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Abstract

Background: Most of the modern motorized prostheses are controlled with the surface electromyography (sEMG)

recorded on the residual muscles of amputated limbs. However, the residual muscles are usually limited, especially

after above-elbow amputations, which would not provide enough sEMG for the control of prostheses with multiple

degrees of freedom. Signal fusion is a possible approach to solve the problem of insufficient control commands,

where some non-EMG signals are combined with sEMG signals to provide sufficient information for motion intension

decoding. In this study, a motion-classification method that combines sEMG and electroencephalography (EEG) signals

were proposed and investigated, in order to improve the control performance of upper-limb prostheses.

Methods: Four transhumeral amputees without any form of neurological disease were recruited in the experiments.

Five motion classes including hand-open, hand-close, wrist-pronation, wrist-supination, and no-movement were

specified. During the motion performances, sEMG and EEG signals were simultaneously acquired from the skin

surface and scalp of the amputees, respectively. The two types of signals were independently preprocessed and

then combined as a parallel control input. Four time-domain features were extracted and fed into a classifier trained by

the Linear Discriminant Analysis (LDA) algorithm for motion recognition. In addition, channel selections were

performed by using the Sequential Forward Selection (SFS) algorithm to optimize the performance of the proposed method.

Results: The classification performance achieved by the fusion of sEMG and EEG signals was significantly better than that

obtained by single signal source of either sEMG or EEG. An increment of more than 14% in classification accuracy

was achieved when using a combination of 32-channel sEMG and 64-channel EEG. Furthermore, based on the

SFS algorithm, two optimized electrode arrangements (10-channel sEMG + 10-channel EEG, 10-channel sEMG + 20-channel

EEG) were obtained with classification accuracies of 84.2 and 87.0%, respectively, which were about 7.2 and 10% higher

than the accuracy by using only 32-channel sEMG input.

Conclusions: This study demonstrated the feasibility of fusing sEMG and EEG signals towards improving motion

classification accuracy for above-elbow amputees, which might enhance the control performances of multifunctional

myoelectric prostheses in clinical application.

Trial registration: The study was approved by the ethics committee of Institutional Review Board of Shenzhen Institutes

of Advanced Technology, and the reference number is SIAT-IRB-150515-H0077.
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Background

Multifunctional prostheses are commonly used by

upper-limb amputees to restore their lost motion func-

tions. Surface electromyography (sEMG) is a kind of

neural signal that contains motor commands and can be

non-invasively extracted on the muscle surface of re-

sidual limbs. Due to its relative ease of acquisition and

abundant content of neural information, sEMG plays an

important role in the control of modern motorized pros-

theses [1–4] and rehabilitation robotics [4–6]. In actually

applications, however, the residual muscles after ampu-

tations are usually limited, especially in the case of

above-elbow amputations. Thus, there exists a dilemma

that the less the residual muscles are available for pros-

thesis control, the more the joint movements would be

expected. As a result, multifunctional myoelectric pros-

theses for above-elbow amputees are still seldom seen

on the market [7, 8].

Electroencephalography (EEG) is another kind of neural

signal that contains the information related to mental ac-

tivities of brain but is independent of amputation condi-

tions [9]. Several efforts have been exploited to apply EEG

as a brain-computer interface (BCI) for possible applica-

tions: Hochberg et al. applied EEG to control robotic arms

to perform hand movements for paralyzed subjects, by de-

coding EEG signals recorded with microelectrode array im-

planted in the motor cortex [10]; Gernot et al. developed a

non-invasive BCI system based on the steady-state visual

evoked potentials (SSVEPs) to control a prosthetic hand,

where a varied classification accuracy between 44 and 88%

was obtained on able-bodied subjects [11]. However, EEG

is usually limited for clinical use due to either the biocom-

patibility of implantable electrode and signal instability for

long term application in an invasive way or the low infor-

mation transmission rate, low spatial resolution, and high

signal variability in a non-invasive way [1, 12].

