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ABSTRACT 

Cartesian positions, speeds and accelerations are 
planned to describe the desired motion of manipulators. 
We examine the cases of point to point and via points 
motions, assuming that the reference values of the 
manipulator are represented by C2 polynomial 
trajectories. Usual kinematical constraints are not always 
sufficient, then we focus on voltage and current DC 
actuator constraints. 

I - INTRODUCTION 

This paper is primarily concerned with motion 
generation when the end effector of the robot must follow 
a prescribed trajectory as a straight line or a circular arc 
in Cartesian space. Most precedent studies 121, 131, [6], [9] 
refer to joint motion generation while inverse kinematics 
are used to transform Cartesian points to joint ones. We 
employ another approach where all parameters are 
reported in Cartesian space. 

The minimum time motion generation has been solved 
in a number of ways, following the usual approach, i.e. 
taking as feasible limits purely kinematical constraints on 
velocity and acceleration 121, [3]. Conventional motion 
generation uses a constant bound on the acceleration [6].  
This bound must represent the global least upper bound of 
all operating accelerations so as to enable the manipulator 
to move under any operating conditions. It implies that 
the full capabilities of the manipulator cannot be utilized 
if the conventional approach is taken. The efficiency of 
the robotic system can be increased by considering the 
characteristics of the robot dynamics at the motion 
generation stage. [5] had applied the classical approach of 
point to point minimum time control to robot arms, where 
only a linear approximate model was used. [l] has 
presented a trajectory generation based on optimal control 
formulation. Assuming that joint torques are constrained 
and using the Hamiltonian formulation of the dynamic 
model, a minimum time cost criterion was considered. [3] 
have shown that most often the structure of the minimum 
time control requires that at least one of the actuators is 
always in saturation whereas the others adjust their 
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torques so that constraints on motion are not violated 
while enabling the arm to reach its final desired 
destination. 

Although the obtained results are very important 
theoretically, practically they are not applicable directly to 
an industrial robot. From an user view point, it would be 
preferable to have a somewhat suboptimal but simpler 
solution to implement. For this purpose, we have chosen, 
a priori, a polynomial trajectory and we find parameters 
of the trajectory, for a C' minimal time motion. Position 
and orientation are considered. The resulting motion for 
the end effector position is usually obvious, but the end 
effector orientation motion depends on the parameters 
adopted ([ll] choose for instance the Euler angles). 

In this paper, using the formal calculus software 
MAPLE, we will show that the simple expressions 
previously obtained [3], [7], can be numerically extended 
when we include difFerent actuator constraints. 

The remainder of this paper is divided into six 
sections. While the models and the proposed problem are 
formulated in the second and third section, the resolution 
method is stated in the fourth paragraph. Some 
simulation results are given in the fifth paragraph and 
some conclusions added in the last section. 

II - MODELS 

2-1 Manipulator model 

The manipulator is assumed to be made of rigid links. 
Its dynamic model depends on q, q and q , respectively 
the joint position, velocity and acceleration : 

The vector r is the joint input torque, G is the 
gravitational force vector, B is the n x n x n Coriolis and 
Centrifugal force matrix. F is the viscous friction and A is 
the n x n inertial. Coulomb frictions are included in the 
gravitational force G and we suppose that the friction 
derivatives with respect to time are equal to zero. 
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2-2 Actuator model 

In a permanent magnet DC motor, the magnetic field 
is developed by permanent magnets. For such a motor, the 
torque r is proportionnal to armature current I. For a 
non-redundant multi-degrees-of-freedom robot, there are 
usually as many actuators as the number of degrees-of- 
freedom. Then actuator dynarmcs for the whole robot can 
be characterized in a matrix form as : 

L, R and K are square regular diagonal matrices 
representing the inductance, resistance and torque 
constant of the robot actuators. U is the motor voltage 
vector. 

2-3 Actuator constraints 

DC motors are supplied by Pulse Width Modulation 
voltage amplifiers. Motors and amplifiers have limitied 
voltage and current. Thus usual current constraints must 
be coupled with constraints on voltage and current slew 
rate, for every joint l l j sn  : 

11, I 5 Im=,j ( 3 )  

I u J 1  “mKJ (4) 

( 5 )  

As actuator demagnetization must be avoided, ImJ is 
the maximum armature pulse current, or amplifier current 
limit. U-, is the actuator or amplifier voltage limit and 

If Imq is greater than the maximum allowable 
permanent current IeffmaXJ in continuous operation, the 
thermal limit must be taken into account to prevent 
overheatmg. Power losses are mainly resistance losses so 
as iron and friction losses will be neglected. We will only 
consider the case of a periodic motion with period tf. This 
is common in robotic application, The power losses are 
periodic and filtered through a lowpass thermal model 
whose time constant is very large versus tf. Then the 
motor temperature can be easily obtained with the 
average power which i s  proportionnal to the root mean 
square value of the current. This must be limited by the 
following relation : 

is the amplifier current slew rate limit. 

