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To solve the motion planning of the live working manipulator, this research proposes a
hybrid data-model–driven algorithm called the P-SAC algorithm. In the model-driven part,
to avoid obstacles and make the trajectory as smooth as possible, we designed the
trajectory model of the sextic polynomial and used the PSO algorithm to optimize the
parameters of the trajectory model. The data generated by the model-driven part are then
passed into the replay buffer to pre-train the agent. Meanwhile, to guide the manipulator in
reaching the target point, we propose a reward function design based on region guidance.
The experimental results show that the P-SAC algorithm can reduce unnecessary
exploration of reinforcement learning and can improve the learning ability of the model-
driven algorithm for the environment.
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1 INTRODUCTION

With the rapid growth of the economy, electricity demand continues to rise, posing higher and
higher challenges to the power supply. To meet these challenges, the application of deep
reinforcement learning (Zhang et al., 2018), robotics (Menendez et al., 2017), swarm intelligence
(SI) algorithms (Ma et al., 2021c), and other artificial intelligence technologies to solve resource
scheduling (Ma et al., 2021d), inspection, maintenance, and others has become the smart grid’s
development direction.

The live work of overhauling the circuit under the premise of continuous power supply of the
power grid can significantly improve the safety of the power supply. However, there are many
restrictions on manual live work due to the danger of live work itself and the working environment.
Therefore, it is critical to use technology to replace manual live work with robots. The working
environment of live working manipulators is always complicated and ever-changing. So, the major
challenge is how to determine a suitable path/trajectory in a complex and changeable environment
with obstacles so that the manipulator can reach the target point (Siciliano et al., 2009; Lynch and
Park 2017).

The motion planning of manipulators can be divided into two categories: joint angle coordinate
motion planning and Cartesian coordinate motion planning. The manipulator’s end-effector is the
planning reference object in the Cartesian coordinate. However, due to the inverse kinematics of the
manipulator, there may be many problems, such as a lot of calculation, ease to reach the singularity,
the near-point in the Cartesian coordinate system taking a large rotation joint angle, and large
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instantaneous speed (Choset et al., 2005; Gasparetto et al., 2015;
Lynch and Park 2017). The motion planning in the joint angular
coordinate system differs much from human intuitive feelings,
but it can successfully avoid problems in the rectangular
coordinate system while also planning the manipulator’s joint
angular velocity and angular acceleration. So, it can get a whole
trajectory of the manipulator’s joint after planning, which is why
it is also known as trajectory planning (Gasparetto et al., 2012;
Gasparetto et al., 2015; Lynch and Park 2017).

The obstacle avoidance motion planning of the manipulator
has always been a research hotspot. The artificial potential field
method (Khatib 1985) is an earlier algorithm, which designs the
target position as a gravitational field and the obstacle position as
a repulsion field, so that the real-time avoidance of the
manipulator can be accomplished. However, such algorithms
tend to fall into local minima and move slowly near the
obstacles. Some search-based algorithms, such as rapidly
exploring random trees (RRTs) (Wei and Ren 2018; Cao et al.,
2019), find the obstacle avoidance path of the manipulator
through searching, but such algorithms generally only consider
obstacle avoidance of the manipulator end-effector and find it too
difficult to consider global obstacle avoidance. At the same time,
such algorithms also need to increase the computational cost of
path smoothing.

In recent years, deep learning and deep reinforcement learning
have brought remarkable results to many fields, such as computer
vision (Krizhevsky et al., 2017; Yang et al., 2021), natural language
processing (Devlin et al., 2019), and industrial process
optimization (Ma et al., 2021b). Many achievements have been
made using deep learning and deep reinforcement learning for
manipulators (Yu et al., 2021; Hao et al., 2022). Wu Yunhua
applied the deep reinforcement learning algorithm to the
trajectory planning of a space dual manipulator (Wu et al.,
2020). Kalashnikov proposed a vision-based closed-loop
grasping algorithm framework for manipulators (Kalashnikov
et al., 2018). Ignasi Clavera proposed a modular and reward-
guided reinforcement learning algorithm for manipulator
pushing tasks (Clavera et al., 2017). The intelligence and
learning ability of the manipulator are substantially improved

by these algorithms; however, the training period is excessively
long and consumes more resources. For example, QT-opt
(Kalashnikov et al., 2018) employed seven robots and ten
GPUs and took 4 months to train.