Multiple-source signal fusion is a possible solution for

the problem of insufficient information in prosthesis con-

trol [13, 14], where some non-EMG signals are combined

to sEMG signals to realize a more precise extraction of

motor commands. A method based on the combination of

sEMG and near-infrared (NIR) signals was reported [15],

where hand gestures could be identified by adjoining two

or more sEMG/NIR sensors. However, the NIR signals are

associated to limb movements and thus still depend on

the amputation condition. Another alternative non-EMG

signal for prosthesis control may be the human voice,

which is irrelevant to the limb movements and independ-

ent of amputation levels. Some previous works have dem-

onstrated the feasibility of using speech as an additional

input to realize a flexible control of multifunctional myo-

electric prostheses [16]. However, the human speech is

non-task-related and amputees would feel awkward to

pronounce commands during prosthesis operation.

In this work, a non-invasive hybrid method was devel-

oped, which coherently combined sEMG and EEG signals

as a parallel input to classify the upper-limb motions for

above-elbow amputees. The proposed method was add-

itionally optimized by channel selections in order to en-

hance the classification performance with a decreased

number of electrodes.

Methods

Subjects

Four male transhumeral amputees (TH1, TH2, TH3, and

TH4) were recruited in the experiments, and the demo-

graphic information is described in Table 1. Comparing

the stumps (measured from shoulder blade downwards)

with the intact side opposite to the amputation side of

each amputee, the residual limb length ranges around

from 1/3 to 1/2 of the intact limb length. The experimen-

tal protocol was approved by the Institutional Review

Board of Shenzhen Institutes of Advanced Technology,

Chinese Academy of Sciences. All subjects have provided

written permission for publication of photographs for sci-

entific and educational purposes.

Signal acquisition and processing

Five motion classes of hand open (HO), hand close (HC),

wrist pronation (WP), wrist supination (WS), and no

movement (NM) were tested, as shown in Fig. 1a. All sub-

jects were clearly informed about the experiments and

trained for a few minutes to get familiar with the proced-

ure. During the experiment, a computer screen was placed

in the front of subjects and they were asked to watch the

screen for the instructions to do a movement. Each of all

the motion classes involved in the study would be dis-

played with a motion picture on the screen with a random

order as a target movement. When a picture of the target

movement appeared on the screen, as presented in Fig. 1b,

the subjects would promptly perform it. And then when

the target motion picture disappeared, the subject stopped

doing the movement. To avoid muscle and mental fatigue,

the five motion classes were randomly performed with a

comfortable force level determined by the subjects. Each

motion was hold for 5 s and a rest of 5 s (i.e. NM) was

scheduled between two neighboring motions. Five data re-

cording sessions were specified to each subject, where

Table 1 Demographic information of subjects

Subject Age
(years)

Amputation
side

Stump
lengtha (cm)

Time since
amputation (years)

TH1 49 Left 20 3

TH2 46 Left 25 9

TH3 35 Right 27 5

TH4 36 Right 30 7

aStump length was measured from shoulder blade downwards
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each session consisted of 40 active motions (each of HO,

HC, WP, and WS appeared 10 times randomly) and 40

repetition of NM.

The sEMG and EEG were simultaneously recorded

during the motion performance. The sEMG signals were

collected with a high-density sEMG system (REFA 128,

TMS International, the Netherlands), where 32 monopo-

lar electrodes were placed on the skin surface of the re-

sidual arm for each subject. Based on the residual arm

length, electrodes were placed in two different manners:

For TH1 and TH2 with relatively shorter residual arms,

totally 32 electrodes were distributed in a way shown in

Fig. 2a, 20 of which were placed on the biceps brachii

and triceps brachii as a matrix of 2 × 10, and the rest 12

of which were placed on the deltoid muscle as a matrix

of 3 × 4; For TH3 and TH4 with relatively longer re-

sidual arms, all the 32 electrodes were systematically dis-

tributed on the biceps brachii and triceps brachii as a

matrix of 4 × 8, as shown in Fig. 2b. In addition, an extra

electrode was placed on the wrist of the intact arm as a

reference. The EEG signals were acquired by a 64-

channel EEG cap (EasyCap, Herrsching, Germany) inte-

grated with a Neuroscan system (Version 4.3). The EEG

recording system could automatically mark a vertical

line on the EEG recordings as the onset/endpoint of the

movement when a target motion picture appeared/disap-

peared on the screen. And the 64-channel Al-AgCl elec-

trodes were distributed according to the 10–20 system

standards as shown in Fig. 2c, which is a well-accepted

way to place scalp electrodes for EEG acquisition. For

each subject, some preparation procedures such as hair

cleaning, cap position adjusting, and impedance check-

ing were performed to ensure that the impedance be-

tween the electrodes and scalp was lower than 10 kΩ

before EEG recordings.

