy the DRAM cache or how idle

the off-chip memory is. This also raises the question as to how the

system can know ahead of time that a request targets a dirty cache

line without having first looked up in the cache to see if the line is

present and dirty. A key contribution of this work is a new way to

operate the DRAM cache (which could be applied to other types of

caches) such that most of the cache will be clean, and for the majority

of the cache, we can guarantee its cleanliness without having to check

the cache’s tags. This removes major limitations for both cache hit

speculation and Self-Balancing Dispatch.

4. DRAM Cache Hit Speculation

The previously proposed MissMap provides precise tracking of

DRAM cache contents, but as a result, the size (2-4MB) and la-

tency (tens of cycles) of the structure introduce significant overheads.

Section 3 explained how the DRAM cache can check for the existence

of a dirty block at the time of a cache fill, and how this allows the

DRAM cache to speculatively send requests to main memory so long

as we ensure that the data are not returned to the processor until it

has been verified that a modified copy is not also in the DRAM cache.

In this section, we present the designs for lightweight and accurate

region-based predictors that exploit the bursty nature of cache hits

and misses [10].

4.1. Region-based Hit/Miss Prediction

Our region-based Hit/Miss Predictor (HMPregion) is structurally sim-

ilar to a classic bimodal branch predictor [15]. The predictor itself

consists of a table of two-bit saturating counters. For a DRAM cache

with millions of cache blocks, it is not practical to directly index

into the HMPregion table with a hash of the raw physical address;

the aliasing and interference would render the predictor table nearly
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Figure 3: Hit-Miss Predictor designs: (a) one-level HMPregion, (b) multi-granular HMPMG.

useless, or a gigantic table would be needed. Instead, we break up the

memory space into coarser-grained regions (e.g., 4KB), and index

into the HMPregion with a hash of the region’s base address as shown

in Figure 3(a). This allows the HMPregion table to be much smaller,

but it also means that all accesses within a region will follow the same

prediction. The operation of the HMPregion is otherwise analogous to

the bimodal predictor: DRAM cache hits increment the predictor, and

misses decrement the predictor (saturating at 3 or 0, respectively).

The coarse-grained predictor organization of HMPregion is actually

a benefit rather than a shortcoming. Accesses tend to exhibit signifi-

cant spatial locality, especially at lower-level caches such as a large

DRAM cache. Figure 4(a) shows the number of cache blocks present

in the DRAM cache for one particular 4KB page of leslie3d (from the

WL-6 workload) with respect to the number of accesses to this page

(our methodology is explained in Section 7). Initially, nothing from

this page is in the DRAM cache, but as the page is used, more and

more lines are installed. During this installation phase, most accesses

result in cache misses, and a simple 2-bit counter corresponding to

this region would mostly predict that these requests result in misses.

After this “warm up” phase, the footprint from this region is stable,

and all subsequent accesses to this region result in hits. Again, a

simple 2-bit counter would quickly switch over to predicting “cache

hit” for this region and achieve high accuracy. When the application

is finished with using this region, the contents will gradually get

evicted from the cache, as shown by the drop back down to zero.

At some future point,3 the page becomes hot again and the process

repeats.

Figure 4(b) shows another 4KB region taken from leslie3d (from

the same workload WL-6). This is just to illustrate that different

regions and different applications may show different types of pat-

terns, but so long as there exist sustained intervals where the curve is

consistently increasing (mostly misses) or is consistently flat (mostly

hits), then the simple 2-bit counter approach will be effective for

making hit-miss predictions for the region.

The HMPregion approach is different from other previously pro-

posed history-based hit-miss predictors. Past work has considered

hit-miss predictors for L1 caches based on PC-indexed predictor

3The figure’s x-axis is based on accesses to the page. The time that elapses from the
last access in the hit phase until the first access in the miss phase could easily span many
thousands or even millions of cycles, but this all gets compressed here.

organizations [18]; such an approach may not be as easy as to im-

plement for a DRAM cache because PC information is not typically

passed down the cache hierarchy, may not exist for some types of

requests (e.g., those originating from a hardware prefetcher), or may

not be well defined (e.g., a dirty cache block being written back to

the DRAM cache that was modified by two or more store instructions

may have multiple PCs associated with it).

4.2. Multi-Granular Hit-Miss Predictor

The HMPregion predictor requires approximately one two-bit counter

per region. For example, assuming a system with 8GB of physical

memory and a region size of 4KB, the HMPregion would still need

221 two-bit counters for a total cost of 512KB of storage. While this

is already less than a 2-4MB MissMap, there is still room to further

optimize.

