
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-46

2005-09-23

A Motion Planning Processor on Reconfigurable Hardware A Motion Planning Processor on Reconfigurable Hardware

Nuzhet Atay and Burchan Bayazit

Motion planning algorithms enable us to find feasible paths for moving objects. These

algorithms utilize feasibility checks to differentiate valid paths from invalid ones. Unfortunately,

the computationally expensive nature of such checks reduces the effectiveness of motion

planning algorithms. However, by using hardware acceleration to speed up the feasibility

checks, we can greatly enhance the performance of the motion planning algorithms. Of course,

such acceleration is not limited to feasibility checks; other components of motion planning

algorithms can also be accelerated using specially designed hardware. A Field Programmable

Gate Array (FPGA) is a great platform to support such an... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Atay, Nuzhet and Bayazit, Burchan, "A Motion Planning Processor on Reconfigurable Hardware" Report
Number: WUCSE-2005-46 (2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/963

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/963?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/963

A Motion Planning Processor on Reconfigurable Hardware A Motion Planning Processor on Reconfigurable Hardware

Nuzhet Atay and Burchan Bayazit

Complete Abstract: Complete Abstract:

Motion planning algorithms enable us to find feasible paths for moving objects. These algorithms utilize
feasibility checks to differentiate valid paths from invalid ones. Unfortunately, the computationally
expensive nature of such checks reduces the effectiveness of motion planning algorithms. However, by
using hardware acceleration to speed up the feasibility checks, we can greatly enhance the performance
of the motion planning algorithms. Of course, such acceleration is not limited to feasibility checks; other
components of motion planning algorithms can also be accelerated using specially designed hardware. A
Field Programmable Gate Array (FPGA) is a great platform to support such an acceleration. An FPGA is a
collection of digital gates which can be reprogrammed at run time, i.e., it can be used as a CPU that
reconfigures itself for a given task. In this paper, we study the feasibility of an FPGA based motion
planning processor and evaluate its performance. In order to leverage its highly parallel nature and its
modular structure, our processor utilizes the probabilistic roadmap method at its core. The modularity
enables us to replace the feasibility criteria with other ones. The reconfigurability lets us run our
processor in different roles, such as a motion planning co-processor, an autonomous motion planning
processor or dedicated collision detection chip. Our experiments show that such a processor is not only
feasible but also can greatly increase the performance of current algorithms.

https://openscholarship.wustl.edu/cse_research/963?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/963?utm_source=openscholarship.wustl.edu%2Fcse_research%2F963&utm_medium=PDF&utm_campaign=PDFCoverPages

A Motion Planning Processor on Reconfigurable
Hardware

Nuzhet Atay
Department of Computer Science and Engineering

Washington University in St. Louis
Email: atay@cse.wustl.edu

Burchan Bayazit
Department of Computer Science and Engineering

Washington University in St. Louis
Email: bayazit@cse.wustl.edu

Abstract

Motion planning algorithms enable us to find feasible paths for moving objects. These algorithms utilize feasibility checks
to differentiate valid paths from invalid ones. Unfortunately, the computationally expensive nature of such checks reduces the
effectiveness of motion planning algorithms. However, by using hardware acceleration to speed up the feasibility checks, we can
greatly enhance the performance of the motion planning algorithms. Of course, such acceleration is not limited to feasibility
checks; other components of motion planning algorithms can also be accelerated using specially designed hardware. A Field
Programmable Gate Array (FPGA) is a great platform to support such an acceleration. An FPGA is a collection of digital gates
which can be reprogrammed at run time, i.e., it can be used as a CPU that reconfigures itself for a given task.

In this paper, we study the feasibility of an FPGA based motion planning processor and evaluate its performance. In order to
leverage its highly parallel nature and its modular structure, our processor utilizes the probabilistic roadmap method at its core.
The modularity enables us to replace the feasibility criteria with other ones. The reconfigurability lets us run our processor in
different roles, such as a motion planning co-processor, an autonomous motion planning processor or dedicated collision detection
chip. Our experiments show that such a processor is not only feasible but also can greatly increase the performance of current
algorithms.