Both the sEMG and EEG acquisition systems used in

the experiments have been integrated with a pre-filter by

the producers [17, 18]. Thus the initial sEMG signals

were firstly filtered with a band pass from 10 to 500 Hz

and sampled at a rate of 1024 Hz; the EEG signals were

filtered with a band pass from 0.05 to 100 Hz and sam-

pled at a rate of 1000 Hz. Thereafter, both the sEMG

and EEG data were preprocessed offline by using the

Matlab® 2010a. Besides, the EEGLAB toolbox (Free Soft-

ware Foundation, Inc. 1991) [19] was applied to process

the EEG data, where the mean of baseline for each chan-

nel was removed and the EEG epochs of each motion

class was extracted based on the onset-endpoint lines.

For a motion class, each of its EEG epochs consisted of

5-s EEG recordings plus 120-ms EEG recordings before

the onset of the movement, totally having 5120 data

points. To further improve the quality of EEG record-

ings, the artifacts from some interferences such as eye

movements and blinks in each EEG data epoch were de-

tected based on an adaptive threshold that was equal to

the 1.2 times of the mean absolute value of an epoch

Fig. 1 a Motion classes involved in the study; b A subject performed the target movement (hand open) displayed on the screen by the motion picture
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data [20]. If the absolute value of a data point of an EEG

epoch was greater than the threshold, the amplitude of

the data point was considered as artifact and would be

replaced by the averaged value of the amplitudes of three

nearby channels. In addition, a 50 Hz notch filter was

used to remove the power-line noise for both sEMG and

EEG recordings.

Channel combination and motion classification

In this work, the single-signal methods with only either

sEMG or EEG, and the dual-signal methods with a

combination of both sEMG and EEG, were tested and

compared. For the single-signal methods, three channel

arrangements were specified:

1) 32-ch sEMG, where only 32 sEMG electrodes were

used;

2) 64-ch EEG, where only 64 EEG electrodes were

used;

3) 32-ch EEG, where the first 32 of 64 EEG electrodes

were used, locating on the frontal, temporal, and

central lobes of cerebral cortex that are associated

with thinking and motion functions [21, 22], as

shown in Fig. 2c.

For the dual-signal methods, two channel combination

strategies were designed:

1) Strategy I (S-I), where 32 sEMG electrodes and 64

EEG electrodes were used, leading to a total of 96

channels of input, i.e. 32-ch sEMG + 64-ch EEG;

2) Strategy II (S-II), where 32 sEMG electrodes and the

first 32 of 64 EEG electrodes were used, leading to a

total of 64 channels of input, i.e. 32-ch sEMG + 32-

ch EEG.

Figure 3 schematically shows the general procedure

from signal acquisition to motion classification. The pre-

processed signals were segmented into a series of analysis

windows with a length of 150 ms and an increment of

100 ms (with 50 ms overlapping). For each analysis win-

dow, four time-domain (TD) features of mean absolute

value (MAV), waveform length (WL), zero crossings (ZC),

and number of slope sign changes (SSC) were extracted

Fig. 2 Electrode Configurations for sEMG and EEG recordings on subjects with different amputated statuses. a sEMG electrode placement on TH1;

b sEMG electrode placement on TH3; c EEG electrodes
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[23–30]. The linear discriminant analysis (LDA) classifier

[25, 27, 31, 32] was used for motion classification. The

classification performance of the classifier was tested with

a 5-fold cross validation method and evaluated by classifi-

cation accuracy that is defined as:

Classification accuracy ¼
number of correctly classified samples

total number of tested samples

�100%

ð1Þ

Channel selection

The proposed hybrid method combining sEMG and EEG

was additionally optimized by decreasing the channel

number with the sequential forward selection (SFS) algo-

rithm [31, 33, 34]. The SFS algorithm iteratively adds the

most contributive electrode channel x*, which is deter-

mined by the classification accuracy (Acc), into the opti-

mal channel set Sk(k ∈ {0, 1,⋯, q}) as the following:

