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Abstract— Concentric tube robots are thin, tentacle-like de-
vices that can move along curved paths and can potentially
enable new, less invasive surgical procedures. Safe and effective
operation of this type of robot requires that the robot’s shaft
avoid sensitive anatomical structures (e.g., critical vessels and
organs) while the surgeon teleoperates the robot’s tip. However,
the robot’s unintuitive kinematics makes it difficult for a human
user to manually ensure obstacle avoidance along the entire
tentacle-like shape of the robot’s shaft. We present a motion
planning approach for concentric tube robot teleoperation
that enables the robot to interactively maneuver its tip to
points selected by a user while automatically avoiding obstacles
along its shaft. We achieve automatic collision avoidance by
precomputing a roadmap of collision-free robot configurations
based on a description of the anatomical obstacles, which are
attainable via volumetric medical imaging. We also mitigate
the effects of kinematic modeling error in reaching the goal
positions by adjusting motions based on robot tip position
sensing. We evaluate our motion planner on a teleoperated
concentric tube robot and demonstrate its obstacle avoidance
and accuracy in environments with tubular obstacles.

I. INTRODUCTION

Tentacle-like surgical devices called concentric tube robots
have the potential to enable new minimally invasive medical
procedures in the human body, including the heart, the lungs,
and the skull base, among other applications [1]. These
robots are composed of thin, pre-curved, elastic, concentric
tubes. These tubes can be telescopically inserted and rotated
relative to one another, causing the entire robot’s shape
to change, enabling the device to curve around anatomical
obstacles to reach anatomical sites inaccessible to traditional,
straight instruments (see Fig. 1).

During operation, care must be taken to ensure that the
robot does not collide with sensitive anatomical obstacles,
e.g., blood vessels, critical nerves, and sensitive organs.
Physicians can attempt to manually avoid obstacles while
steering the robot’s tip using position control [2], [3], [4],
but some tip motions can require dramatic changes in the
robot’s shape and therefore cause hard-to-predict collisions.
Furthermore, requiring a physician to guarantee collision

L. G. Torres, A. Kuntz, and R. Alterovitz are with the Department of
Computer Science, University of North Carolina at Chapel Hill, Chapel
Hill, NC 27599, USA. {luis,adkuntz,ron}@cs.unc.edu

H. B. Gilbert, P. J. Swaney, and R. J. Hendrick, and R. J. Webster III
are with the Department of Mechanical Engineering, Vanderbilt University,
Nashville, TN 37235, USA.

This research is supported in part by the National Science Foundation
(NSF) Graduate Research Fellowship Program under Grant No. DGE-
1144081 as well as NSF award IIS-1149965 and by the National Institutes
of Health (NIH) under awards R01EB017467 and R21EB017952.

Fig. 1: A concentric tube robot steering between and avoiding
two tubular obstacles. We developed a fast motion planner
to enable a teleoperated concentric tube robot to maneuver
its tip to points specified by a 3D mouse (see inset) while
automatically avoiding collisions with obstacles along its
shaft.

avoidance along the entire tentacle-like shape of the device
would require considerable mental load on the physician.

In order to tackle this problem, we developed a motion
planning approach for teleoperation of concentric tube robots
that frees the physician to focus on controlling the robot’s tip,
while our integrated motion planner automatically handles
obstacle avoidance along the robot’s entire shaft. Motion
planning can harness these robots’ redundant degrees of
freedom in order to curve around obstacles and still reach
desired tip positions.

The user specifies goal positions by clicking with a 3D
mouse on an augmented reality interface, and the concentric
tube robot automatically moves its tip to the specified goal
position while avoiding contact with surrounding obstacles.
Our approach also reduces the error between the commanded
goal position and the robot’s tip position by using tip position
sensing to account for kinematic modeling error.