I. INTRODUCTION

In this paper we investigate the feasibility of a motion planning processor (MPP). We present a prototype processor and
evaluate its performance against a high-end workstation. Such a processor has several advantages. Since it is a dedicated
platform, it can be optimized to run the motion planning algorithms in the most efficient way. It may be attached to a host
computer to reduce computation times. The cost of such processor would be the fraction of a general purpose CPU hence
hundreds of them can be deployed in parallel to further increase the computational capabilities. It would also be a low-power unit
reducing power consumption. It can be utilized as the control unit of an autonomous robot reducing its power consumption
while increasing the computational efficiency. Most important of all, by implementing such a processor on reconfigurable
hardware and utilizing high level abstraction of the motion planning algorithms, the processor can be adapted and used in
different domains.

Motion planning algorithms have applications in a wide range of domains, e.g., robotics, animation, biomedicine etc. The
goal of a motion planning algorithm is to find a feasible path for the moving objects. By changing the feasibility criteria, the
same motion planning algorithm can be used in different domains. For example, in probabilistic roadmap method (PRM) [1]
being collision free can be selected as a feasibility criteria for robot navigation. The same PRM algorithm can also be used to
find protein folding paths if the feasibility criteria is replaced by low-potential energy configurations [2]. Hence, the feasibility
check is a fundamental operation in motion planning algorithms.

In addition to high level abstraction, the modern motion planning algorithms [1], [3]–[6], have another nice feature,
inherited parallelism. In fact, motion planning algorithms generally have the parallelism in two levels. First individual parts of
the algorithm can run in parallel (e.g., node generation in PRMs). Second, the feasibility check itself can be implemented in
parallel (e.g., collision check between individual robot polygons and obstacle polygons can be run in parallel). This second
level of parallelism has been recently realized in [7] where a graphics processing unit (GPU) is utilized to accelerate collision
detection in motion planning. However, this approach still lacks the first level parallelism where individual components run
in parallel. Even if multiple CPUs are used, other factors such as interruption from system kernel could reduce the efficiency.
Instead, we propose a dedicated processor with the maximum parallelism at the each component of the system.

We have developed our prototype processor by using Field Programmable Gate Arrays (FPGAs). An FPGA is a collection
of digital gates which can be reprogrammed at run time, i.e. it can be used as a CPU that reconfigures itself for a given
task. FPGAs are continuously improving while suppressing the Moore’s law. A recent analysis shows that it is expected that
FPGA floating-point performance will overpass the general purpose CPUs by 2009 [8]. Although we have selected FPGA as
our implementation platform, our design can be applied to other types of configurable hardware such as Application-Specific
Integrated Circuits (ASIC), which are more expensive but faster.

Our motion planning processor is based on probabilistic roadmap method (PRM) because of their proven parallelism [9].
Since our aim is to evaluate the feasibility of motion planning processors, we have targeted the rigid body motion planning

problem where comparison of different solutions is relatively easy. The object representations are sent to the motion planning
processor through serial port and the processor returns a valid roadmap. The objects in the environment (obstacles and the
robot) are general, non-convex objects represented with triangular meshes. Whenever it is possible, the processor executes node
generation, collision check and local planning in parallel. We also take advantage of the reconfigurable nature of our motion
planning processor. If it is required, the processor can work as dedicated collision detection chip and may serve as a feasibility
checking co-processor for a more complex algorithm running on the host computer.

Although our current implementation is for rigid body motion planning, our processor can easily be modified to be used in
high dimensional problems or in different domains. For example, by replacing the collision detection module with potential
energy computation, we can build the roadmaps for proteins.

FPGAs are traditionally used as development and prototyping environment, but with the advances in their capabilities, they
began to be used in many areas like telecommunications, automotive, networking etc. In this paper, we show that the robotics
research can also gain from the advances of reconfigurable hardware. To the best of our knowledge, we are the first researchers
to implement a dedicated motion planning processor. Using the current FPGA technology, we obtained speed-ups of upto 25
with respect to a Pentium 4 machine running at 3GHz with 1 GB memory. Higher speed-up can be reached by using faster
reconfigurable systems such as ASIC (which typically runs 10 times faster than FPGAs).

In the next section we summarize related work. Section III present background information on PRMs and FPGAs. Sections
IV and V describes our processor. Section VII shows our results and Section VIII concludes the paper.