We observed that even across large contiguous regions of memory

spanning multiple physical pages, the hit-miss patterns generally

remained fairly stable (that is, sub-regions often have the same hit-

miss bias as other nearby sub-regions). While, in theory, different

nearby physical pages may have nothing to do with each other (e.g.,

they may be allocated to completely independent applications), in

practice memory allocation techniques such as page-coloring [17]

tend to increase the spatial correlation across nearby physical pages.

In our experiments, we found that memory would often contain large

regions with mostly homogeneous hit/miss behavior, but smaller

pockets within the larger regions would behave differently.

We propose a Multi-Granular Hit/Miss Predictor (HMPMG) that is

structurally inspired by the TAGE branch predictor [13], but operates

on the base addresses of different memory regions (as opposed to

branch addresses) and the different tables capture hit-miss patterns

corresponding to different region sizes (as opposed to branch history

lengths). Figure 3(b) shows the hardware organization of HMPMG.

The first-level predictor is similar to HMPregion, except that it makes

predictions over very large 4MB regions. The second and third-level

tables consist of set-associative tagged-structures that make predic-

tions on finer-grained 256KB and 4KB region sizes, respectively.

Each entry in the tagged tables consists of a (partial) tag and a two-bit

counter for prediction. Tag hits in the tagged HMPMG tables will

override predictions from larger-granularity predictor tables.

The overall structure of the HMPMG provides a more efficient
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Figure 4: Hit and miss phases for two example pages from leslie3d (when run as part of the multi-programmed workload WL-6).

and compact predictor organization. A single two-bit counter in the

first-level table covers a memory range of 4MB. In the single-level

HMPregion predictor, this would require 1024 counters to cover the

same amount of memory.

4.3. Predictor Operation

The entries in the HMPMG’s base predictor are initially set to weakly

miss or “1”. To make a hit/miss prediction for a request, the base

and tagged components are all looked up simultaneously. The base

component makes a default prediction, while tagged components

provide an overriding prediction on a tag hit.

The HMPMG is updated when it has been determined whether there

was a DRAM cache hit or not. The 2-bit counter of the “provider”

component is always updated.4 On a misprediction, an entry from

the “next” table is allocated (a victim is chosen based on LRU). For

example, if the prediction came from the first-level table, then a

new entry will be allocated in the second-level table. Mispredictions

provided by the third table simply result in the corresponding counter

being updated without any other allocations. The newly allocated

entry’s 2-bit counter is initialized to the weak state corresponding to

the actual outcome (e.g., if there was a DRAM cache hit, then the

counter is set to “weakly hit” or 2).

4.4. Implementation Cost

Table 1 shows the storage overhead of the HMPMG configuration

used in this paper. Compared to a MissMap that requires 2-4MB of

storage, the HMPMG only requires 624 bytes of total storage. A single

predictor is shared among all cores. At this size, the entire L3 cache

can once again be used for caching (as opposed to implementing a

MissMap). Also important, the small size of the HMPMG allows

it to be accessed in a single cycle as it is smaller than even many

branch predictors. Compared to the 24-cycle latency assumed for the

MissMap [11], this provides significant benefits both for performance

and implementability.

Hardware Size

Base Predictor (4MB region) 1024 entries * 2-bit counter = 256B

2nd-level Table (256KB region) 32 sets * 4-way * (2-bit LRU + 9-bit tag + 2-bit counter) = 208B

3rd-level Table (4KB region) 16 sets * 4-way * (2-bit LRU + 16-bit tag + 2-bit counter) = 160B

Total 624B

Table 1: Hardware cost of the Multi-Granular Hit-Miss Predictor.

4The “provider” is the terminology used for the TAGE predictor to indicate the table
from which the final prediction came from.

5. Exploiting Unused Bandwidth

As described in Section 3, there are scenarios where a burst of DRAM

cache hits (or predicted hits for that matter) can induce significant

DRAM cache bank contention while the off-chip memory remains

largely idle. In this section, we describe a Self-Balancing Dispatch

(SBD) mechanism that allows the system to dynamically choose

whether (some) requests should be serviced by the DRAM cache or

by the off-chip memory.

In an ideal case, every request could be routed to either the DRAM

cache or to off-chip memory. If both memories had the same latency

per access, then the system could simply look at the number of

requests already enqueued for each and send the request to the one

with fewer requests. However, the different memories have different

latencies, and so the request should be routed to the source that has

the lowest expected latency or queuing time. The expected latency

for each memory can be estimated by taking the number of requests

already “in line” and then multiplying by the average or typical

access latency for a single request at that memory. Overall, if one

memory source is being under-utilized, then it will tend to have a

lower expected latency and the SBD mechanism will start directing

requests to this resource. In the steady-state, the bandwidth from

both sources will be effectively put to use.