We demonstrate our motion planner’s ability to accurately
steer concentric tube robots while avoiding obstacles in
physical experiments. The environments in the experiments
include tubular obstacles and are inspired by the need to
avoid critical vessels during surgical procedures. To the
best of our knowledge, this is the first demonstration of a
teleoperated concentric tube robot with automatic obstacle
avoidance.

II. RELATED WORK

Automatic avoidance of obstacles requires accurate esti-
mation of the concentric tube robot’s shape before executing



a motion. Kinematic models for predicting the shape of
concentric tube robots have rapidly improved in accuracy
and sophistication in recent years, with models considering
bending [5], torsional compliance [6], [7], external loading
[8], [9], and friction [10]. Our motion planner uses a me-
chanically accurate model developed by Rucker et al. [3].

Much of the prior research in concentric tube robot control
focuses on quickly computing instantaneous velocities for the
robot’s actuators to achieve a specified tip motion. Xu et al.
and Rucker et al. quickly compute the manipulator Jacobian
to achieve fast tip position control [4], [3]. Dupont et al.
achieve fast tip position control by evaluating the inverse
kinematics of a Fourier series approximation of the robot’s
kinematics [2]. We build on this prior work by adding a
motion planner that enables automatic obstacle avoidance
while moving the tip toward a specified position.

Prior work on automatic obstacle avoidance for concentric
tube robots has introduced algorithms with varying speed and
kinematic accuracy tradeoffs. Algorithms include fast mo-
tion planning by assuming simplified kinematics [11], [12],
noninteractive motion planning using accurate kinematic
models [13], and accurate, interactive-rate motion planning
via precomputation [14]. Motion planning algorithms have
helped to identify stable configurations [15]. This paper’s
motion planning approach builds on work by Torres et al.
[14]. Whereas prior motion planners for obstacle avoidance
have only been evaluated in simulation, here we integrated
motion planning into concentric tube robot teleoperation,
incorporated position sensing to improve the accuracy of the
tip motion, and demonstrated motion planner performance
by conducting physical experiments.

Our motion planner for concentric tube robot teleoperation
achieves its interactive speed by executing motion planning
queries on a precomputed roadmap of collision-free robot
configurations. We use a sampling-based motion planning
approach, which is well suited for robots with many degrees
of freedom and complex kinematics [16]. Our motion planner
uses the rapidly-exploring random graph (RRG) algorithm
[17]. We use RRG instead of a canonical multi-query planner
like the probabilistic roadmap (PRM) [16] because RRG only
considers configurations reachable from the robot’s insertion
point. As an alternative to sampling-based approaches, re-
cently developed optimization-based motion planners [18],
[19], [20] have been shown to achieve high execution speeds
for many types of robotic manipulators. These methods
require many online evaluations of the robot’s kinematic
model, which is infeasible for concentric tube robots due to
these robots’ computationally expensive kinematic model.

III. OVERVIEW OF APPROACH

We provide in Fig. 2 an overview of our motion planning
approach for concentric tube robot teleoperation. Before
operation, we require a geometrical specification of the
anatomical obstacles that must be avoided by the concen-
tric tube robot during the procedure. The obstacles O are
specified using polygonal meshes, which can be obtained
by segmenting volumetric medical images (e.g., CT scans)

Fig. 2: A schematic overview of our motion planning ap-
proach for concentric tube robot teleoperation with automatic
obstacle avoidance.

either manually or using automatic segmentation software
[21].

During operation, the user repeatedly specifies a new
goal position xgoal for the concentric tube robot to reach.
The robot immediately responds by moving its tip to reach
the latest given goal position while automatically avoiding
contact with obstacles. The user specifies the goal positions
with a 3D mouse in an augmented reality display that shows
a cursor overlaid on a video feed of the surgical site (e.g.,
from an endoscopic camera).

A. Concentric Tube Robot Kinematics

A concentric tube robot includes N telescoping tubes.
Each tube i consists of a straight segment of length Ls

i

followed by a pre-curved portion of length Lc
i and radius

of curvature ri. The device is inserted at a point xstart along
a vector vstart.