Acc Sk‐1 þ x�ð Þ ¼ max
j∈ 1;2;⋯;q−kf g

Acc Sk‐1 þ xj
� �

ð2Þ

Sk ¼ Sk‐1 þ x� ð3Þ

S0 ¼ ∅ ð4Þ

where q is the total number of channels, k is the number

of selected channels. Suppose that k-1 channels have

been selected into the optimal channel set Sk-1 by the

(k-1)th iteration, in order to select the kth optimal

channel x* from the set {X-Sk-1}, each channel within

the set {X-Sk-1} was individually combined to the se-

lected optimal channels Xk-1 for motion classification.

The channel which achieved the highest classification

accuracy was selected as the kth optimal channel, and

thereafter added into the Xk-1 for next iteration to

obtain a new optimal channel set Xk-1. The iteration

procedure was repeated until k increased to the de-

sired level. In this work, 10 optimal sEMG channels

were firstly pre-selected from the total 32 sEMG

channels by using the SFS algorithm, and then three

optimized dual-signal methods combining sEMG and

EEG were adopted as follows:

1) Optimized Strategy I (oS-I), where 20 of the 64 EEG

electrodes were selected by the SFS algorithm

according to Eqs. (2) ~ (4), and then combined with

the pre-selected 10 optimal sEMG electrodes,

achieving a total number of 30 channels that was

comparable in channel number to the single-signal

method of 32-ch sEMG;

2) Optimized Strategy II (oS-II), where the pre-selected

10 optimal sEMG electrodes were used as the initial

channel set S0 in Eq. (4), based on which 20 EEG

electrodes were selected by using Eqs. (2) and (3),

and then combined with the pre-selected 10 optimal

sEMG electrodes, achieving a total number of 30

channels;

3) Optimized Strategy III (oS-III), where the pre-

selected 10 optimal sEMG electrodes were used as

the initial channel set S0 in Eq. (4), based on which

only 10 EEG electrodes were selected by using Eqs.

(2) and (3), and then combined with the pre-selected

10 optimal sEMG electrodes, achieving a total num-

ber of 20 channels.

Results

Table 2 shows the classification performances for the

single-signal methods of 32-ch sEMG, 64-ch EEG, and

32-ch EEG, where the average classification accuracies of

77.0, 75.1 and 62.9% were achieved, respectively. Table 3

and 4 shows the classification performances of the dual-

signal methods of S-I (32-ch sEMG + 64-ch EEG) and S-

II (32-ch sEMG + 32-ch EEG), respectively. By S-I, the

classification accuracy for each of the five motion classes

was higher than 89%, obtaining an average value of

91.7%, and by S-II, the classification accuracies for differ-

ent motion classes ranged from 83.9 to 94.1%, resulting

Fig. 3 Schematic procedure for prosthesis control based on sEMG and EEG
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in an average of 87.5%. It is clear that the dual-signal

methods show much better performances than the

single-signal methods both on average and for any spe-

cific motion class.

In order to achieve a satisfactory classification per-

formance with a limited channel number that would be

more practical for applications, the dual-signal methods

were optimized by decreasing the channel number with

the SFS algorithm. Figure 4 illustrates the dependence of

classification performance on channel numbers obtained

by SFS for each subject. It can be seen that the average

classification accuracy increased significantly with the

increase of channel number up to around 10 sEMG or

20 EEG channels, and the increase rate gradually be-

came lower if more channels were further added. There-

fore, the first 10 sEMG channels presented in Fig. 4a

were pre-selected as the optimal sEMG channels for

each individual subject. As marked in Fig. 5, the posi-

tions of these optimal sEMG channels varied among dif-

ferent subjects: for TH1 and TH2, only few channels

(#22, 26, and 27) were located on the deltoid muscle,

and the most were on the biceps brachii and triceps bra-

chii; for TH3 and TH4, more optimal sEMG channels

were located on the outer part of the electrode array.

Thereafter, the optimized strategy oS-I was imple-

mented, where the first 20 EEG channels presented in

Fig. 4b were selected by SFS and combined with the pre-

selected 10 optimal sEMG channels marked in Fig. 5.