Complications arise due to the fact that not every request can or

should be freely routed to whichever memory has the lowest expected

latency. If a request is for a dirty block in the DRAM cache, then

routing the request to the off-chip memory is of no use (in fact, it

just wastes bandwidth) because the data must ultimately come from

the DRAM cache. If the HMP predicts that a request will miss in

the DRAM cache, then there is likely little benefit in routing it to the

DRAM cache (even if it has a lower expected latency), because if

the prediction is correct, there will be a cache miss which in the end

simply adds more latency to the request’s overall service time.

The above constraints mean that SBD can only be gainfully em-

ployed for requests that would have hit in the DRAM cache where

the corresponding cache block is not dirty. To determine whether

a request will (likely) hit in the DRAM cache, we simply rely on

the HMP. While the HMP is not perfectly accurate, mispredictions

simply result in lost opportunities for SBD to make better use of the

available bandwidth. To deal with dirty data, we will first simply

assume that the DRAM cache makes use of a write-through policy to

ensure that all blocks are always clean. Algorithm 1 below describes

the basic SBD algorithm assuming a write-through cache. In the

next section, we will show how to remove the strict write-through

requirement to avoid the unnecessary write traffic to main memory.

Note in Algorithm 1, we do not count all of the requests that are
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Algorithm 1 Self-Balancing Dispatch

0) Self-balancing dispatch operates only on (predicted) hit re-

quests.

1) NOff-Chip := Number of requests already waiting for the same

bank in the off-chip memory.

2) LOff-Chip := Typical latency of one off-chip memory request,

excluding queuing delays.

3) EOff-Chip := NOff-Chip * LOff-Chip. (Total expected queuing delay

if this request went off-chip.)

4-6) NDRAM_Cache, LDRAM_Cache, EDRAM_Cache are similarly de-

fined, but for the die-stacked DRAM cache.

7) If EOff-Chip < EDRAM_Cache, then send the request to off-chip

memory; else send to DRAM cache.

waiting to access off-chip memory, but we limit the count to those

waiting on the same bank as the current request that is under SBD

consideration (similar for the number of requests to the target off-chip

DRAM cache bank). The above description uses the “typical” latency

(e.g., for main memory we assume the latency for a row activation,

a read delay (tCAS), the data transfer, and off-chip interconnect

overheads; for the DRAM cache we assume a row activation, a

read delay, three tag transfers, another read delay, and then the final

data transfer). Other values could be used, such as dynamically

monitoring the actual average latency of requests, but we found that

simple constant weights worked well enough. Note also that these

latency estimates only need to be close enough relative to each other;

slight differences in the estimated expected latency and the actual

observed latency do not matter if they do not lead to different SBD

outcomes (i.e., an error of a few cycles will in most cases not cause

the SBD mechanism to change its decision).

6. Maintaining a Mostly-Clean Cache

When a request is for a cached dirty block, the SBD mechanism has

no choice but to send the request to the DRAM cache (it is possible

that the HMP mispredicted it as a miss, but this would ultimately

be detected and requires reading the data from the DRAM cache

anyway). If the system could guarantee that a requested block is

not cached and dirty, then SBD could more freely make bandwidth-

balancing decisions with its effectiveness only constrained by the

accuracy of the HMP.

6.1. Write-Through vs. Write-Back

We earlier discussed how employing a write-through policy for the

DRAM cache can in fact ensure that all requests that hit in the cache

are not for dirty blocks, but applying a write-through policy whole-

sale to the entire DRAM cache can result in significant increases in

write-through traffic to main memory. Figure 5(a) shows the top most-

written-to pages in the DRAM cache for the SPEC2006 benchmark

soplex. The upper curve (dotted) shows the write traffic for a write-

through policy, and the lower curve (solid) shows the write traffic for

a write-back policy. The large differences between the curves indi-

cate that the write-back policy achieves significant write-combining,

and therefore employing a write-through policy could significantly

increase write traffic to main memory. There are other scenarios, such

as that shown in 5(b), where, even in a write-back cache, dirty lines

are usually only written to once before they are subsequently evicted.

However, on average across all of our workloads, we observed that a

write-through DRAM cache results in ∼3.7× greater write traffic to

main memory than a write-back policy (although the amount varies

significantly based on the exact workloads).
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Figure 5: Number of writes for each page with write-through and
write-back policy. The x-axis is sorted by top most-written-to pages.