Finally, we also have to fulfill a limitation on joint 
speeds because of mechanical considerations : 

Most of the time, people use more restricting relations 
than (3)-(7) that do not optimize the motion. They prefer 
to define maximal accelerations and velocities, making 
approximations for the worst case in (1)-(7), [6]. 

III - PROBLEM FORMULATION 

3.1 Point to Point Motion 

The desired trajectory must be chosen smooth enough 
not to excite the high frequency unmodelled dynamics. It 
is the reason why we will choose polynomials allowing 
zero speed and acceleration motion at start and end 
points. 

In order to satisfy the previous assumption we assume 
that the position and orientation of the robot is 
represented as a fifth degree polynomial interpolation of 
time between two points [9] : 

For instance, if X = [~,y,z,cp,B,o]~ with the Euler 
angles, the position and orientation are given by [lo], 
[ll] : 

Using Inverse Geometrical Model (IGM), with x = t/tc 
gives : 

With kinematical models of first and second order, we 
obtain : 

with &(x) = J-l(<(x)) and 

We suppose that the jacobian matrix is regular. The 
study of singular points is beyond the scope of this paper. 
We chose Cartesian trajectories with no singularity. 

We can see that the joint velocities and accelerations 
can be written as separate function of x and tf. Then we 
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are able to rewrite the constraints (3)-(7) introducing (13) 
in the dynamic model of the robot (1) and the actuator 
model (2) [9] : 

where all matrices are given by 

When a constraint ((3) to (6)) is saturated, the 
corresponding relation (( 14) to (18)) is fulfilled. 

3.2 Via Points Motion 

Now the manipulator has to pass through m+l via 
points, with some imposed straight line trajectories. 
Velocities and accelerations at these via points are 
different from zero. The motion is supposed to have a 
continuous acceleration. Start and end points are chosen 
to have joint speeds and accelerations equal to zero. For 
those reasons we represent the motion with a fifth degree 
polynomial between each crossing point rather than cubic 
splines that offer less possibilities : 

U 

F(x) = FvBx(x) But, in order to have expressions which are not 
explicit functions of the final time ttk, we operate the 
following change of parameters : 

Equations (14), (15), (16) and (17) are related to the 

In the same way, we have for the constraint (6) : 
constraints (7), (3), ( 5 )  and (4) respectively. 

The time ttk is a function of % and of time tyl  : 
k 

i=l 
tf,k+l = v k  tf,l with v k  = r I@i (21) 

Additionnal assumptions are added in order to obtain a 
straight line motion between two adjacent via points. Two 
adjacent straight lines are connected by classical fifth 
degree polynomial allowing position, speed and 
acceleration continuity. Then, for every polynomial k 
defined on [o,vk-l tcl] : 

with 
with : 

865 



same manner of equation (1 3). Then relations (14) to (18) 
can be obtained with tS1. 

The general problem of minimum time motion may be 
formulated as follows : . 

Next paragraph introduces the proposed resolution 
method. 

IV - RESOLUTION METHOD 

4-1 Proposed minimum time approach 

The optimization theory gives the solution of problem 
(24). It is located in the vertex of the admissible set. The 
resolution will be organized as follows. First, this problem 
will be solved for each constraint (14)-(18), then the 
greatest value of all the proposed times will be taken as 
the predicted amval time tf. Let us assume the robot 
moves using the maximum motor capabilities. 

We present hereafter, the method proposed for the 
calculus of the time tf in the case of a point to point 
motion under technological constraints (3) to (7) or 
respectively (14) to (18). 

First we consider joint speeds limitations (14). The 
minimal time is obtained when : 

Current bounds (3) lead to the second degree equation 
in tf (15). For every joint Q=l,n), the solution tf,n(x) of 
(15) can be approximated, neglecting the grawty and 
viscous friction, by : 

Then, we can consider that there always exists a real 
positive root for tgn(x). 

The candidate times tf for the constraints on current 
derivative (16) and voltage (17) are also obtained solving 
two third degree equations in tf. A third degree 
polynomial equation can be solved analytically. It may 
have 1 or 3 real roots from which we choose the smallest 
positive value. Such equations can be solved nsing the 
formal calculus software MAPLE. The respective 
solutions are called tG/a(x) and tfiiv(x). 

The constraint concerning the current root mean 
square value (1 8) leads to a fourth degree equation in tf. 

The software MAPLE gives all the four solutions. The 
smallest real positive solution is called t6heff. 

4-2 Numerical implementation 

All the dserents matrices A, ..., F, A, ..., e, and 
A, ..., 5 are obtained analytically in a first step for the 
given robot. Then, in point to point motions, the 
numerical implementation consists in choosing the start 
and end points of the path (8). We then calculate, in a 
second step, for the given trajectory, the solutions of (14), 
(15), (16) and (17) for every x belonging to [OJ] (i.e. 
with a sufficient discretisation). Besides, the numerical 
calculus of the coefficient of (18) allows MAPLE to give 
all the solutions. The minimal time is the following 
maximum value : 

In via point problem, we calculate, in the same way, 
for every polynomial k, the time 41.  The time tf is then 
obtained for the maximum value in order to satisfy the 
contraints (3) to (7) for the whole motion. 

