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SUMMARY  

Small non-coding RNAs (sRNAs) play a vital role in a broad range of biological processes both 

in health and disease. A comprehensive quantitative reference of sRNA expression would 

significantly advance our understanding of sRNA roles in shaping tissue functions. Here, we 

systematically profiled the expression of four sRNA classes across eleven mouse tissues by 

RNA-seq. Using fourteen biological replicates spanning both genders, we identified 3,962 

various sRNAs; 473 of these sRNAs are novel and identified for the first time by this work. We 

found that 40% of these transcripts were distributed across the body in a tissue-specific 

manner, and this tissue-specificity extends through multiple sRNA classes; furthermore, some 

sRNAs are also sexually dimorphic. By combining these findings with machine learning, we 

were able to accurately classify tissue types from sRNA data generated by other studies. These 

results yield the most comprehensive catalog of specific and ubiquitous small RNAs in 

individual tissues to date, and we expect that this catalog will be a resource for the further 

identification of sRNAs involved in tissue-function in health and dysfunction in disease.  
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INTRODUCTION 

Small non-coding RNAs (sRNAs) are a large family of endogenously expressed transcripts, 18 

to 40 nucleotides long, that play a crucial role in regulating cell function (Bartel, 2018; Cech and 

Steitz, 2014). Unknown to researchers two decades ago, today sRNAs are believed to be 

involved in nearly all developmental and pathological processes in mammals (Cech and Steitz, 

2014; Esteller, 2011; He and Hannon, 2004; Ng et al., 2016). The main function of sRNAs in a 

cell is to tightly regulate gene expression at the levels of post-transcriptional RNA processing 

and translation. Aberrant expression of small sRNAs, in turn, has been associated with 

diseases such as cancer, autoimmune disease and several neurodegenerative disorders 

(Almeida et al., 2011; Liu et al., 2017; Somel et al., 2010).  
 

Mammalian cells express several classes of sRNAs including microRNA (miRNA) (Ha and Kim, 

2014), small interfering RNAs (siRNA), small nucleolar RNAs (snoRNA) (Matera et al., 2007), 

sno-derived RNA (sdRNA) (Taft et al., 2009), PIWI-interacting RNA (piRNA) (Ishizu et al., 

2012), tRNA-derived small RNAs (Kumar et al., 2014), with some being shown to be expressed 

in a tissue- (Dittmar et al., 2006; Landgraf et al., 2007), cell-type-(Faridani et al., 2016; Volinia 

et al., 2006) or even cell-state-specific manner (Hayes et al., 2014; Palfi et al., 2016; Sherstyuk 

et al., 2017). Through their interactions with the messenger RNA (mRNA) that code for protein 

expression, these small non-coding molecules shape the dynamic molecular spectrum of 

tissues (Faridani et al., 2016; Sharma et al., 2016). Despite extensive knowledge of sRNA 

biogenesis and function (Bartel, 2018; Jorjani et al., 2016), much remains to be explored about 

tissue- and gender-specific sRNA expression. Given the emerging role of sRNA as biomarkers 

(Anfossi et al., 2018) and potent therapeutic targets (Janssen et al., 2013), a comprehensive 

reference catalog of tissue sRNA expression would represent a highly valuable resource not 

only for the fundamental but also for the clinical research.   
 

The first attempts to establish a catalog of tissue-specific mammalian sRNAs began a decade 

ago (Ach et al., 2008; Hsu et al., 2007; Landgraf et al., 2007; Liang et al., 2007). While these 

pioneering microarray-, qPCR- and Sanger sequencing-based studies mapped only a limited 

number of highly expressed miRNA, they, nevertheless, established a “gold standard” 

reference for the upcoming 10 years of miRNA research. Efforts to characterize tissue-specific 

sRNA have recently resumed with employment of RNA-seq, which greatly advanced the 

discovery of novel and previously undetected low expressed transcripts (Londin et al., 2015; 