II. RELATED WORK

Amato and Dale’s work [9] shows that probabilistic roadmap methods are embarrassingly parallel. In our design we have
used a similar parallelism at each step of PRM algorithm. Gayle, et.al. recently achieved hardware acceleration in motion
planning using graphics hardware (GPU) [7]. However, while utilizing parallel collision detection, other components of the
motion planning algorithm still runs sequentially. Although not directly applied to motion planning, an increasing number of
collision detection algorithms are achieving hardware acceleration using GPUs [10]–[20]. Recently there was another approach
to gain hardware acceleration by implementing the collision detection using Application-Specific Integrated Circuit (ASIC) [21].
However, this design was not used in motion planning. To the best of our knowledge, we are the first researchers implementing
a motion planning processor.

III. BACKGROUND

A. Probabilistic Roadmap Methods

start

C−obst

C−obst
C−obst

C−obst

goal

C−Space

PRM Roadmap − Query

Fig. 1. A PRM roadmap in C-space.

PRMs work by sampling points ‘randomly’ from the robot’s configuration space (C-space), and retaining those that satisfy
certain feasibility requirements (e.g., they must correspond to collision-free configurations of the movable object). Then, these
points are connected to form a graph, or roadmap, using some simple planning method to connect ‘nearby’ points. During
query processing, the start and goal are connected to the roadmap and a path connecting their connection points is extracted
from the roadmap using standard graph search techniques (see Figure 1).

An algorithm for PRM can be summarized as the below:

PRMS: PROBABILISTIC ROADMAP METHODS
I. PREPROCESSING: ROADMAP CONSTRUCTION

1. NODE GENERATION (find collision-free configurations)
2. CONNECTION (connect nodes to form roadmap)

(repeat as desired)
II. QUERY PROCESSING

1. CONNECT START/GOAL TO ROADMAP
2. FIND PATH IN ROADMAP BETWEEN CONNECTION NODES

PRMs have been shown to perform well in practice. In particular, after the roadmap is constructed during preprocessing,
many difficult planning queries can be answered in fractions of seconds [1].

B. Field Programmable Gate Arrays

Configurable Logic

Programmable I/Os

CLB Block SelectRAM

DCM IOB

Fig. 2. A typical FPGA layout: configurable logic cells (CLBs), block RAMs, digital clocks (DCMs) and input-output buffers (IOBs).

A field-programmable gate array (FPGA) is an integrated circuit (IC) that can be programmed in the field after it is
manufactured. FPGAs are similar in principle to, but have vastly wider potential application than programmable read-only
memory (PROM) chips. FPGAs can be defined as reconfigurable processors that can be used for testing and implementing
designs. Designs loaded on FPGAs are not final. As a result, the configuration of the circuit can be updated whenever needed.

A typical FPGA circuit (see Figure 2) consists of configurable logic cells (CLB) which are the primitive elements of FPGAs.
Each CLB contains look-up tables (LUT) where combinatorial logic is stored. LUTs are memory elements which are addressed
by inputs of circuit. Instead of rearranging gates according to design, the design is converted into LUTs.

To define the behavior of the FPGA it is required to use a Hardware Description Language (HDL) or a schematic designed
using an electronic design automation tool. Either of these, when compiled, will generate a netlist, that can be mapped to the
actual FPGA architecture. When done, the binary file generated is used to (re)configure the FPGA device. Common HDL’s
are VHDL and Verilog. A good introduction to FPGAs can be found in [22].

IV. SYSTEM OVERVIEW

The proposed motion planning processor has five major modules (Figure 3(a)): (i) I/O is responsible for communication
between the host computer and the chip, (ii) memory stores the environmental models, (iii) roadmap builder builds a roadmap
using the current models and feasibility criteria, (iv) query finds a path through roadmap and, (v) feasibility checker checks
whether current configuration of the robot satisfies the feasibility constraint. This modular representation lets us switch individual
components to reconfigure our hardware. For example, currently we use the collision detection for feasibility criteria, but in
the future, we can switch the feasibility check module to potential energy computations, and we can use our motion planning
processor for protein interactions. Similarly by removing roadmap builder and query modules, we can dedicate more space to
the feasibility constraint checker and we can have a collision detection chip (see Figure 3(b)).

O
n−

ch
ip

M
em

or
y

Roadmap

Builder

Query Fe
as

ib
ili

ty
 C

he
ck

er

I/O

(a)

Detection
Collision

O
n−

ch
ip

M
em

or
y

I/O

Transformation

(b)
Fig. 3. Motion planning processor (MPP) in different configurations: (a) motion planning configuration, feasibility checker can be specified
depending on the problem, e.g. collision detection or potential energy computation, (b) dedicated collision detection configuration.