Model-driven algorithms are built on the foundation of
developing a mechanism model, and the correctness of the
model is directly tied to the algorithm’s performance. Model-
driven algorithms’ key priority is to figure out how to optimize
model parameters to improve model performance. Swarm
algorithms, such as the genetic algorithm (GA) (Holland
1992), particle swarm optimization (PSO) (Kennedy and
Eberhart 1995), and brainstorming optimization (BSO) (Shi
2011), are commonly used in parameter optimization. In
difficult multi-objective optimization situations, these
algorithms can get good results (Ma et al., 2021a; Ma et al.,
2021c). In the aspect of manipulator motion planning, some
achievements have been made in optimizing the parameters of
the trajectory model by using the swarm intelligence algorithm.
The trajectory model after optimizing the parameters can make
the robotic arm avoid obstacles and successfully reach the target
point (Rulong andWang 2014; Wang et al., 2015). However, such
algorithms rely on offline training and find it difficult to avoid
obstacles in real time. When the environment changes, the
algorithms must be retrained and generalization capacity
becomes poor. Furthermore, these methods are incapable of
avoiding model-building errors.

Based on the above research, this research provides a hybrid
data-model–driven algorithm framework that can avoid non-
essential exploration during the early stages of deep
reinforcement learning and can solve the problems of model-
driven algorithms’ poor generalization. The main contributions
are as follows:

1) A framework for algorithms driven by data and model, which
uses the reward function to merge model-driven and data-
driven algorithms, is proposed.

2) The P-SAC algorithm, which mixed PSO and SAC, is
proposed based on the proposed hybrid data-model–driven
algorithm framework. The algorithm optimizes the model

FIGURE 1 | Framework for algorithms driven by data and model.
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parameters with PSO first and then pre-trains the agent before
letting it study to interact with the environment.

3) P-SAC is applied to the motion planning of the live working
manipulator, and the manipulator can successfully reach the
target point without colliding with obstacles. Compared with
the SAC that is not model-driven, P-SAC has a faster
convergence speed and better final performance.

2 BACKGROUND AND PROBLEM
STATEMENT

2.1 Motion Planning of Manipulator
The motion planning problem of the manipulator can be
described as follows.

Given the source point Ps(Ps ∈ R3), the goal point
Pg(Pg ∈ R3), and the obstacle information Infoob, finding a

motion path g(t) allows the manipulator to reach the target point
and avoid obstacles during the motion. In general, Ps and Pg are
the coordinates in the Cartesian coordinate system of the end of
the manipulator. We need to obtain the inverse solution of them
to obtain the joint angle coordinates
qs, qg(qs, qg ∈ Rn, n is the DOF ofmanipulator) of the
manipulator. At the same time, during the movement, the
joint angle of the manipulator should not have a sudden
change point, that is, the joint angular velocity of the
manipulator can be obtained, and the angular velocity should
not have a sudden change point. So, the motion planning problem
of the manipulator can be described in mathematical language as
follows.

Definition 1: Let g(t), which satisfies the following conditions:
g(0) � qs,

g(T) � qg,

g(t) not collide with Obstacle with Infoob, 0≤ t≤T,
g′(t) and g″(t) existed, 0≤ t≤T,

qs, qg, g′(t) ∈ Rn.