Another important statistic is that, on average for our experiments,

only about 5% of an application’s pages ever get written to. This

indicates that in typical scenarios, the vast majority of the DRAM

cache’s blocks are in fact clean. A write-through cache ensures

cleanliness, but costs significantly more main-memory write traffic.

A write-back cache minimizes off-chip write traffic, but then cannot

provide any guarantees of cleanliness despite the fact that most blocks

will in fact be clean.

6.2. The Dirty Region Tracker

We propose a hybrid write-policy for the DRAM cache where, by

default, pages employ a write-through policy (to handle the common

case of clean pages), but a limited subset of the most write-intensive

pages are operated in write-back mode to keep the main-memory

write traffic under control. To support this hybrid policy, we introduce

the Dirty Region Tracker (DiRT). The DiRT consists of two primary

components as shown in Figure 6. The first structure is a counting

Bloom filter (CBF) that is used to approximately track the number of

writes to different pages. On each write, the page address is hashed

differently for each of the CBF tables, and the corresponding counters

are incremented.5 When a page’s counters in all three CBFs exceed

a threshold, then it is determined to be a write-intensive page (and

each indexed CBF counter is reduced by half).

At this point, we introduce the second structure that is a Dirty

List of all pages that are currently operated with a write-back policy.

The Dirty List is a set-associative tagged structure where each entry

consists of a tag to store a physical page number and 1 bit of storage

to implement a not-recently-used (NRU) replacement policy. A page

not currently in the Dirty List, but whose counters have exceeded

the threshold, gets inserted into the Dirty List (and the NRU entry

from the Dirty List is evicted). Note that when a page is evicted from

the Dirty List, its write policy is switched back to write-through; at

5We use three CBFs with different hash functions, which increases the efficacy of
identifying the most write-intensive pages due to the reduction in aliasing.
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Figure 6: Dirty Region Tracker (DiRT).

this point, the system must ensure that any remaining dirty blocks

from this page are written back to main memory. At first blush, this

may seem like a high overhead, but a 4KB page only contains 64

cache blocks. Current die-stacked DRAMs already support 32 banks

(e.g., 4 channels at 8 banks each [9]), and so the latency overhead

is only two activations per bank (and the activations across banks

can be parallelized) plus the time to stream out the data back to main

memory. Note that all of these cache blocks will have very high

spatial locality because they are all from the same page, so practically

all of the writeback traffic will experience row buffer hits in main

memory. Also, any clean blocks of course need not be written back.

The detailed algorithm for DiRT management is listed in Algorithm 2.

Algorithm 2 DiRT Management

1) Check Dirty List for the written-to page; if it’s there, update

NRU replacement meta-data.

2) If not, increment each indexed counter in all three CBFs.

3) If all indexed counters are greater than threshold:

a) Evict the NRU entry from the Dirty List;

writeback any associated dirty blocks.

b) Allocate the new page to the Dirty List.

c) Reduce each indexed CBF counter by half.

6.3. Putting the DiRT to Work

6.3.1. Streamlining HMP: The DiRT works synergistically with

Hit-Miss Prediction. In parallel with the HMP lookup, a request can

also check the DiRT to see if it accesses a guaranteed clean page. If

the page is clean (i.e., not currently in the Dirty List), then requests

that are predicted misses can be issued directly to main memory.

When the value is returned, this data can be forwarded directly back

to the processor without having to verify whether there was actually

a dirty copy of the block in the DRAM cache because the DiRT

has already guaranteed the block to be clean. Without the DiRT,

all returned predicted-miss requests must stall at the DRAM cache

controller until the fill-time speculation has been verified. During

times of high bank contention, this prediction-verification latency

can be quite substantial.

6.3.2. Streamlining SBD: When combining the DiRT with the SBD

mechanism, the DiRT can guarantee that accesses to certain (most)

pages will be clean, and so SBD can freely choose the best memory

source to route the request to. When the HMP predicts a hit, the

system first consults the DiRT’s Dirty List. If the requested page is

found in the Dirty List, then we do not know if the requested block

is dirty or not (e.g., it could be one of the few clean blocks in a

mostly-dirty page). In this case, SBD always routes the request to the

DRAM cache. However, if the requested page is not in the Dirty List,

then the page (and therefore the requested block) is guaranteed to be

clean, and therefore SBD can do as it wishes. Note that clean pages

are the overwhelming common case (expect for a few benchmarks),

and so using the DiRT provides SBD with many more opportunities

to make use of otherwise under-utilized off-chip bandwidth.