V. MOTION PLANNING PROCESSOR

The two most important modules of the motion planning processor are Roadmap Building and Collision Detection. Figure 4
shows the interaction of these two modules in more detail. Please note the high level of parallelism in the system. Next we
will discuss the individual components.

Generation

Node

Random

Feasible

Generation

Node

Random

Feasible

Memory

Buffer

Find

Closest

Local
Planning

Local
Planning

Find

Closest

Local
Planning

Local
Planning

Node Connection

Local
Planning

Local
Planning

Find Closest Point
On Roadmap

Local
Planning

Local
Planning

Find Closest Point
On Roadmap

Buffer

Node Generation

Start End

ROADMAP GENERATION

COLLISION DETECTION

QUERY

Transform

Collision CheckCollision Check

1 nlp1 lpn

closestn1

randn1

1 ncoll

Fig. 4. PRM motion planning on Motion Planning Processor.

A. Roadmap Building

Roadmap Building Module consists of Node Generation and Node Connection Components. Node Generation Component
finds n collision free configurations and passes them to Node Connection Component. Node Connection Component, then,
builds the roadmap by checking if the configurations are reachable from each other. The final roadmap can be passed to either
Query module or the host computer.

1) Node Generation: After the environmental definitions are loaded, Node Generation Module starts finding free configu-
rations. There are nrand (nrand = 10) parallel random node generation circuits in Node Generation Component. Generating
single random configuration is also done in parallel, i.e., six numbers for each degrees of freedom (dof) are generated in one

clock cycle. Hence we can generate nrand configurations in one clock cycle. After the configurations are generated they are
sent to Collision Detection Module. Node Generation Module waits until the results are received back, then either stores a
configuration in the buffer (if the configuration is free) or discards it (if it is in collision). This process is repeated until n free
configurations are generated (see Figure 4).

2) Node Connection: At the end of the node generation, collision-free configurations are stored to be used as the nodes
of roadmap. Next, Node Connection Component tries to connect each configuration to k (k = 5) closest configurations
(see Figure 4). This component has nclosest (nclosest = 10) circuits to find the closest configurations. Once the k closest
configurations are found, then connection between the current configuration and its k neighbors are checked using local
planning circuits. For each closest configuration finding circuit, there are nlp (nlp = 1) local planning circuits. Figure 5 shows
in detail how we implemented these steps. First, edge-finder circuit reads one configuration, then finds k closest configurations.
Next, it sends each pair to intermediate-point-finder circuit. This circuit finds the intermediate points between the pair (using
a straight line). Each intermediate point is then send for feasibility check. If all the configurations are collision free, then this
edge stored as collision free.

Configuration points that cover
every roadmap edge to be controlled

for collision

Feasibility Check

Read One
Configuration

Find k−closest
MemoryConfigurations

Memory

Write Each Pair

As One Edge

Until all

configuration

points

are controlled

End−points of Roadmap
Edges

Points
Collision−free Configuration

points on the edge

Find kequidistance

Edge
Read one

Finder Circuit
Intermediate Point

Roadmap Edges

intermediate

are controlled
configurations

Until all

Circuit
Edge Finder

Fig. 5. Internal structure of finding closest configurations and local planning circuit.

B. Collision Detection

Collision Detection module is responsible for checking the collision between robot at the specified configuration and the
obstacles. This module first transforms the robot to the specified configuration, then checks intersections between triangles of
the robot and obstacles in a parallel fashion. In order to transform the robot to specified configuration, first, a transformation
matrix is computed for that configuration. This matrix is used to transform the robot triangles. These transformed triangles
are stored in a buffer (FIFO) to be used by collision detection circuit. By using a FIFO, dependency between two circuits is

eliminated. This is important because collision detection is a time consuming process and with the help of FIFO, transformation
matrix circuit does not have to wait for collision detection circuit to continue. As a result, after first transformed triangles are
ready, transformation circuit computation overlaps with collision detection and its time does not increase computation time of
circuit. (see Figure 6(a)).

Our triangle-triangle intersection test is based on the fast triangle-triangle intersection test described in [23]. Next, we will
briefly summarize this algorithm and then show how it can be implemented in hardware.