2.2 PSO
In 1995, Kennedy and Eberhart (1995) proposed a particle swarm
optimization algorithm based on the idea of birds foraging. In
PSO, the potential solution to the optimization problem is a
“particle” in the search space, and all particles have two
properties: fitness value and speed. The fitness value is
determined by the function to be optimized. And the larger
fitness value (or smaller) means the particle is better. The
speed determines the flying direction and distance of the
particle. The process of PSO is that the particle follows the
current optimal particle to search in the solution space.

FIGURE 2 | Transformation relationship of the coordinate system of
each joint of the manipulator Puma 560.

TABLE 1 | DH model parameters of the manipulator Puma 560.

Joint α d a θ

1 π
2 0 0 θ1

2 0 0 43 θ2
3 −π

2 15 2 θ3
4 π

2 43 0 θ4
5 −π

2 0 0 θ5
6 0 0 0 θ6

FIGURE 3 | Schematic diagram of the manipulator obstacle avoidance
detection model.
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2.3 SAC
Deep reinforcement learning combines the data representation
ability of deep learning and the decision-making ability of
reinforcement learning. In 2013, the proposal of the DQN
(Mnih et al., 2013) algorithm marked the beginning of the era
of deep reinforcement learning algorithms. Since DQN is difficult
to solve the continuous action space problem, Lillicrap Timothy
proposed DDPG, which combined with the actor–critic
framework (Lillicrap et al., 2019). However, the DDPG
algorithm is sensitive to hyperparameters and is challenging to
use, so the SAC (Haarnoja et al., 2018; Haarnoja et al., 2019)
algorithm is proposed.

SAC introduces the entropy of the strategy into the objective
function to maximize the expected cumulative return while
making the strategy as random as possible. Its objective
function is as follows:

π* � argmaxEτ~π[∑∞

t�0γ
t(R(st, at) + αH(π(·|st)))].

The temperature coefficient α is used to determine the
importance of the entropy item to the reward item. The SAC
algorithm improves the robustness of the algorithm by adding the
entropy of the policy to the objective function.

3 P-SAC: AN ALGORITHM THAT FUSES
PSO AND REINFORCEMENT LEARNING
3.1 A Framework for Algorithms Driven by
Data and Model
There are a lot of ineffective explorations in the early stages of
deep reinforcement learning, and model-driven algorithms
cannot avoid errors in model design and lack intelligence. As
illustrated in Figure 1, this research provides a hybrid data-
model–driven algorithm framework. The details are as follows:

1) Env0M& C. Simplify the model (M) according to the
environment and the task to be solved and design a
controller (C) if necessary.

2) M& C0M& C. Employ the SI algorithm to optimize
parameters to create a better controller or model.

3) M& C0< S, A>0D1: < S, A, R, S , Done> . Use the
optimized model or controller to obtain the required data
< S, A> and then use the reward function (R) to convert
< S, A> into D1 < S, A, R, S , Done> .

4) D10Agent. Use D1 to pre-train the agent, so that the agent
has a certain intelligence.

5) Agent5Env. The agent learns from the environment to
improve the algorithm’s generalization performance.

3.2 Model-Driven Part Design
3.2.1 DH Model of the Live Working Manipulator
The motion planning of the manipulator inevitably involves
the forward and inverse kinematics of the manipulator, that
is, getting the position and pose of the manipulator’s end-
effector from each joint angle and getting the angle of each
joint from the position and pose of the manipulator’s end-
effector.

The creation of the manipulator’s kinematics model is the
most fundamental task in manipulator motion planning. The DH
model (Denavit and Hartenberg, 2021) is a way proposed in the
1950s to express the coordinate system pose relationship between
the two manipulator joints.

Taking the Puma 560 robot selected in this research as an
example, the coordinate relationship of each joint is shown in
Figure 2, and the DH parameter table is shown in Table 1.