Each tube may be (1) inserted or retracted from the
previous tube, and (2) axially rotated, yielding 2 degrees of
freedom per tube. Hence, the robot’s configuration is a 2N
dimensional vector q = (θi, βi : i = 1, . . . , N) where θi
is the axial angle at the base of the i’th tube and βi ≤ 0
is the arc-length position of the base of tube i behind the
robot insertion point (i.e., β = 0 corresponds to xstart). The
configuration space is Q = (S1)N × RN .

For a given configuration q ∈ Q, we represent the device’s
shape as a 3D space curve x(q, s) : Q× [0, 1] 7→ R3 where
x(q, 0) = xstart and x(q, 1) is the robot’s tip position.

B. Intraoperative Execution

Each time the user provides a new xgoal, the robot’s motion
planner computes a collision-free sequence of configurations
to guide the robot to the vicinity of xgoal, and then performs
a tip error correction step guided by sensed measurements
of the tip position. These steps make up a motion plan Π,
denoted by a sequence of configurations Π = (q1, . . . ,qn),
to move the robot from its current configuration q1 to a new
configuration qn such that



Fig. 3: A screen capture of the augmented reality interface
for teleoperating concentric tube robots. The translucent aqua
curve is the robot’s shape as estimated by the kinematic
model, which almost exactly corresponds to the actual tubes
in the video feed. The translucent red sphere corresponds to
the 3D cursor, which the user moves with a 3D mouse to
select goal positions for the robot tip.

1) the distance between the robot’s tip x(qn, 1) and the
goal xgoal is minimized,

2) each configuration qi of the motion plan Π is free of
contact with obstacles, and

3) each configuration qi satisfies the robot’s kinematic
constraints, which includes limits on tube translations.

To enable interactivity, each plan Π should be computed
sufficiently fast.

Due to the unmodeled effects such as friction and tube
tolerances, there will be some difference between mechanics-
based model predictions and the robot’s actual shape. Thus,
we consider the model’s predictions to be an estimate x̂
of the robot’s true shape x. Accurately reaching desired
goal positions while ensuring collision avoidance becomes
especially challenging when we only have an approximation
x̂ of the robot’s true shape. We describe in Sec. IV how we
select motion plans that encourage collision avoidance and
use sensing to correct tip error.

IV. METHODS

Our motion planning approach for concentric tube robot
teleoperation consists of the following components.

• a user interface for specifying desired goal points for
the robot to reach.

• an integrated motion planner that computes a path that
moves the robot as close as possible to the goal while
avoiding collisions. The planner has two parts:

– a roadmap-based planner that generates collision-
free paths to the goal’s vicinity.

– a tip error correction (TEC) that senses the robot’s
tip position and moves the robot’s tip closer to the
goal.

• a physical concentric tube robot actuation unit that ex-
ecutes the commands computed by the motion planner.

A. Providing User Input

The user specifies goal positions for the robot by pointing
and clicking with a Geomagic R© TouchTM X [22]. We
currently do not use the TouchTM X’s haptic rendering
features. To facilitate selection of goal positions, we created
an augmented reality display that shows a video feed of
the concentric tube robot with an overlaid 3D cursor as the
intended goal. We registered the video camera view with
the robot’s frame of reference using the OpenCV computer
vision library [23]. In clinical settings, we expect to use an
endoscopic video camera attached to the robot in a manner
such that this registration can be pre-calibrated. The user
moves the 3D cursor with the handheld stylus of the TouchTM

X, and clicking the stylus triggers the motion planner to
move the robot’s tip to the specified goal position. The
augmented reality interface is shown in Fig. 3.

B. Collision-free Roadmap Planner

We use a motion planner that can generate collision-
free paths (as approximated by the kinematic model) for
concentric tube robots at interactive rates [14]. The motion
planner achieves its speed by separating planning into two
phases: a preoperative phase and an intraoperative phase.