Fast Triangle-Triangle Intersection Detection. This algorithm considers three cases: (i) triangles lie in the half-planes of
each other, (ii) the triangles are coplanar, (iii) the triangles are not coplanar. It works in the following way:

• Half-plane check: If all the vertices of one triangle lies on the same half-space of the other triangle, there is no way these
triangles intersects so just return collision free.

• Coplanar: If the triangles are coplanar, project them onto the axis-aligned plane where the areas of the triangles are
maximized. Then do a two-dimensional triangle-triangle overlap test.

• Not Coplanar: If L is the line at the intersection of two planes containing each triangle, both triangles are guaranteed to
intersect with L. Find the intersection intervals for each triangle and check if they overlap (collision).

Transformed Robot
Triangles

Matrix
Transformation

Compute

Until all

are converted
triangles

Memory

TransformationConfiguration

Read Robot

Triangle

Triangle
Transformed

Compute

Circuit

(a)

Collision Detection

 Circuit 1

OR

Indicates collision if there is

at least one module that detects

collision

Collision Detection

 Circuit 25

 Triangle 26

 (Memory)

 Triangle 1

Triangle 50

 (Memory)

Triangle 25
Environment

Environment Environment

Environment

Transformed Robot

 Triangle

(b)

Compute Plane
Equation

Compute Plane
Equation

all env. triangles
Not intersect and

are controlledtriangles are controlled
until all obstacl env.
Not intersect and Find intervals of lines formed

Both triangles intersect that line
Planes intersect on a line

intersection test

triangle−triangle

Two−dimensional

Collision Detection
Circuit

Memory

Object Triangle
Read Dynamic

Triangle
Environmental

Read

Half−Plane Check

by triangles and compare them

Vertices are on both sides

All vertices on the

triangles are controlled
until all env.

same side and

triangles are controlled
until all env.

same side and
All vertices on the

Coplanar Not Coplanar

(Collision if any triangles intersect
Collision Information

If all triangles are compared and not intersection is found, there is no collision)

Triangles
Transformed Robot

(c)

Fig. 6. Internal structure of collision detection module: (a) transformation circuit, (b) parallel collision detection circuits, (c) inside a collision
detection circuit.

Collision Detection Hardware. Our hardware implementation closely matches the above algorithm. Figure 6(c) shows the
internal structure collision detection circuits.

The collision detection circuit gets the next robot triangle (Tr) from the buffer, and gets the next environmental triangle (Te)
from the memory. It computes the plane equations for both triangles in parallel. Next, it checks if all the vertices of the Tr

lies in one side of Te (all vertices are checked in parallel). If that is the case, then there is no collision, so the circuit moves
to the next environmental triangle. Otherwise, the circuit checks if the planes are coplanar. If that is the case, then it performs
a triangle-triangle collision test in 2D. Otherwise, finds the line L at the intersection of the planes containing Tr and Te. The
final collision detection test is then to find the intersection of L and each triangle (in parallel) and check if they overlap.

Collision detection between the robot and the environment continues until either all triangle pairs are compared or one
triangle-triangle intersection test returns collision. In order to increase the parallelism of the system, further collision detection

circuits can be added to the processor. The number of the total parallel collision detection circuits is only limited by the number
of logic slices on the FPGA chips. When several collision detection circuits are employed in parallel, the transformed triangle
Tr can be compared with several environmental triangles in parallel. A block diagram of this approach is given in Figure 6(b).

VI. IMPLEMENTATION DETAILS

A. I/O

In the current implementation, the host computer communicates with the motion planning processor using RS-232 serial port.
This part is modular so it can be replaced by PCI interface for faster communication and easier installation into a computer.
Input is used to get object representations as sets of triangles. Once the roadmap is formed, processor returns collision-free
roadmap as a set of edges defined by endpoints of edges.

B. Memory and Data Structures

The memory module of the collision detection processor is responsible from storing the object models, the configurations
of the robot and results of the collision detection for each configuration. The objects are represented as triangular meshes. In
order to avoid costly floating point operations, we are using 32-bit fixed point arithmetic. Please note that this does not effect
the performance of our processor since we normalize the coordinates before sending them to the processor. Each triangle is
represented using 288 bits of data (each vertex is three 32-bit number, i.e., 96 bits, hence each triangle is 96×3).