3.2.2 Collision Detection Model for Live Working
Manipulator
Since most of the obstacles in the working environment of the
live working manipulator should be wires, the obstacles are
simplified as cylinders in this research. The obstacle avoidance
of the manipulator, on the contrary, cannot be attributed just to
the obstacle avoidance problem at the manipulator’s end-
effector, and the obstacle avoidance of each manipulator’s
link must also be considered. As a result, to solve the
manipulator’s obstacle avoidance problem, geometric
knowledge must be combined. This research employs the
cylindrical to envelope links and obstacle, as illustrated in
Figure 3.

The link between the manipulator’s joints i and i + 1 is
denoted by AB, rL is the radius of the radial surface of the
cylindrical model of the enveloping manipulator, O1, O2 are the
two endpoints of the obstacle model, and rO is the radial radius of
O1O2, so whether the manipulator’s link AB is in contact with the
obstacle can be expressed as

di < rL + rO + rsafe (1)
where rsafe is the radius allowance to ensure safety and di is the
distance between the line segment AB and the line segmentO1O2,
which can be obtained by the following formula (Shen et al.,
2015):

di �
⎧⎪⎪⎨⎪⎪⎩

						(A + λ1AB
��→) − (O1 + λ2O1O2

�����→)						
2
, if 0≤ λ1, λ2 ≤ 1

min(d(O1, AB
��→), d(O2, AB

��→) , d(A,O1O2
�����→) d(B,O1O2

�����→)), else
(2)

where

FIGURE 4 | State space and action space.
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λ1 � (AB��→ · O1O2
�����→)(AO1

���→ · O1O2
�����→) − (O1O2

�����→)2

AO1
���→ · AB��→

(AB��→)2(O1O2
�����→)2

−(AB��→ · O1O2
�����→)2

,

λ2 � −(AB��→ · O1O2
�����→)(AO1

���→ · AB��→) − (AB��→)2

AO1
���→ · O1O2

�����→
(AB��→)2(O1O2

�����→)2

−(AB��→ · O1O2
�����→)2

,

d(O1, AB
��→) is the distance from point O1 to line segment AB,

which can be calculated as

d(O1, AB
��→) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

						AB��→ × AO1
���→						2						AB��→
						2

, if 0≤ AO1
���→ · AB��→

AB
��→2

≤ 1min(∣∣∣∣∣∣AO1
���→∣∣∣∣∣∣,

∣∣∣∣∣∣BO1
���→∣∣∣∣∣∣), else

and d(O2, AB
��→), d(A,O1O2

�����→), and d(B,O1O2
�����→) are the same, in

which

A � [Ti[0, 3], Ti[1, 3], Ti[2, 3]],
B � [Ti+1[0, 3], Ti+1[1, 3], Ti+1[2, 3]].

Here,Ti andTi+1 are the coordinates of themanipulator’s joint i and
joint i + 1 relative to the base coordinate system, which are generally
described as a 4 × 4 matrix, as shown in the following equation:

T �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
T00 T01

T10 T11

T02 T03

T12 T13

T20 T21

0 0
T22 T23

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Here, T00,T01,T02,T10,T11,T12,T20,T21,T22 describe the gesture
and T03, T13, T23 describe the location.

So, it can be determined whether the manipulator collides with
the obstacle by finding out whether each link of the manipulator
collides with the obstacle; that is,

fob � 1 − Π6
i�0f

i
ob (4)

Combining with Eq. 1, we define fi
ob as

fi
ob � { 1, if di < rL + rO + rsafe

0, else
(5)

3.2.3 Manipulator Polynomial Trajectory Model
Since there are infinite solutions for the manipulator to reach the
target point from the source point, this research establishes an
ideal model of the manipulator’s motion trajectory. The trajectory
model is set as a sextic polynomial in this research; that is,

θ(t) � a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 (6)

Substituting the source point and the set intermediate point,
we can get

θ(0) � a0,
_θ(0) � a1,
€θ (0) � 2a2,

θ(T1) � a0 + a1T1 + a2T
2
1 + a3T

3
1 + a4T

4
1 + a5T

5
1 + a6T

6
1,

_θ(T1) � a1 + 2a2T1 + 3a3T
2
1 + 4a4T

3
1 + 5a5T

4
1 + 6a6T

5
1,

€θ(T1) � 2a2 + 6a3T1 + 12a4T
2
1 + 20a5T

3
1 + 30a6T

4
1. (7)

FIGURE 5 | Back-and-forth dilemma. (A) Back-and-forth dilemma of the manipulator. (B) Simulation 1st of back-and-forth dilemma. (C) Simulation 2nd of back-
and-forth dilemma.