Table 5 shows the classification performance of the opti-

mized dual-signal method of oS-I, where the classifica-

tion accuracy for each motion class was above 81.5%

and the average value was 84.6%.

To obtain the optimized strategy oS-II, the pre-selected

10 optimal sEMG channels marked in Fig. 5 were initial-

ized as the S0 in Eq. (4), based on which a channel selec-

tion analysis from the total 64 EEG channels were

performed according to Eq. (3). Figure 6 shows the de-

pendence of classification performance on EEG channel

numbers obtained by SFS for each subject. As can be seen,

the classification accuracies increased obviously with the

increase of EEG channel number, but the increase rate slo-

wed down if more channels were added. Especially for

TH2, when the first 10 optimal EEG channels were com-

bined to the pre-selected 10 optimal sEMG channels, the

classification accuracy increased greatly from 75.5 to

87.9%; the increase slowed down if more EEG channels

were added, and there was even a slight decrease if more

than 40 EEG channels were used. Thus, in the optimized

strategy oS-II, the first 20 EEG channels presented in Fig. 6

were used and combined with the pre-selected 10 optimal

sEMG channels. Table 6 shows the corresponding classifi-

cation performance for oS-II, where the mean classifica-

tion accuracies for all motion classes were above 83% and

the overall average value was 87.0 ± 2.7%.

To further decrease the channel numbers, in the opti-

mized strategy oS-III, only the first 10 EEG channels pre-

sented in Fig. 6 were selected. Figure 7 shows the increase

rates of classification accuracy of the 10 optimal EEG

channels used in oS-III. For TH1 and TH2 who had left

arm amputation, the optimal channels of C6 and CP2 lo-

cated on the sensorimotor cortex area of the right brain

had a higher increase rate in classification accuracy than

the channels on the left brain. Moreover, it was found that

the EEG channel of POZ which located on the visual cor-

tex area contributed greatly in the classification accuracy

increase for both TH1 and TH2. For TH3 and TH4 who

had right arm amputation, the optimal EEG channels of

C3, CP3, and CZ were located on the motor cortex areas

of the left brain, respectively. Tables 7 shows the classifica-

tion performances for oS-III, where the mean classification

accuracies for different motion classes were all above 78%

and the overall average was 84.2 ± 3.0%.

Table 2 Classification accuracies (%) for different single-signal methods over all the subjects

Hand Motions Wrist Motions NM Mean ± Std.

HC HO WP WS

32-ch sEMG 75.8 ± 7.3 68.9 ± 5.9 78.0 ± 11.4 75.1 ± 9.9 87.2 ± 14.8 77.0 ± 6.8

64-ch EEG 73.9 ± 8.4 72.0 ± 4.8 71.0 ± 11.6 71.9 ± 11.0 86.7 ± 6.3 75.1 ± 6.5

32-ch EEG 60.7 ± 5.7 60.7 ± 6.8 56.7 ± 7.6 57.0 ± 10.9 79.3 ± 13.4 62.9 ± 9.2

Table 3 Classification accuracies (%) for the dual-signal method of S-I

Hand Motions Wrist Motions NM Mean ± Std.

HC HO WP WS

TH 1 95.1 93.1 95.3 92.5 89.9 93.2 ± 2.2

TH 2 95.5 88.8 92.3 89.6 97.6 92.8 ± 3.8

TH 3 93.5 89.9 94.0 94.7 98.9 94.2 ± 3.2

TH 4 84.8 85.7 82.4 82.3 97.2 86.5 ± 6.2

Mean ± Std. 92.2 ± 5.0 89.4 ± 3.1 91.0 ± 5.9 89.8 ± 5.4 95.9 ± 4.1 91.7 ± 3.5
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Figure 8 summarizes the classification performances of

all the methods investigated in this study. Compared

with the single-signal methods, the dual-signal methods

could achieve higher classification accuracies. For the

dual-signal method of S-I with 96 channels (32-ch

sEMG + 64-ch EEG), the classification accuracy for each

subject was over 85% and the average value was 91.7%,

which was about 14.7% higher than that for the single-

signal method of 32-ch sEMG. By using the optimized

dual-signal methods of oS-I, oS-II and oS-III, the total

channel number was decreased to 30 or 20; however, the

average classification accuracies were still about 7.6, 10.0

and 7.2% higher than those of the single-signal method

with 32-ch sEMG, respectively. Especially in oS-III,

where only limited channel number of 10-ch sEMG and

10-ch EEG were used, the average classification accur-

acies of 84.2% was achieved over all the subjects.