Instead of having one large memory, FPGAs usually have several small memories which are called Block RAMs. Each Block
has data paths to CLBs. The advantage of using such a distributed memory is that several memory block can be accessed in
parallel. However, the designer has to be careful to maintain data consistency when the data is distributed among the memory
blocks. The amount of the data that can be transferred from memory module to the computational components at each clock
cycle depends on the data width. In our implementation, each Block RAM has a data width of 36 bits. There are two data
paths from each block, effectively doubling the data width to 72 bits. Hence we can get whole triangle data, including vertex
points in 4 clock cycles. Instead of waiting 4 clock cycles, we distributed our triangle data to four Block RAMs resulting in
one triangle read per clock cycle. Block RAMs are cascaded to obtain data width of 144 bits for one data path, and 288 for
two paths.

One Block RAM has a capacity of 18K bits, so we can store up to 576 32-bit numbers, allowing 4 Block RAMs to store
up to 256 triangles. Current FPGA chips can contain up to 336 Block RAMs which increases the total number of triangles to
86016.

C. Design Issues.

We have used VHDL to develop our processor. Since trigonometric functions and multiplication are not directly supported
in VHDL, we have used the Xilinx CoreGen tool to generate lookup tables (LUTs) that contain the results of trigonometric
functions. We created a trigonometric module for sine and cosine functions which has symmetric output and uses distributed
memory. When distributed memory is used for a LUT, the circuit has a latency of 2 clock cycles compared to 3 with Block
RAM. Since speed is the most important issue in our problem, we preferred distributed memory. Input precision of 10 bits
was specified, and the output precision was set to 32 bits. Similarly, the multiplications are also generated with CoreGen. It is
a parallel signed multiplier with minimum pipelining and has a latency of 2 clock cycles. If maximum pipelining were chosen,
the latency would be 6. This circuit also uses LUTs constructed on distributed memory. Inputs are 32 bits wide and output is
64 bits wide which satisfies our 32-bit number representation. Division is a very costly operation in FPGA chip, which takes
around 40 clock cycles. So, instead of division which is used in the last part of triangle-triangle intersection test, we used
multiplication. Instead of dividing one part of an equation to a number, we multiplied other parts with that number. When we
multiplied all equations to be compared, the result of comparison remained same, without the burden of division.

VII. EXPERIMENTS

As mentioned before, our aim is to evaluate the feasibility of a motion planning processor and evaluate its performance.
Specifically, we are interested in finding (i) if current FPGA technology can support our design, (ii) if there is a loss in accuracy
due to fixed point arithmetic and trigonometric table lookups, (iii) how much the parallelism helps, (iv) how well our processor
performs against a high end workstation.

In order to investigate these topics, we have designed four environments. Each environment is bounded by a 240x240x240
bounding box. Within this box, obstacles blocks of the size 48x48x16 are randomly placed. The robot is a block of size
48x24x24. Each block is represented by 12 triangles. The environments are named Env5,Env10,Env15 and Env20 after the
number of obstacles they contain (i.e., 5,10,15 and 20 obstacles). For each environment, obstacles are randomly placed. Figure 7
shows an example environment (Env15).

We have used our motion planning processor to generate roadmaps for each environment. Similarly we have used a
workstation with Pentium-4 processor at 3 GHz with 1 GB memory to generate roadmaps for each environment using PRM.

Fig. 7. Experimental environment with 15 obstacles. The robot is the long block at the center.

Both systems used the same parameters to generate the roadmaps. The workstation utilized one of the fastest collision detection
algorithms, RAPID [24].

Using Xilinx ISE Foundation tool [25], we found out that our design can be loaded to Xilinx Virtex-4 XC4VLX200 chip.
This chip allows us to create up to 25 collision detection circuits in parallel and can run our design at the clock rate of 50
MHz. Hence, we verified that current FPGA technology can support our processor.

Next, we have used ModelSim SE 6.1b by Mentor Graphics [26] to simulate our chip. ModelSim is an HDL (Hardware
Description Language) high-end simulator. It takes the VHDL description of the design as well as input values, then compiles
the design, and runs it in the defined clock frequency. Outputs and internal signals of circuit can be examined while simulation
is running. Simulation runs circuit in real-time so timing is accurate, i.e. same results are obtained when design is loaded to
FPGA chip. We have validated this by configuring our motion planning processor for collision detection and placing it on less
capable Xilinx Virtex-4 XC4VLX25, and comparing the simulation times of collision detection to the real times on Virtex-4
XC4VLX25. Unfortunately, the slice size of Virtex-4 XC4VLX25 is not sufficient to run our motion planning processor, hence
we run our experiments on the simulation.