6.4. Putting It All Together

Figure 7 shows the decision flow chart for memory requests with

all of the proposed mechanisms. One should note that Hit-Miss

Prediction, SBD, and the DiRT can all be accessed in parallel (SBD

can speculatively make a decision assuming an access to a clean,

predicted-hit block). Furthermore, HMP and DiRT lookups could

even be initiated early before the L2 hit/miss status is known as these

components only require the requested physical address.

Dirty 

Request? 
DRAM$ Queue 

DRAM Queue 

Predicted 

Hit? 

E(DRAM$) 

< E(DRAM) 

YES 

NO 

NO 

YES 

NO 

YES 

DiRT HMP SBD 

Mechanism START 

Figure 7: Decision flow chart for memory requests.

6.5. DiRT Implementation Cost

The DiRT is a slightly larger structure compared to the simple hit-miss

predictors, but the overall hardware cost is still quite manageable

(6.5KB, just 0.16% of our L2 data array size). Each of the three

CBF tables has 1024 entries, and each entry consists of a five-bit

saturating counter. We use a threshold of 16 writes to consider a page

as write-intensive. For Dirty List, we use a 4-way set associative

structure with 256 sets, so it supports up to 1024 pages operating in

write-back mode at a time. Each entry of the Dirty List consists of

1-bit reference information for NRU replacement policy and a tag for

the page. Other approximations (e.g., pseudo-LRU, SRRIP [7]) or

even true LRU (this only requires 2-bit for a 4-way set associative

structure) could also be used for the replacement policy, but a simple

NRU policy worked well enough for our evaluations. In Section 8.7,

we provide additional results while comparing our implementation

with different DiRT organizations and management policies. For

these estimates, we also conservatively assumed a 48-bit physical

address (12 bits used for 4KB page offset), which increases our tag

size. The total overheads are summarized in Table 2.

Hardware Size

Counting Bloom Filters 3 * 1024 entries * 5-bit counter = 1920B

Dirty List 256 sets * 4-way * (1-bit NRU + 36-bit tag) = 4736B

Total 6656B = 6.5KB

Table 2: Hardware cost of the Dirty-Region Tracker.
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7. Experimental Results

7.1. Methodology

Simulation Infrastructure: We use MacSim [6], a cycle-level x86

simulator, for performance evaluations. We model a quad-core pro-

cessor with two-level SRAM caches (private L1 and shared L2) and

an L3 DRAM cache. The stacked DRAM is expected to support

more channels, banks, and wider buses per channel [9]. In this study,

the DRAM cache has four channels with 128-bit buses, and each

channel has eight banks, while the conventional off-chip DRAM has

2 channels, each with 8 banks and a 64-bit bus. Also, key DDR3

timing parameters with bank conflicts and data bus contention are

modeled in our DRAM timing module. Table 3 shows the system

configurations used in this study.

CPU

Core 4 cores, 3.2GHz out-of-order, 4 issue width, 256 ROB
L1 cache 4-way, 32KB I-Cache + 32KB D-Cache (2-cycle)
L2 cache 16-way, shared 4MB (4 tiles, 24-cycle)

Stacked DRAM cache

Cache size 128MB
Bus frequency 1.0GHz (DDR 2.0GHz), 128 bits per channel
Channels/Ranks/Banks 4/1/8, 2KB row buffer
tCAS-tRCD-tRP 8-8-15
tRAS-tRC 26-41

Off-chip DRAM

Bus frequency 800MHz (DDR 1.6GHz), 64 bits per channel
Channels/Ranks/Banks 2/1/8, 16KB row buffer
tCAS-tRCD-tRP 11-11-11
tRAS-tRC 28-39

Table 3: System parameters used in this study.

Workloads: We use the SPEC CPU2006 benchmarks and sam-

ple 200M instructions using SimPoint [14]. Then we categorize

the applications into two different groups based on the misses per

kilo instructions (MPKI) in the L2 cache. We restrict the study to

workloads with high memory traffic; applications with low memory

demands have very little performance sensitivity to memory-system

optimizations and therefore expose very little insight (we did verify

that our techniques do not negatively impact these benchmarks). Out

of the memory-intensive benchmarks, those with average MPKI rates

greater than 25 are in Group H (for High intensity), and of the re-

maining, those with 15 MPKI or more are in Group M (for Medium).

Table 4 shows MPKI values of the benchmarks and their group.

Group M MPKI Group H MPKI

GemsFDTD 19.11 leslie3d 25.85

astar 19.85 libquantum 29.30

soplex 20.12 milc 33.17

wrf 20.29 lbm 36.22

bwaves 23.41 mcf 53.37

Table 4: L2 misses per kilo instructions (L2 MPKI).