Discussion

Combining multiple physiological signals is a possible

approach to acquire abundant neural information for

prosthesis control, where the motion intentions of above-

elbow amputees could be decoded more accurately. To

improve the control performances of multifunctional

myoelectric prostheses, a hybrid classification scheme

using EEG signals as an additional augment to sEMG sig-

nals for hand and wrist motion identification is studied in

this work.

With the single-signal methods that used sEMG record-

ings or EEG recordings only for motion classification, the

32-ch sEMG input obtains an average classification accur-

acy of 77.0%, which is 1.9% higher than the 64-ch EEG in-

put and 14.1% higher than the 32-ch EEG input. Thus it

might be concluded that the sEMG signals usually outper-

form the EEG signals in motion classification since the

sEMG signals generated by muscle contraction would

have a more direct correlation with motions and a higher

signal-to-noise ratio in comparison to EEG signals [12].

However, the sEMG is sometimes limited for some mo-

tion classes, e.g. the classification accuracy for HO in this

work was only 68.9%, which was far from satisfaction for

application. This is also confirmed by the subjects’ feed-

back that HO was the most difficult to perform in the

tests. The possible reason would be that when a trans-

humeral amputee does a hand motion using his lost

arm, his residual upper-limb muscles would generate

Table 4 Classification accuracies (%) for the dual-signal method of S-II

Hand Motions Wrist Motions NM Mean ± Std.

HC HO WP WS

TH 1 87.4 88.2 89.8 88.4 82.6 87.3 ± 2.8

TH 2 93.8 85.0 91.2 82.4 98.1 90.1 ± 6.4

TH 3 81.8 82.2 91.3 91.6 98.8 89.1 ± 7.2

TH 4 82.4 80.0 76.9 80.9 96.8 83.4 ± 7.8

Mean ± Std. 86.4 ± 5.6 83.9 ± 3.5 87.3 ± 7.0 85.8 ± 5.0 94.1 ± 7.7 87.5 ± 3.0
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Fig. 4 Dependence of classification performance on channel number for different subjects for a sEMG channels b EEG channels
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quite weak sEMG signals since these muscles are not

electro-physiologically associated with hand movements

[21, 34–36].

On the other side, the EEG signals produced by mental

activities are less dependent on, or even independent of, the

amputation conditions. Therefore, EEG signals would be an

effective auxiliary signal for sEMG to improve the pattern

recognition performances. In this study, sEMG and EEG

signals were firstly combined in two different designs (S-I

and S-II) for motion classification. As shown in Table 3, by

the dual-signal method of S-I (32-ch sEMG+ 64-ch EEG),

an average classification accuracy of 91.7% over all the

motion classes was achieved. Especially, the classification

accuracy for HO was 89.4%, which was 20.5% higher than

that by the single-signal method of 32-ch sEMG method.

This result has clearly demonstrated that combining some

non-EMG signals, such as EEG, to sEMG signals could

significantly improve the classification performance for

some forearm motions on transhumeral amputees. Differ-

ent from S-I, the dual-signal method of S-II (32-ch sEMG+

32-ch EEG) used only the first 32 of total 64 EEG channels

located on the cerebral cortex area, which is associated with

the thinking and motion functions [20, 21]. Compared with

the S-I, by which the classification accuracy was improved

by 14.7% (from 77.0 to 91.7%), the S-II could still improve

the classification accuracy by 10.5% (from 77.0 to 87.5%),

meaning that the first 32 EEG channels contributed the

most part of performance improvement.

There is generally a direct proportion between the mo-

tion classification performance and channel number, as

Fig. 5 Locations of the pre-selected 10 optimal sEMG channels by using the SFS algorithm for the four subjects (a TH1,b TH2, c TH3, d TH4), as

marked in red color

Table 5 Classification accuracies (%) for the optimized dual-signal method of oS-I

Hand Motions Wrist Motions NM Mean ± Std.