1) Preoperative Phase: The inputs to the preoperative
phase of motion planning are:

• anatomical obstacles represented as 3D polygonal sur-
face meshes.

• physical specifications of the concentric tube robot.
• insertion pose of the concentric tube robot.
The output of the preoperative phase is a discretization of

the collision-free subset of the robot’s configuration space
Q in the form of a roadmap. The roadmap stores a set
of configurations and motions between these configurations
that have all been verified to be collision-free, according
to the kinematic model x̂. The motion connecting two
adjacent configurations in the roadmap is assumed to be
linear interpolation. Paths in the roadmap are represented
as sequences of adjacent configurations, which means the
roadmap generates piecewise linear motions in configuration
space.

We compute the collision-free roadmap using a rapidly-
exploring random graph [17], or RRG. RRG focuses
roadmap construction only on regions of the configuration
space that are reachable from the robot’s insertion pose. RRG
also stores multiple alternative paths between configurations,
thus allowing us to select paths that meet application-specific
criteria.

The RRG algorithm requires a predicate
is collision free(q) that evaluates whether the
robot satisfies kinematic constraints and is collision-free at
configuration q. We compute this predicate by generating
a 3D polygonal mesh on-the-fly of our kinematic model
x̂(q, s) and using the Flexible Collision Library [24] to
check for collisions between the robot’s mesh and the
anatomical obstacle meshes. For this work we assume the
obstacles are described in the robot’s coordinate frame, but



in future work and for clinical applications, we will need
to register to the preoperative volumetric image coordinate
system.

We note that the function is collision free(q) is ap-
proximate because it uses the kinematic model x̂. In order to
reduce false negatives in collision detection due to modeling
error, we add 1 mm of padding to the anatomical obstacle
meshes used in computing is collision free(q).

2) Intraoperative Phase: In the intraoperative phase, the
motion planner performs the following steps each time the
user specifies a new desired goal position xgoal.

1) Find the configuration qnear goal in the roadmap with
the minimum predicted tip distance to the goal.

2) Given that the concentric tube robot is currently at
configuration qstart, find the configuration qnear start in
the roadmap that is nearest to qstart.

3) Use Dijkstra’s graph search algorithm to find the
optimal sequence of configurations Π∗ on the roadmap
from qnear start to qnear goal. We will describe below how
we define edge costs.

4) Send Π∗ to the robot for execution.

As previously noted, the roadmap stores multiple alter-
native collision-free paths between configurations. In prior
work [14], we selected paths that resulted in smooth robot
motion (in simulation) by choosing paths that minimized the
total distance traveled by the robot’s tip. However, this metric
does not consider anatomical obstacles. Paths that optimize
this metric can lead the robot to closely trace the boundaries
of anatomical obstacles. Although in simulation these paths
are considered collision-free, kinematic modeling error can
cause unpredicted collisions when the real robot executes
these paths.

In this work we prioritize collision avoidance over smooth
tip motion. Therefore, we select paths based on a met-
ric that considers the robot’s clearance from anatomical
obstacles. Given a function clear(q) that computes the
minimum distance between the robot at configuration q and
the anatomical obstacles, we define the cost of the motion
connecting configurations q1 and q2 as

c(q1,q2) = ‖q1−q2‖
∫ 1

0

1

clear(q1 + t(q2 − q1))
dt. (1)

This function integrates (1/clear(q)) along the linear
interpolation between q1 and q2. We use the reciprocal of
the clear function because we want to incur higher cost
on a path with smaller robot-obstacle clearance. We use the
Flexible Collision Library [24] to compute clear. In our
implementation we compute the integral in Eq. 1 using the
trapezoid rule.

Dijkstra’s shortest path algorithm uses the cost function
in Eq. 1 in order to return paths on the roadmap that tend
to steer farther away from anatomical obstacles. We cache
these motion costs during precomputation of the collision-
free roadmap in order to avoid online evaluation of the
expensive clear function.