We select benchmarks to form rate-mode (all cores running sepa-

rate instances of the same application) and multi-programmed work-

loads. Table 5 shows the primary workloads evaluated for this study.

Section 8 also includes additional results covering a much larger

number of workloads.

For each workload, we simulate 500 million cycles of execution.

We verified that the DRAM cache is sufficiently warmed up: the

Mix Workloads Group

WL-1 4 × mcf 4×H

WL-2 4 × lbm 4×H

WL-3 4 × leslie3d 4×H

WL-4 mcf-lbm-milc-libquantum 4×H

WL-5 mcf-lbm-libquantum-leslie3d 4×H

WL-6 libquantum-mcf-milc-leslie3d 4×H

WL-7 mcf-milc-wrf-soplex 2×H + 2×M

WL-8 milc-leslie3d-GemsFDTD-astar 2×H + 2×M

WL-9 libquantum-bwaves-wrf-astar 1×H + 3×M

WL-10 bwaves-wrf-soplex-GemsFDTD 4×M

Table 5: Multi-programmed workloads.

DRAM cache access statistics at the end of the simulation show that

the number of valid cache lines is equal to the total capacity of the

cache, and the total number of evictions is 5×-6× greater than the

total cache capacity.

Performance Metric: We report performance using weighted

speedup [5, 16], which is computed as:

Weighted Speedup = ∑
i

IPCshared
i

IPC
single
i

.

The geometric mean is also used to report average values.

7.2. Performance

Figure 8 shows the performance of the proposed hit-miss predic-

tor (HMP), self-balancing dispatch (SBD), and dirty region tracker

(DiRT) mechanisms for multi-programmed workloads. For compari-

son, we use a baseline where the DRAM cache is not employed. We

also compare our mechanisms with the previously proposed MissMap

structure (denoted as MM in the figure). We model a MissMap with

zero storage overhead; i.e., no L2 cache capacity is sacrificed for the

MissMap, but the L2 latency is still incurred for the lookup.
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Figure 8: Performance normalized to no DRAM cache for MissMap
(MM), and combinations of HMP, SBD, and DiRT.

We first evaluate the impact of hit-miss prediction (HMP) without

DiRT. In this usage scenario, every predicted miss request serviced

from off-chip memory must wait to be verified as safe (i.e., no dirty

data in the DRAM cache). As a result, for most benchmarks, HMP

without DiRT performs worse than MissMap. This is not necessarily

a negative result when one considers that the HMP approach sacri-

fices the multi-megabyte MissMap for a much smaller sub-kilobyte

predictor. Achieving even close to similar performance while remov-

ing such a large hardware overhead is still a desirable result. However,

with DiRT support, HMP+DiRT performs even better than MissMap
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Figure 9: Prediction accuracy of HMP and its comparison with other
types of predictors.

due to the elimination of fill-time prediction verifications for clean

blocks (which are the common case). At this point, the performance

benefit over MissMap is primarily due to the replacement of the

24-cycle MissMap latency with a 1-cycle HMP lookup.

Next, we apply the SBD mechanism on top of HMP+DiRT. As

shown in the results, SBD further improves performance (often sig-

nificant, depending on the workload). Compared to HMP+DiRT,

SBD provides an additional 8.3% performance benefit on average.

In summary, the proposed mechanisms (HMP+DiRT+SBD) provide

a 20.3% performance improvement over the baseline. Also, com-

pared to MissMap, they deliver an additional 15.4% performance

over the baseline. On a last remark, one should note that the evaluated

MissMap does not sacrifice the L2 cache (i.e., ideal), so our mech-

anisms would perform even better when compared to a non-ideal

MissMap that reduces the effective SRAM cache size.

8. Analysis

In this section, we provide additional analysis on the proposed hit-

miss predictor, self-balancing dispatch, and the dirty region tracker.

8.1. HMP: Prediction Accuracy

Figure 9 shows the prediction accuracy of the proposed predictor

with comparison to some other types of predictors. static indicates

the best of either static-hit or static-miss predictors, so the value is

always great than 0.5. A reasonable predictor at least should be better

than static. globalpht is the implementation of only one 2-bit counter

for all memory requests, where it is incremented/decremented on

a hit/miss. gshare is a gshare-like cache predictor (i.e., using the

XOR of a requested 64B block address with a global history of recent

hit/miss outcomes to index into a pattern history table).