In order to have a realistic comparison of our processor and high end workstation, both systems should use the same
configurations to build the roadmap. For this purpose, we have selected 400 initial random configurations (300 colliding and
100 free) for each environment. Both MPP and the workstation started with these initial configurations and built the roadmaps.

In order to observe the effects of parallelism, we have configured MPP with single collision detection, 10 parallel collision
detection and 25 parallel collision detection circuits. Figure 8(a) shows results for Env5 and Env20. In this figure, number of
parallel collision detection circuits are shown in the x-axis and the roadmap building time is shown in y-axis. This figure shows
that the speed-up from single collision check to 10 parallel collision detection circuits are significant. But when we further
increase the number of parallel collision detection circuits to 25, the speed-up with respect to 10 parallel collision detection
circuits reduces to around 2.5. We believe as the parallelism increases, the speed-up will converge to the ratio between the
number of collision detection circuits.

Next we have compared the roadmap building time of MPP to the Pentium-4 (P4) machine. Figure 8(b) shows the performance
of MPP and P4 in four environments. Note that while a general purpose computer is significantly better than MPP with single
collision detection circuit, MPP performs better as the number of collision detection circuits increase. In fact, in Env5 with 25
parallel collusion detection, MPP performed 25 times faster than P4. Similarly in Env20 with 25 parallel collision detection,
MPP performed 8 times faster than P4. This results show that MPP performs better than P4 in our experimental environments.

In order to validate the accuracy of MPP built roadmap, we compared the roadmaps generated by MPP and P4. We found
out that both of them generated the same roadmaps. Hence, even though MPP used 32-bit fixed point arithmetic and table
lookup values for trigonometry functions, there was no significant loss in accuracy.

Finally, we compared the performance of MPP and P4 in node generation. We have randomly generated 100 collision
free configurations (i.e., if a random configuration is in collision, it is rejected a new configuration is generated). Figure 9
summarizes our results with 25 parallel collision detection circuits in four different environments. As expected, MPP with 25
collision detection circuits performed better than the P4 chip.

Our results are very promising and shows that it is not only feasible to design motion planning chips on reconfigurable
hardware but also it is possible that such chips would run faster than current workstations.

VIII. CONCLUSION

In this paper we showed that it is feasible to design dedicated motion planning processors. Our design takes the advantage
of inherited parallelism of motion planning and collision detection algorithms and can build a roadmap up to 25 times faster
than a Pentium-4, 3Ghz CPU. The reconfigurable and modular nature of our motion planning processor also enables us to use
our motion planning processor as dedicated collision detection chip. Our current chip uses fast triangle-triangle intersection
test to check collision. Our future work includes implementing more advanced collision detection algorithms on the FPGA.

(a) (b)

Fig. 8. (a) Roadmap building times in four environments: (a) running times with respect to number of collision detection units, (b) roadmap
building times for Motion Planning Processor (MPP) and Pentium 4 workstation. The MPP times are for single (MPP1), 10 (MPP10) and
25 (MPP25) parallel collision detections.

Fig. 9. Time to generate 100 collision free nodes in four environments, Motion Planning Chip (MPP25) with 25 parallel collision detection
circuits vs. Pentium 4 Workstation.

IX. ACKNOWLEDGEMENT

In our high-end workstation experiments, we have used a motion planning library developed by Parasol Laboratory, in Texas
A&M University. We would like to thank them for their generous help.

REFERENCES

[1] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE
Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, August 1996.

[2] N. M. Amato, K. A. Dill, and G. Song, “Using motion planning to map protein folding landscapes and analyze folding kinetics of known native
structures,” in Proc. Int. Conf. Comput. Molecular Biology (RECOMB), 2002, pp. 2–11.

[3] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An Efficient Approach to Single-Query Path Planning,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
2000, pp. 995–1001.