. .. 
The obtained value depends on the variables kk, 2k 

and Qk. Those variables are optimized using a software 
based on a Sequential Quadratic Programming method. 
For such a method, we need a initial estimate. This one is 
obtained considering the point to point motion between 
two adjacent points. 

V - NUMERICAL EXAMPLES 

5-1 Robot characteristics 

We performed numerical simulations with a two 
degrees-of-freedom SCARA llke robot (simulating our lab 
robot) that arm lengths are 0.5 m and 0.3 m. The different 
values of the actuators limitations are : 

I-= [11.53,7.29] A 
dI,, = [104,104] A/s  
qpm, = [7.0,21.0] rad/s 

U,,= [40.0.26.3] V 
Ieff,,,, = [12.0,10.0] A 

5-2 Simulation results 

In th~s paper we present an example of a point to point 
motion for constraints (3)-(7). The trajectory is a straight 
linc (figure I) bctween two points represcnted with a fifth 
degree polynomial interpolation (9) : 

table 1 

In figure 1, the disc represents the attainable space. 
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With our new formulation (27), involving actuator 
constraints, the value of final time is tbl = 6.4 s. 

'Example2 1 2 3 4 5 6 
x(m) 0.6 0.5 0.2 -0.2 -0.4 4 .1  
y (m) 0.0 0.3 0.6 0.6 0.4 0.2 

0.4 

. .  .._ -0.2 - 

-0.4- ; 

-0.6 - 
-0.8 

i '> 

-1 -0.5 0 0.5 1 

current when the sign of the joint speed changes. 

I 5 m  

figure 3 : joint 1 current 
figure 1 : trajectory 

Figure 2 presents the current of the first joint, for 
which the bound is reached. 

-1 5 
0 2 4 6 8 

figure 2 : joint 1 current 

The two rotational joint robot inverse geometrical 
model admits two solutions. Then, the same trajectory has 
been tested with another configuration of the robot arms. 
The duration of the motion is then tM = 6.6 s. We give 
the joint 1 current as a function of time in figure 3. 

Usual approaches consider bounds on the Cartesian 
speeds and accelerations [6], or refer to constraints on 
torques and joint speeds [ 11. In the first case, the values of 
the bounds are not easy to define. In the second case, the 
values are choosen to realize a compromize beetwen 
torque and joint speed available. In both cases, those 
values are lower than the ones obtained considering 
constraints (3)-(7). 

Besides, considering the Coulomb frictions in the 
dynamical model (1) results in discontinuity on the 

Our formulation is also applicable to via point 
trajectory using equation (22). The following points are 
defined in Cartesian space : 

table 2 

, -7-  , _- , -CC , 4. 
4.8 4.6 0.4 4.2 0 0.2 0.4 0.6 0.8 

figure 4 : trajectory 

The time obtained for a point to point motion between 
these crossing points is tk3 = 4.95 s. For a via point 
motion with straight lines between points 1 and 2, points 
3 and 4 and points 5 and 6, the time is tM = 3.52 s 
(figure 4). 

For the resulting motion, the current of the first axis 
reaches its bound (figure 5). 

The current of the second axis only adjusts its value in 
order to allow to follow the prescribed path (figure 6). 
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figure 5 : joint 1 current 
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We show that all constraints are satisfied. Then the 
motion is admissible. Optimal control approach [ 11, will 
certainly lead to shorter times. However, such approaches 
only consider constraints more restrictive and more 
unrealistic than (3)-(7). Including those constraints 
impose a great cost for calculus [SI, involving no 
possibility for on line computation. 

Compared with maximal velocity and acceleration 
problem, even if the computation time for our formulation 
is longer and depends on the discretisation adopted, it 
leads to good results. A special fixed motion has often to 
be repeated thousand of times. In such cases, generation 
of smooth trajectories which can be performed in 
minimum time becomes interesting even at the price of 
longer off line computation times (2mn). On line 
computation times, involving few parameters (9) or (21), 
remain short. 

Many concluvive experimentations were also tested on 
this 2 d.0.f. robot, but we present in this paper only 
simulation results. 

VI - CONCLUSIONS 

In specifying a trajectory, the physical limits of the 
system must be considered. It is common to model these 

limits as constant maximum values for acceleration and 
velocity. The trajectory goes from the initial to the final 
position with initial and final velocities equal to zero, 
subject to limits on speed and acceleration. These 
assumptions are often unrealistic. These considerations 
mean that even for joint level trajectories, any 
assumptions about fixed acceleration limits must be based 
on the worst case. This results in motions that are usually 
slower than necessary or else the actuators may be unable 
to follow the requested trajectory. A more realistic 
assumption is that the limits on the amount of voltage and 
current a motor may generate are given limits. 

The proposed motion generation algorithm uses the 
solution of polynomial equations in tf to find the predicted 
arrival time. Besides, the polynomial interpolation with 
only few parameters, allows to generate easily the path on 
line. 

Although we considered DC motors, other actuators 
generally present the same constraints since usually both 
current and voltage of actuators are bounded . 
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