C. Tip Error Correction using Tip Position Measurements

In the prior section we explained how the planner uses a
precomputed roadmap to take a (predicted-to-be) collision-
free path to a configuration in the roadmap qnear goal. How-
ever, x(qnear goal, 1) 6= xgoal in general for two reasons:

1) the roadmap is a finite discretization of the robot’s
configuration space Q, so a configuration qgoal where
x(qgoal, 1) = xgoal generally is not exactly represented
in the roadmap, and

2) the roadmap planner uses an approximate kinematic
model x̂ to select qnear goal.

To address both of these challenges, we use measurements
from a tip position sensing system combined with iterative
inverse kinematics (IK) to “step out” of the precomputed
roadmap and toward the specified goal point. See Sec. V-
A.2 for details on the tip position measurement system used
in our experiments.

To step off the roadmap and move the robot’s tip from
its sensed position to the goal position, we used the damped
least squares (DLS) IK algorithm [25], [3]. If we do not
consider kinematic uncertainty (as in our prior work [14]
which we only evaluated in simulation), then we could
compute the off-roadmap steps using tip error computed from
the kinematic model:

∆q = DLS IK(xgoal − x̂(q, 1)). (2)

In this work, we incorporate feedback from tip position
measurements in order to mitigate the effects of kinematic
modeling error. We take the off-roadmap steps using the tip
error measured by our position sensing system:

∆q = DLS IK(xgoal − xmeasured). (3)

We iteratively sense the position of the robot’s tip and
adjust the robot’s configuration using Eq. 3 until convergence
or until we fail to make positive progress toward the goal
position. We only perform off-roadmap steps if they are
predicted to be collision-free with is collision free(q).

V. EVALUATION

We evaluated our motion planner’s ability to accurately
maneuver a concentric tube robot’s tip to goal positions
while avoiding collisions with obstacles. We assess obstacle
avoidance by whether any point on the concentric tube robot
touches an obstacle at any time during a procedure, and we
assess accuracy by tip error, the Euclidean distance between
the specified goal position and the actual robot tip position
(as measured by an external vision-based sensor) after the
robot’s motion has completed.

A. Experimental Setup

Our experimental setup consisted of a physical concentric
tube robot platform, a stereo vision system, and a pair of test
environments.



Fig. 4: Environment A (left) and Environment B (right).
Start and goal positions sampled from a region approximately
rendered in green.

1) Physical Concentric Tube Robot Platform: Our robot’s
mechanical design is similar to prior work in a quadramanual
concentric tube robot system [26]. Our robot is composed of
3 tubes. Each tube i has outer and inner diameters ODi and
IDi, respectively; a straight segment of length Ls

i ; and a
curved segment of length Lc

i with radius of curvature ri.
The specifications of the robot’s component tubes are in the
table below (all units in millimeters).

Tube ODi IDi Ls
i Lc

i ri
1 0.889 0 219 59 169
2 1.1176 0.9652 114 50 160
3 2.18 2.02 56 21 200

We note that the innermost “tube” in our experiments
is actually a wire. We designed the tubes to be slight in
curvature in order to maximize the robot’s stability and
preclude snapping behavior [27], [28], [2].

2) Tip Position Measurement using Stereo Vision: We
measured the concentric tube robot’s tip position using a
calibrated stereo camera system consisting of two Point
Grey Research Flea2 cameras with resolution 1600× 1200.
We mounted the cameras on a tripod and calibrated the
camera system using the Camera Calibration Toolbox for
MATLAB [29]. We implemented a basic tracker that au-
tomatically locates a small, brightly-colored marker at the
tip of the concentric tube robot in each camera image and
then triangulates the tip’s 3D position in space. This stereo
vision setup provided accurate and automated measurements
of the concentric tube robot’s tip. In a clinical setting, we
anticipate using electromagnetic trackers or intraoperative
medical imaging to estimate tip position.