[4] P. Bessiere, J. M. Ahuactzin, E.-G. Talbi, and E. Mazer, “The ariadne’s clew algorithm: Global planning with local methods,” in Proc. IEEE Int. Conf.
Intel. Rob. Syst. (IROS), vol. 2, 1993, pp. 1373–1380.

[5] N. M. Amato, O. B. Bayazit, L. K. Dale, C. V. Jones, and D. Vallejo, “OBPRM: An obstacle-based PRM for 3D workspaces,” in Robotics: The
Algorithmic Perspective. Natick, MA: A.K. Peters, 1998, pp. 155–168, proceedings of the Third Workshop on the Algorithmic Foundations of Robotics
(WAFR), Houston, TX, 1998.

[6] D. E. Kodischek, “Robot planning and control via potential functions,” in The Robotics Review 1, O. Khatib, J. J. Craig, and T. Lozano-Pérez, Eds.
The MIT Press, 1989.

[7] R. Gayle, W. Segars, M. Lin, and D. Manocha, “Path planning for deformable robots in complex environments,” in Robotics: Systems and Science, 2005.
[8] K. Underwood, “FPGAs vs. CPUs: trends in peak floating-point performance,” in FPGA ’04: Proceedings of the 2004 ACM/SIGDA 12th international

symposium on Field programmable gate arrays. New York, NY, USA: ACM Press, 2004, pp. 171–180.
[9] N. M. Amato and L. K. Dale, “Probabilistic roadmap methods are embarrassingly parallel,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1999, pp.

688–694.
[10] G. Baciu and S. K. Wong, “Image-based techniques in a hybrid collision detector,” in IEEE Trans. on Visualization and Computer Graphics, 2002.
[11] N. K. Govindaraju, M. C. Lin, and D. Manocha, “Fast and reliable collision culling using graphics hardware,” in Virtual Reality Software and Technology

(VRST), 2004.

[12] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha, “Cullide: Interactive collision detection between complex models in large environments using
graphics hardware,” in Graphics Hardware, 2003.

[13] A. Gress and G. Zachman, “Object-space interference detection on programmable graphics hardware,” in In SIAM Conf. on Geometric Design and
Computing, 2003.

[14] B. Heidelberger, M. Teschner, and M. Gross, “Real-time volumetric intersections of deforming objects,” in Proc. of Vision, Modeling and Visualization,
2003.

[15] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha, “Fast and simple 2d geometric proximity queries using graphics hardware,” in Proc. of ACM Symposium
on Interactive 3D Graphics, 2001, pp. 145–148.

[16] P. M. Hubbard, “Collision detection for interactive graphics applications,” in IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 3,
1995, pp. 218–230.

[17] Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha, “Fast penetration depth computation for physically-based animation,” in Proc. of ACM Symposium
on Computer Animation, 2002.

[18] D. Knott and D. K. Pai, “Cinder: Collision and interference detection in real-time using graphics hardware,” in Proc. of Graphics Interface, 2003.
[19] K. Myszkowski, O. G. Okunev, and T. L. Kunii, “Fast collision detection between complex solids using rasterizing graphics hardware,” in The Visual

Computer, vol. 11, no. 9, 1995, pp. 497–512.
[20] J. Rossignac, A. Megahed, and B. D. Schneider, “Interactive inspection of solids: cross-sections and interferences,” in Proceedings of ACM SIGGRAPH,

1992.
[21] G. Zachman and G. Knittel, “An architecture for hierarchical collision detection,” in The 11th International Conference in Central Europe on Computer

Graphics, Visualization and Computer Vision’2003, 2003, pp. 149–156.
[22] H. Krupnova and G. Saucier, “FPGA technology snapshot: Current devices and design tools,” in 11th IEEE International Workshop on Rapid System

Prototyping (RSP 2000), 2000, pp. 200–2005.
[23] T. Moller, “A fast triangle-triangle intersection test,” J. Graph. Tools, vol. 2, no. 2, pp. 25–30, 1997.
[24] “Rapid – robust and accurate polygon interface detection homepage,” http://www.cs.unc.edu/ geom/OBB/OBBT.html.
[25] “Xilinx,” http://www.xilinx.com/.
[26] “Modelsim,” http://www.model.com/.

	A Motion Planning Processor on Reconfigurable Hardware
	Recommended Citation
	A Motion Planning Processor on Reconfigurable Hardware

	tmp.1469562486.pdf.WSLX9