First, the results show that our predictor provides more than 95%

prediction accuracy on the evaluated workloads (average of 97%),

which implies that the spatial locality-based hit/miss prediction is

highly effective. Next, compared to static, we can see that the other

predictors actually do not improve prediction accuracy much. For

WL-1, all of the predictors perform well because the workload has

a high hit rate and is simply easy to predict. But, if the hit ratio

is around 50% as in other workloads, the other predictors perform

poorly. For globalpht, one core may be consistently hitting while the

other is consistently missing, and as a result the simple counter could

ping-pong back and forth generating mispredictions. For gshare, the

hit/miss history register provides poor information, and its inclusion

often introduces more noise than useful correlations, resulting in

overall lower prediction rates. In summary, HMP outperforms other

predictors that use the individual 64B request address and/or history

information of the actual outcomes.
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Figure 10: Issue direction breakdown. PH indicates predicted hit re-
quests.

0%

20%

40%

60%

80%

100%

DiRT

CLEAN

Figure 11: Percentage distribution of memory requests captured in
DiRT.

8.2. SBD: Percentage of Balanced Hit Requests

Figure 10 shows the distribution of SBD’s issue decisions (i.e.,

DRAM or DRAM cache). The black bar (PH: To DRAM$) rep-

resents the percentage of requests that are predicted hits and are

actually issued to the DRAM cache, while the white bar (PH: To

DRAM) represents the predicted-hit requests that were diverted to

off-chip memory. Note that SBD does not work on the predicted-miss

requests; thus, the requests in the (Predicted Miss) portion are always

issued to off-chip memory.

At first thought, one might think that SBD does not operate on the

benchmarks whose hit ratios are low (e.g., below 50%) because the

amount of traffic to off-chip DRAM would be greater than that to the

DRAM cache. Due to the bursty nature of memory requests, however,

the instantaneous hit ratio and/or bandwidth requirements vary from

the average values; thus, the balancing mechanism provided by SBD

can still be beneficial even for the low hit-ratio workloads. In fact,

as shown in the results, SBD was able to redistribute some of the hit

requests for all of the benchmarks.

8.3. DiRT: Benefit and Traffic

Figure 11 shows the percentage distribution of write-through mode

(CLEAN) and write-back mode (DiRT) memory requests. The

“CLEAN” portion indicates the number of requests that are not found

in the DiRT; thus, they are free to be predicted or self-balanced. The

results show that DiRT allows a significant amount of memory re-

quests to be handled without fear of returning a stale value. Note that

without DiRT, every request that is a predicted miss (or a predicted

hit but diverted to DRAM) needs to wait until it has been verified that

the DRAM cache does not contain a dirty copy.

Figure 12 illustrates the amount of write-back traffic to off-chip

DRAM for write-through, write-back, and the DiRT-enabled hybrid
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Figure 13: Average performance of MissMap and our proposed mech-
anisms over no DRAM cache baseline with +/-1 std. deviation for 210
workloads.

policy, all normalized to the write-through case. As shown in the

results, a write-back policy performs a significant amount of write-

combining and thereby greatly reduces the amount of write traffic

to main memory as compared to a write-through policy. DiRT is

not perfect and it does increase write traffic slightly compared to a

true write-back policy, but the total write traffic from a DiRT-enabled

DRAM cache is much closer to that of the write-back case than it is to

write-through. The relatively small increase in write traffic due to the

DiRT is more than compensated by the streamlined HMP speculation

and increased opportunities for SBD.

8.4. Sensitivity to Different Workloads

To ensure that our mechanisms work for a broader set of scenarios

beyond the ten primary workloads used thus far in this paper, we

simulated all 210 combinations (10C4) of the ten Group H and Group

M benchmarks. Figure 13 shows the performance results averaged

over all of the 210 workloads, along with error-bars to mark one

standard deviation. As shown in the figure, our mechanisms combine

to deliver strong performance over the previously proposed MissMap-

based DRAM cache approach.

8.5. Sensitivity to DRAM Cache Sizes

Figure 14 shows the performance of the proposed mechanisms with

different sizes of DRAM caches. The results show that the benefit of

MissMap, HMP+DiRT, and HMP+DiRT+SBD increases as the cache

size grows. For all cache sizes, HMP+DiRT+SBD still performs best.

In addition, the benefit of SBD increases as the DRAM cache size

increases because the higher hit rate provides more opportunities for

SBD to dispatch requests to main memory.

8.6. Sensitivity to DRAM Cache Bandwidth

In our evaluation, the ratio of peak DRAM cache bandwidth to main

memory is 5:1 (2GHz vs. 1.6GHz, 4 channels vs. 2 channels, and
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Figure 14: Performance sensitivity of the proposed mechanisms to
different DRAM cache sizes.
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Figure 15: Performance sensitivity to different ratios of DRAM cache
bandwidth to off-chip memory.