TABLE 2 | Symbol description table of P-SAC.

Symbol Description

n Number of PSO’s population
xi ∈ X Individual location parameters
w Inertia factor
c1 , c2 Learning factors
vi ∈ V Individual speed parameters

xbesti ∈ Xbest Optimal parameters for all individuals in PSO

xbestg Global optimal parameters

D1 Output data after optimizing the model
θ1、θ2 Value network parameters
ϕ Policy network parameters
θ−1 , θ

−
2 Target value network parameters

Frontiers in Energy Research | www.frontiersin.org August 2022 | Volume 10 | Article 9578695

Ku et al. P-SAC: A Motion Planning Algorithm

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Here, θ(0), _θ(0), €θ(0) are the joint angle, angular velocity, and
angular acceleration at the source point of the manipulator, T1 is
the running time of the trajectory, and θ(T1), _θ(T1), €θ(T1) are
the joint angle, angular velocity, and angular acceleration of the
goal point. Taking a6 and T1 as known conditions, we can get
a0 ~ a5 as follows:

a0 � θ(0),
a1 � _θ(0),

a2 �
€θ(0)
2

,

a3 � − 20θ(0) − 20θ(T1) + 8 _θ(T1)T1 + 12 _θ(0)T1 + 2a6T
6
1 − €θ(T1)T2

1 + 3T2
1
€θ(0)

2T3
1

,

a4 � 30θ(0) − 30θ(T1) + 7 _θ(T1)T1 + 16 _θ(0)T1 + 6a6T
6
1 − 2€θ(T1)T2

1 + 3T2
1
€θ(0)

2T4
1

,

FIGURE 6 | Architecture diagram of P-SAC applied to the live working manipulator.

TABLE 3 | Environment of experimental software and hardware.

Item Information

System Ubuntu20.04
CPU 40 Intel(R) Xeon(R) CPU E5-2630 v4 at 2.20 GHz
GPU RTX2080Ti
RAM 128G
PyTorch 1.3.1
TensorFlow 1.15.5
Python 3.6.13
Gym 0.15.7
Simulation environment Matlab 2020b Robotics Toolbox10.4

TABLE 4 | Algorithm hyperparameters.

Parameter Value

Shared
batch_size 500
hid network 128 × 256 × 128
learning_rate 0.001
buffer_size 1e6
rsafe 5
rO 3
rL 10
αs 0.05
P-SAC
Number of PSO’s population 200
w 0.6
c1 2
c2 2
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a5 � − 12θ(0) − 12θ(T1) + 6 _θ(T1)T1 + 6 _θ(0)T1 + 6a6T
6
1 − €θ(T1)T2

1 + T2
1
€θ(0)

2T5
1

.

(8)

The joint angle of the source point and the target point are
known conditions, angular velocity, and angular acceleration of
the source point, and the target point is always set at 0. So,
parameters a6 and T1 are the seven parameters that the algorithm
needs to optimize.