3) Test Environments: For evaluating our approach, we
considered two environments with cylindrical obstacles, en-
vironment A and environment B, shown in Fig. 4. Envi-
ronment A contains 2 thin cylindrical obstacles at 1.4 cm
spacing and environment B contains 3 thicker cylindrical
obstacles at 1.35 cm spacing. The environments are inspired
by the need to avoid thin tubes (e.g., critical blood vessels)
during surgical procedures.

In our approach’s preoperative phase, we generated 3D

polygonal surface meshes of environments A and B. We used
these surface meshes to generate the collision-free roadmaps
used by the motion planner, as described in Sec. IV-B.1.
We generated these roadmaps from 20,000 RRG iterations,
which resulted in roadmaps with 19,331 configurations and
17,797 configurations for environments A and B, respec-
tively. Roadmap computation took approximately 3 hours
each.

B. Experimental Trials

We evaluated the effectiveness of the robot with a series
of experimental trials. Each experimental trial involved ran-
domly sampling a start and a goal position, executing the
motion planner, and evaluating the path taken by the robot
for both obstacle avoidance and tip error at the end of the
path. Specifically, each experimental trial consisted of the
following steps.

1) Sample a start position and a goal position from a given
subset of the robot’s feasible workspace.

2) Move the robot to the start position (for convenience
we use the collision-free roadmap for this).

3) Use the motion planner to compute a motion plan to
the goal, and execute the motion plan and tip error
correction.

4) Record (a) the tip error, and (b) whether a collision
occurred during execution of the motion. If a collision
occurred, we measure the tip error at the last collision-
free configuration.

We labeled an experimental trial a success if the robot’s tip
reached within 1 mm of the goal position without colliding
with environmental obstacles, and a failure otherwise.

The feasible workspace subsets used for sampling start
and goal positions in environments A and B are illustrated in
Fig. 4. We estimated these regions using a rapidly-exploring
random tree (RRT) algorithm [30] to densely sample points
reachable by collision-free paths, and sampled from these
points for our planning queries. We note that these config-
urations were distinct from those sampled when generating
our collision-free roadmaps.

We compare our motion planning approach with several
related methods. Specifically, we evaluated the robot’s per-
formance using the following methods for computing and
executing motions in step 3 above.

1) Iterative IK: The robot is controlled to move from the
start to the goal using the DLS IK algorithm from Eq.
2. This method does not use the collision-free roadmap
or tip position measurements.

2) TEC: The robot is controlled to move from the start
to the goal using only the tip error correction (TEC)
algorithm based on Eq. 3. This method does not use
the collision-free roadmap.

3) Roadmap: The teleoperation system uses the collision-
free roadmap to compute a motion plan to the config-
uration in the roadmap that is closest to the goal, and
then executes this motion plan in an open-loop manner.
This approach does not consider tip position error due
to inaccuracies in the kinematic model.
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Fig. 5: Rates of procedure failure of several planners in both
environments. Bars are color-coded to distinguish between
(1) failures due to obstacle collision or (2) failure to place
the robot’s tip within 1 mm of the goal. Roadmap-based
planners cause far fewer collisions than planning without a
roadmap. Our complete method, which combines roadmap-
based planning with sensing-based tip error correction to
overcome kinematic modeling error, achieves the lowest
failure rate.

4) Roadmap + IK: The above “Roadmap” method is
executed. It then uses DLS IK to move the robot’s tip
closer to the goal. This approach does not consider tip
position error due to inaccuracies in kinematic model.

5) Roadmap + TEC (our complete method): The above
“Roadmap” method is executed. It then uses TEC to
attempt to move the robot’s tip closer to the goal.

We performed 10 trials for environment A and for environ-
ment B for each of the above methods. We used the same
set of start/goal position pairs to evaluate each method.