128-bit bus per channel vs. 64-bit bus per channel). While we

believe that this is reasonable for plausible near-term systems,6 it

is also interesting to see how the effectiveness of HMP and SBD

scales under different bandwidth assumptions. Figure 15 shows

the performance sensitivity when we increase the DRAM cache

frequency from 2.0GHz (what was used so far in this paper) up to

3.2GHz. First, as shown in the results, the benefit of HMP does

not decrease if future die-stacked DRAMs provide more bandwidth

(relative to off-chip). As the DRAM-cache frequency increases,

the cost of the 24-cycle MissMap increases relative to the DRAM-

cache latency, and therefore HMP provides a small but increasing

relative performance benefit as well. On the other hand, increasing

the DRAM cache frequency reduces the relative additional bandwidth

provided by the off-chip DRAM, thereby potentially decreasing the

effectiveness of SBD. In our experiments, we do observe that the

relative benefit of SBD over HMP reduces as the DRAM cache

bandwidth increases, but overall, SBD still provides non-negligible

benefits even with higher-frequency DRAM caches. Note that the die-

stacked DRAM bandwidth may not grow too rapidly (such as 32:1),

as adding more TSVs requires die area on the memory chips (which

directly impacts cost), and increasing bandwidth via higher-frequency

interfaces has power implications.

8.7. Sensitivity to DiRT Structures

Figure 16 shows the performance results as we vary the number of

Dirty List entries (first four bars), assuming a fully-associative struc-

ture with LRU replacement. Note that such a structure would be

difficult to implement for these sizes (e.g., true LRU on 1K entries).

6For example, current x86 processors tend to have two DDR3 memory channels
(some have three or four, which would provide even more opportunities for SBD). The
JEDEC Wide-IO standard provides four channels at 128 bits each, which is the same as
our stacked DRAM configuration.
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Figure 16: Performance sensitivity to different DiRT structures and
management policies.

Overall, there is very little performance degradation even when re-

ducing the size of the DiRT to only 128 entries, but we still chose to

employ a 1K-entry table to reduce the performance variance across

workloads.

The right side of Figure 16 also shows the results for 4-way set-

associative implementations, each with 1K entries. The right-most

bar (1K entry, 4-way, NRU) is the configuration used thus far in

the paper and has the lowest implementation complexity and cost.

Overall, the results show that even with our simplified DiRT organi-

zation, we lose very little performance compared to an impractical

fully-associative, true-LRU solution.

9. Conclusion

The prior work by Loh and Hill provided an important step toward

the realization of a more practical die-stacked DRAM cache solution.

However in this paper, we have shown that there still exist inefficien-

cies in the prior solution. In particular, the assumption that precise

cache-content tracking was needed led to a MissMap structure that

was over-designed for the DRAM cache. By taking advantage of the

simple observation that on a miss, tag reads for victim selection need

to occur anyway, false-negative mispredictions can be verified to pre-

vent returning stale data from main memory back to the processors.

The ability to freely speculate enables our DRAM cache organization

that avoids the hardware overheads of the MissMap.

We also observed that while the die-stacked DRAM may provide

significant bandwidth, the off-chip memory bandwidth is still a valu-

able resource that should not be disregarded. Our Self-Balancing

Dispatch approach allows our DRAM cache design to make better

use of the system’s aggregate bandwidth. For both the HMP and SBD

approaches, we found that life is significantly easier when we do not

need to worry about dirty data. Completely abolishing dirty data from

the DRAM cache with a write-through policy causes write traffic to

increase tremendously. However, by bounding (and tracking) a lim-

ited number of pages in write-back mode, we could greatly amplify

the effectiveness of both HMP and SBD techniques. Overall, we have

proposed a significantly streamlined DRAM cache organization that

improves performance over the state of the art while eliminating the

large MissMap structure.

Beyond the ideas presented in this paper, there likely remain other

research opportunities to further improve the performance and/or

practicality of die-stacked DRAM caches. For instance, the moti-

vational example showing under-utilized off-chip bandwidth also

illustrates the high cost of placing the tags in the DRAM cache in

terms of bandwidth. In particular, the raw 8× higher bandwidth of

the die-stacked DRAM (compared to off-chip) is reduced to only

a 2× increase in the effective bandwidth in terms of serviceable

requests per unit time. DRAM cache organizations that can make

more efficient use of the DRAM cache’s raw bandwidth would likely

provide further performance benefits. Studies on further improving

the practicality of die-stacked DRAM caches, such as the interaction

with cache coherence, are also good directions for future research.
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