3.2.4 Optimizing Parameters of the Trajectory Model
Using PSO
According to Definition 1 and Eq. 4, it is evident that the
manipulator motion planning problem can be considered a
multi-objective optimization problem, that is,

min f(x) � [Δθi(x), ΔL(x)], i � 1, 2, . . . , 6,
s.t. di(x)> rL + rO + rsafe, i � 1, 2, . . . , 6,

(9)

where Δθi(x) is the cumulative rotation change of joint i from the
source point to the target point and ΔL(x) is the cumulative
movement change of the manipulator’s end-effector from the
source point to the target point. The constraint condition is that
each link of the manipulator can avoid obstacles.

x is the parameter in the manipulator’s motion trajectory
model, which includes the seven parameters listed in Section
3.2.3. This problem does not require the optimization of
controller settings; instead, just the proposed model parameters
must be optimized. The PSO algorithm is utilized to optimize the
parameters in this work, which is a relatively developed algorithm.
The fitness function designed in this research is

f � − fob

η1∑6
i�1Δθi + η2ΔL

(10)

where fob estimates whether each link of the manipulator collides
with the obstacle, whose value is obtained fromEq. 4. The parameters
η1 and η2 are used to balance the cumulative changes in joint angle
and end-effectormovement, respectively. The interpolation approach

is employed to derive Δθi and ΔL in this study since the beginning
point to the goal location is a continuous trajectory.

3.3 Data-Driven Part Design
3.3.1 Markov Modeling Process
For the motion planning problem of the manipulator, it is
difficult to obtain the complete state of the manipulator, so
this problem is a partially observable Markov decision process
(POMDP). Define the Markov decision process M � < S, A,
P, R , γ> , where γ is the discount coefficient, which is determined
manually. The following describes S, A, P, and R, respectively:

1) Design of the state space. To improve the generalization
performance of the algorithm, we take the current joint
angle qi ∈ q, i � 1, 2, . . . , 6 , −2π ≤ qi ≤ 2π , the joint angle at
last moment qil ∈ ql, i � 1, 2, . . . , 6 , −2π ≤ qil ≤ 2π, and the
target joint angle qig ∈ qg, i � 1, 2, . . . , 6 , −2π ≤ qig ≤ 2π, of
the manipulator as part of the state. At the same time, in
order to avoid obstacles, we also take the distance of each link
of the manipulator relative to the obstacle
dit0−ob ∈ dto−ob, dilast−t0−ob ∈ dlast−to−ob, i � 1, 2, . . . , 6, as part
of the state, and then the complete state is

S � < q, ql, qg, d, dl > (11)

2) Design of the action space. The motion increment of each
joint angle of the manipulator is the algorithm’s output action
in manipulator motion planning. As a result, the action
proposed in this work is the angle increment of the
manipulator’s six joints Δqi, i � 1, 2, . . . , 6.

3) State transition. This work introduces the action scaling
parameter αs to ensure motion continuity and reason; then,

q � q + αsΔq (12)

4) Design of reward function. The problem in this research is
very complex, there is only a direct relationship with the
action Δq in the state space, and additional information and
actions in the state space are only indirectly related. For
reward function design, see Section 3.3.2 for details.

3.3.2 D-SAC Algorithm
As shown in Figure 4, when the manipulator learns by interacting
with the environment, in order to avoid obstacles and reach the
target point, the training process is actually the process of
learning the kinematics model of the robotic arm and the
obstacle avoidance detection model.

Simple sparse rewards make it difficult for the manipulator to
successfully complete the task and get a positive reward under the
simple sparse reward conditions, making learning easy to fall into
the local optimum (the manipulator collides with the obstacle).
So, the D-SAC algorithm is proposed in this research. The reward
function designed in D-SAC is as follows:

R �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Rsuc, ‖q‖2 < ε
Rout, −2π < q + qtarget < 2π
Rob, fob � 0
Ro, else

(13)

FIGURE 7 | Average epoch reward curves of D-SAC and P-SAC.
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FIGURE 8 | Process of manipulator’smotion. (A)Complete motion trajectory of D-SAC. (B)Obstacle avoidance process of D-SAC. (C)Complete motion trajectory
of P-SAC. (D) Obstacle avoidance process of P-SAC. (E) Complete motion trajectory of PSO. (F) Obstacle avoidance process of PSO.

TABLE 5 | Final convergence value of D-SAC and P-SAC.