HC HO WP WS

TH 1 88.0 86.4 90.2 84.0 79.1 85.5 ± 4.3

TH 2 88.5 80.9 83.7 81.9 96.8 86.4 ± 6.5

TH 3 85.3 82.0 89.0 88.2 97.9 88.5 ± 5.9

TH 4 74.8 76.7 69.0 75.2 94.4 78.0 ± 9.6

Mean ± Std. 84.2 ± 6.4 81.5 ± 4.0 83.0 ± 9.7 82.3 ± 5.4 92.1 ± 8.8 84.6 ± 4.6
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demonstrated by the results of this work (Figs. 4 and 6)

and some previous studies [6, 33]. However, a large

number of electrodes are not feasible in actual applica-

tions partly due to the users’ comfort, computation com-

plexity, prostheses’ weight and cost, and etc., which

would eventually affect the acceptability of prostheses

[34, 37]. Thus, a balance between the electrode number

and control performance is very essential to realize ap-

plicable prosthetic systems. The SFS algorithm is a com-

monly used channel-selection method [33, 34] and it

was adopted in this study to optimize the proposed hy-

brid strategy. According to the channel analysis shown

in Fig. 4, for both sEMG and EEG signals, the classifica-

tion accuracies increased significantly with the increase

of channel number until about 10, but the increase slo-

wed down if more channels were further added, which

means that the last set of signal channels may not pro-

vide much effective information for motion classification

[38]. In this work, three optimized strategies of oS-1, oS-

II, and oS-III were applied, which decreased the channel

number largely at the expense of a slight decrease of

classification accuracy compared with S-I and S-II. Be-

sides, it was observed from Fig. 6 that although oS-I and

oS-II had the same channel number (both with 10-ch

sEMG + 20-ch EEG), the average classification accuracy

of oS-I was 2.4% lower than that of oS-II. A possible rea-

son is that in oS-I, the optimal 10-ch sEMG and 20-ch

EEG were selected by using the SFS algorithm from the

Fig. 6 Dependence of classification performance on EEG channel number for different subjects based on the pre-selected 10 optimal sEMG

channels as shown in Fig. 5

Table 6 Classification accuracies (%) for the optimized dual-signal method of oS-II

Hand Motions Wrist Motions NM Average ± Std.

HC HO WP WS

TH 1 89.7 85.7 91.8 85.1 84.5 87.4 ± 3.2

TH 2 90.4 85.1 88.4 86.2 96.7 89.4 ± 4.6

TH 3 85.1 82.9 87.5 87.0 98.0 88.1 ± 5.8

TH 4 77.0 80.1 81.7 80.5 96.5 83.2 ± 7.7

Mean ± Std. 85.6 ± 6.2 83.5 ± 2.5 87.4 ± 4.2 84.7 ± 2.9 93.9 ± 6.3 87.0 ± 2.7
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32 sEMG and 64 EEG channels, respectively, and

therefore they might not be the best matching group

for motion classification, which is consistent with the

conclusion by Cover [39]. Contrarily, in oS-II, the 20 EEG

channels were picked out based on the pre-selected 10 op-

timal sEMG channels, and thus the matching degree be-

tween the sEMG and EEG is much higher. In this work,

the optimized method oS-II (10-ch sEMG+ 20-ch EEG)

could obtain an average classification accuracy of 87.0%,

which is very comparable to S-II (32-ch sEMG+ 32-ch

EEG) of 87.5%, but its channel number was less than half

of S-II. By oS-III, where totally only 20 channels (10-ch

sEMG+ 10-ch EEG) were used, the classification accuracy

for each subject was above 80.0% with an overall average

of 84.2%, which is still about 9.1 and 7.2% higher than

those of the single-signal methods of 64-ch EEG and 32-ch

sEMG, respectively. These results demonstrated that the

proposed strategies have been properly optimized by

the SFS algorithm, and the oS-III might be quite desir-

able for the classification of hand and wrist motions for

above-elbow amputees. If higher classification accuracy

is desired, the oS-II could be applied. Additionally, the

performances of the proposed strategies from TH4

were lower than those for other subjects. A possible

reason might be that TH4 has longer and thicker hairs,

which leaded to higher impedance between the scalp

and the EEG electrodes, resulting in the noisier EEG re-

cordings in comparison to others. So the quality of

EEG recordings would be very important for achieving

high classification accuracy.