C. Experimental Results

We show failure rates for each method in Fig. 5. In
both environments, the roadmap-based variants caused fewer
collisions than the variants without roadmap planning; this
shows that explicit obstacle avoidance using a collision-
free roadmap approach is beneficial. Our complete method
(Roadmap + TEC) had the lowest overall failure rate due
to its consideration of both obstacle avoidance (using the
roadmap) and accuracy (using the sensing-based tip error
correction).

We show the average tip position errors over all trials for
each planner variant in Fig. 6. We note that, if a trial resulted
in collision, we recorded the tip position error for that
trial at the last collision-free configuration. The roadmap-
based variants exhibited significantly lower tip position errors
because roadmap planning enables globally collision-free
routing to points near the target. The benefit of tip error
correction is shown in the low errors for the Roadmap +
TEC variant: average errors of 0.21 mm and 0.18 mm. The
other roadmap-based variants exhibit average errors around
3 mm, which push the boundary of required precision in
minimally invasive surgery.

New goal position requests resulted in motion response
from the concentric tube robot within an average of 0.118

1 3 5 7 9 11 13

IK

TEC

Roadmap

Roadmap + IK

Roadmap + TEC

Average tip position error (mm)

Environment A
Environment B

Fig. 6: Average tip position errors for each planner variant
in both environments. If a trial resulted in collision, we
recorded the error at the last collision-free configuration. The
Roadmap + TEC variant combines roadmap-based collision-
free routing with sensing-based tip error correction to achieve
the lowest errors (0.21 mm and 0.18 mm for environments
A and B, respectively).

seconds. This slight latency (caused by intraoperative phase
motion planning) is hidden by the time taken for the robot
to reach each new goal position.

VI. CONCLUSION

To the best of our knowledge, this is the first teleoperated
concentric tube robot with integrated motion planning for
automatic obstacle avoidance. Our experiments show that
our motion planning approach enabled powerful obstacle
avoidance capabilities, but there is always room for im-
provement. The motion plans generated by the roadmap-
based planner are executed in an open-loop fashion until
the tip error correction step. Our current approach uses a
1 mm buffer around obstacles to account for uncertainty in
the robot’s kinematic model, but a more principled approach
that considers models of kinematic uncertainty could provide
better guarantees for collision avoidance during the roadmap
execution stage. This problem enables exciting potential
research in closed-loop sensing, planning, and execution
for continuum robots with kinematic modeling error. For
instance, recent work in continuum robot shape sensing [31],
[32], [33] can potentially be combined with uncertainty-
aware manipulation planning [34], [13] in order to maximize
the effectiveness of automatic obstacle avoidance.

Our motion planning approach for concentric tube robot
teleoperation achieves interactive execution speeds with high
accuracy via precomputation. The precomputation requires
knowledge of obstacle location, e.g., from preoperative med-
ical imaging. While this may be appropriate for relatively
static surgical sites (e.g., in the skull base), the clinical
need to operate where the anatomy is in flux (e.g., beating
hearts and breathing lungs) motivates investigation of motion
planning methods that can handle dynamic environments
while maintaining interactive planning rates.

Our use of a 3D mouse combined with an augmented
reality interface makes the robot’s responses to the user’s in-
puts more intuitive, and this approach raises other interesting



questions about robot-physician interfaces. For instance, the
user’s spatial reasoning of the surgical site could be improved
with a stereoscopic display or visual overlay of surgically
relevant anatomical structures. Additionally, force feedback
could provide the physician with tactile information about
the surroundings of the concentric tube robot. This and future
work in robot-physician interfaces for concentric tube robot
teleoperation should be evaluated via user studies.

In order to encourage stability, we used concentric tubes
with slight curvatures, but higher curvatures allow concentric
tube robots to attain more diverse shapes and can augment
their ability to curve around obstacles. Augmenting our
motion planner with recent work in avoiding or mitigating
the unstable snapping effects [27], [15], [35], [36] caused by
tight tube curvatures may enable stable yet highly dexterous
obstacle avoidance for concentric tube robots.
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