Algorithm D-SAC P-SAC

Final convergence AverageEpRet (average of last 100 epochs) 156.2146+99.92579−184.31 385.792+83.37333−144.836

FIGURE 9 | Change curve of the angle of each joint of the manipulator. (A) D-SAC. (B) P-SAC. (C) PSO.

Frontiers in Energy Research | www.frontiersin.org August 2022 | Volume 10 | Article 9578698

Ku et al. P-SAC: A Motion Planning Algorithm

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


where Rsuc is the reward of the manipulator successfully reaching
the target point. The judgment condition for the manipulator
successfully reaching the target point is that the error of the
current joint angle and the target joint angle is within the
allowable error ε. Rout is the penalty for the current joint angle
of the manipulator exceeding the working range of the
manipulator, and Rob is the penalty for the manipulator
hitting an obstacle, and its value can be obtained from Eq. 4.
Ro is the reward of the manipulator under general conditions,
including two parts: target guidance and fixed penalty:

Ro � α1rq + (1 − [α1rq]) · r− (14)
where r− is a fixed penalty term and the function [x] is a truth
function. When x is 0, the function value is 0; otherwise, it is 1.

Target guidance item rq. It is easy to think of utilizing the
Euclidean norm of the current joint angle as the measurement
standard for the target guidance item, but merely using the
Euclidean norm as the reward function’s design parameter is
extremely likely to be ineffective. It may make the manipulator
travel back and forth at some useless positions in order to gain a
bigger cumulative reward, as shown in Figure 5A, which is
termed the manipulator’s back-and-forth dilemma in this
research.

Definition 2: The back-and-forth dilemma: the manipulator
moves repeatedly in certain positions in order to get a larger
cumulative reward.

It would be better to calculate the difference between the current
joint angle’s Euclidean norm and the last joint angle’s Euclidean norm:

rq �
					ql − qg

					2 − 					q − qg
					2 (15)

However, the reward function of Eq. 15 cannot avoid the
manipulator’s back-and-forth dilemma. The following uses a 2D
space as an example to prove this. The joint angle space of the
manipulator is 6D, but the reason is the same.

As shown in Figures 5B,C, the distances from point A, point B,
point C, and point D to the target point are 5, 3, 4, and 2. When the
manipulatormoves according to the trajectory shown in Figure 5B, the
cumulative reward obtained during this period is r1 � (5 − 3)+
(3 − 4) + (4 − 2) � 3. When the manipulator moves according to
the trajectory shown in Figure 5C, the cumulative reward obtained
during this period is r2 � (5 − 3) + (3 − 2). r1 � r2. So if the reward
function is designed in this way, the manipulator still cannot avoid the
back-and-forth dilemma.

Therefore, to avoid the back-and-forth dilemma, we introduce
the guiding coefficient α1. Inspired by Coulomb’s law, the setting
of the coefficient α1 takes into account that the closer the robot
arm is to the target point, the greater the attractive force is. At the
same time, to avoid too large or too small coefficients, this study
scales q to the range of 0.08–1.0. The target guidance coefficient is
set as shown in the following equation:

αi
1 �

5
clip(qi, 0.08, 1), i � 1, 2, . . . , 6 (18)

In summary, the process of the D-SAC algorithm is as follows
(for the meaning of relevant parameters, refer to Table 2).

Algorithm 1. D-SAC algorithm.

3.4 P-SAC Algorithm Driven by Hybrid Data
Model
To summarize, this research proposes P-SAC, a fusion algorithm of
PSO and SAC for the live working manipulator’s motion planning,
based on the proposed algorithm framework, which is driven by data
andmodel. The algorithm is broken into the following three sections:

Step 1: Optimize the model’s parameters. Establish the M set of models
basedon themanipulator’sDHmodel, obstacle avoidancedetection
model, and polynomial trajectorymodel. Using the PSO algorithm
to optimize the parameters of M, the parameters to be optimized
here are the seven parameters described in Section 3.2.3.