From Fig. 5 it can be observed that the optimal sEMG

channels varied among different subjects, which is due

Fig. 7 Increase rates (%) of classification accuracy by the 10 optimal EEG channels selected in the oS-III for the four subjects (a TH1, b TH2, c TH3, d TH4)

Table 7 Classification accuracies (%) for the optimized dual-signal method of oS-III

Hand Motions Wrist Motions NM Average ± Std.

HC HO WP WS

TH 1 86.5 79.1 91.1 81.2 80.4 83.7 ± 5.0

TH 2 89.8 81.6 86.1 84.0 98.0 87.9 ± 6.4

TH 3 79.4 76.3 86.6 85.9 95.3 84.7 ± 7.3

TH 4 74.7 77.4 75.1 80.5 95.7 80.7 ± 8.7

Mean ± Std. 82.6 ± 6.8 78.6 ± 2.3 84.7 ± 6.8 82.9 ± 2.5 92.4 ± 8.1 84.2 ± 3.0
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to their different status of arm amputations such as dif-

ferent length of remaining arms, different circumstance

of arms, and different amputated durations. However,

except for few electrodes located on the deltoid muscle

for TH1 and TH2, most of the optimal sEMG channels

were located on the muscle belly of biceps brachii and

triceps brachii of the four subjects. From Fig. 7 it can be

seen that the optimal EEG channels were also different

in the four subjects, but most of them were located on

the contralateral motor cortex. Moreover, for both TH1

and TH2, the EEG channel of POZ located on the visual

cortex area contributed greatly in the classification ac-

curacy increase. This is reasonable because the subjects

performed motions by looking at the instruction pictures

and thus the visual cortex area were easily activated, and

TH1 and TH2 who had shorter residual arms might

need activate more extra brain function areas such as

visual cortex area to complete the motions.

In this study, the results were obtained based on

offline analysis, and the performances of the proposed

hybrid methods were only evaluated by the classifica-

tion accuracy. In the future, the efficiencies of hybrid

methods, especially the one with optimized channel

sets, would be investigated in real-time environment

and assessed by more measures such as motion selec-

tion time, motion completion time, and motion com-

pletion rate [7, 40]. Note that the 20 channels (10-ch

sEMG + 10-ch EEG) were finally selected for motion

classification, but they may be still too many for the

practical applications of the proposed method. For

the real-time applications such as myoelectric pros-

thetic systems, the number of electrodes should be as

few as possible to reduce the complexity of the sys-

tems and make them more practical, but reducing the

electrode number may decreasing the classification

accuracy of movements. Thus there is a tradeoff be-

tween channel number and classification performance

that should be considered in the practical applica-

tions. In the future studies, some approaches such as

long term training, concentric bipolar electrode, and

different classification algorithms would be used to

further reduce the channel number and improve the

classification performance. In addition, another limita-

tion of the current study is that the proposed method

involved EEG recording, which would not be feasible

outside the controlled environment of the lab since it

is impossible to wear and carry on a commercially

available EEG systems such as the NeuroScan in the

practical applications. With rapid development of

electronics and microprocessors, it is possible now to

develop a miniature, portable, and wireless EEG sys-

tem for the applications of the proposed method in

the prosthetic control such as the microEEG device

developed by Omurtag et al. [41].

Conclusion

In this study, hybrid classification methods based on the

combination of EEG and sEMG signals were proposed

for the classification of hand and wrist motions for

above-elbow amputees. By comparing the dual-signal

methods with single-signal methods, a significant im-

provement in classification accuracy was achieved on all

the subjects. By using the SFS algorithm, two optimal

channel sets of 10-ch sEMG + 20-ch EEG and 10-ch

sEMG + 10-ch EEG were obtained with desirable classifi-

cation accuracies of 87.0 ± 2.7% and 84.2 ± 3.0%, respect-

ively. The results of this study might be helpful in

realizing the control of multifunctional myoelectric pros-

theses for above-elbow amputees.

Fig. 8 Summary of the classification performances of all the methods studied in this work
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