Step 2: Pre-train the agent. The datasetD1 is obtained using the trajectory
modeloptimizedbyStep1, thestatevalueandactionvalue < S,A>
are retrieved from the datasetD1, and < S,A> are translated into
< S,A,R,S−,D> using the reward function.Toupdate the agent’s
network parameters, enter < S,A,R,S ,D> into the buffer.

Step 3: Learn from the environment. Interactive learning between
the agent obtained by pre-training in Step 2 and the
environment improves the robustness of the algorithm.

The P-SAC algorithm flow is as follows (for the meaning of
relevant parameters, refer to Table 2).

Algorithm 2. : P-SAC algorithm.
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4 EXPERIMENTAL RESULTS AND
ANALYSIS

4.1 Simulation Experiment Verification
The architecture diagram of P-SAC applied to the live working
manipulator is shown in Figure 6.

In this research, Robotics Toolbox is used to model a six-DOF
live workingmanipulator to verify the algorithm. The experimental
software and hardware environment is shown in Table 3.

The source point of the joint of the manipulator is
[2.8369, 2.1575, 0.4422, 0, 0.5419,−0.3047], and the target
point of the joint is [4.4077, 2.1575, 0.4422, 0, 0.5419, 1.2661].
So, the source point and target point of the manipulator end-
effector are [50, 0, 0] and [0, 50, 0]. The starting point and ending
point of the cylindrical obstacle are [−100, 30, 10] and
[100, 30, 10], and the obstacle radius is 3. The parameters used
in the P-SAC algorithm in this paper are shown in Table 4.

4.2 Analysis of Results
The reward curves of D-SAC and P-SAC applied in the live
working manipulator are shown in Figure 7. The reward values
for the final convergence of P-SAC and D-SAC are shown in
Table 5. It is evident that P-SAC reaches the convergence state
earlier, and its final convergence value is higher than that of
D-SAC. It is evident from the curve that P-SAC reaches near the
optimal value earlier but begins to decrease after a period of time
and finally rises to the optimal value. This shows that the initial
pre-training of the P-SAC algorithm lets the agent acquire a
certain ability to learn about the environment, but then it starts to
learn what actions are bad in the process of interacting with the
environment, which leads to a decrease in the reward value.

The motion process of P-SAC, D-SAC, and PSO is shown in
Figure 8. It is evident that all three algorithms can effectively
avoid obstacles.

The curves of each joint angle of the manipulators using
P-SAC, D-SAC, and PSO with time are shown in Figure 9.
The joint angle change curves of P-SAC and D-SAC are relatively
smooth, but there is a certain gap compared with the joint angle
change of the PSO algorithm, especially for D-SAC, and it is
evident that the curve has obvious jitter. Since PSO pre-plans a
perfect trajectory, its curve must be extremely smooth, while
D-SAC and GP-SAC are real-time changing curves, so the curves
are not so perfect. However, there is no sudden change in its
curve, and it is enough for the manipulator to work effectively.

In conclusion, using P-SAC proposed in this paper can
effectively improve the training efficiency of the data-driven

algorithm and can complete the real-time motion planning of
the live working manipulator.

5 CONCLUSION

Aiming at the shortcomings of data-driven algorithms represented by
deep reinforcement learning, which take too long in the early stage of
training, and model-driven algorithms that have poor generalization
ability to environmental changes and cannot avoid model design
errors, this study proposes a hybrid data-model–driven algorithm
framework. Under this framework, this study proposes the P-SAC
algorithm that integrates PSO and reinforcement learning and applies
the P-SAC algorithm to themotion planning problem of live working
manipulators. The experimental results show that the proposed
P-SAC algorithm has a faster convergence rate than the SAC
algorithm, reduces the training time, and can better adapt to the
changing environment than the model-driven algorithm.

The hybrid data-model–driven algorithm proposed in this
paper can be applied to control problems with controllers or
planning problems without controllers and has good application
value and algorithm versatility.
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