McCall et al., 2017; de Rie et al., 2017). However, cataloging the tissue-specific patterns of 

miRNA expression was mostly done using publicly available RNA-seq data originating from 

various experiments designed to target a tissue or a condition of interest rather than 

systematically analyzing a spectrum of normal tissues from the same individual (Ludwig et al., 

2016; McCall et al., 2017; de Rie et al., 2017). As a result, tissue expression patterns reported 

by these studies are mainly based on one replicate, suffer from protocol biases (Giraldez et al., 

2018) and, still yield an incomprehensive picture of bodily miRNA patterns. In addition, none of 
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the prior studies encompass a spectrum of mammalian tissues from both female and male 

individuals, let alone, various non-coding RNA species other than miRNA.  

 

Here, we describe a comprehensive atlas of sRNA expression across eleven normal mouse 

tissues. Using multiple biological replicates (n=14), we mapped tissue-specific as well as 

broadly transcribed sRNA attributed to different classes and spanning a large spectrum of 

expression levels. We have also, for the first time, provided evidence of gender-based 

differences in sRNA expression across multiple tissues. Finally, we used machine learning to 

accurately predict the tissue and, in certain cases, even its functionality based on sRNA 

expression. 

 
 

RESULTS 

sRNA expression atlas of mouse tissues 

We profiled the expression of sRNA across eleven tissues from adult female (n=10) and male 

(n=4) C57BL/6J mice (Figure 1A, Table S1). We generated a dataset comprising in total of 

142 sRNA sequencing libraries from brain, lung, heart, muscle, kidney, pancreas, liver, small 

intestine, spleen, bone marrow and testes RNA. Each library yielded ~1-10 million sRNA reads, 

resulting in the average of 21 million sRNA reads per tissue (Figure S1A). Using the ENCODE 

GRCm38 annotation, we mapped the expression of four distinct sRNA classes: miRNA, 

snRNA, snoRNA and scaRNA, in profiled tissues. Among all the tissues we identified 1551 

distinct pre-miRNA, 941 snRNA, 953 snoRNA and 44 scaRNA, which corresponds to 70.3% 

67.9%, 63.2% and 86.3% of ENCODE-annotated transcripts of the respective class (Figure 

1B). With respect to protein coding genes, the majority of detected snoRNA were of intronic 

origin, snRNA and scaRNA were intronic and intergenic (63/35% and 64/36%  respectively) 

and miRNA were transcribed from either introns (53%), exons (11%) or intergenic regions 

(11%) (Figure S1B). The number of distinct sRNA greatly varied across tissues, for example, 

spleen and lung contained the largest number of distinct sRNA (~ 1300) while pancreas and 

liver – the lowest (~ 500) (Figure S1C).  Furthermore, within the profiled tissues we detected 

95.1% of pre-miRNA denoted by miRBase v22 database as high confidence transcripts 

(Kozomara and Griffiths-Jones, 2014). Using the obtained data we have reconstructed the most 

complete genome-wide tissue map of mammalian sRNA expression (Figure 1C, Table S2). 

 

Tissue-specific expression of sRNA 

We first assessed the differences in sRNA patterns across profiled tissues based on the 

expression of all four sRNAs classes (Figure 2A). Unsupervised clustering of most variable 

sRNAs across all samples (Methods) demonstrated that a large number of sRNA transcripts 

are shared among brain and pancreas, while not being expressed in other tissues (Figure 2B 

and Figure S2). Similar patterns were observed for bone marrow and spleen. Clustering of the 

most variable transcripts within each sRNA class allowed us to further identify miRNA to be the 
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main driver of brain and pancreas similarity, while bone marrow and spleen clustered together 

within snoRNAs (Figure S2).  

 

Dimensional reduction via t-distributed stochastic neighbor embedding (tSNE) (Laurens Van 

Der Maaten and Geoffrey Hinton, 2008) (Methods) on all sRNA genes revealed a robust 

clustering of samples according to tissue types (Figure 2C). Further analysis, performed on 

each sRNA class separately (Figure S3A), showed that out of all four sRNA classes miRNA 

separated samples in eleven clearly identifiable clusters corresponding to profiled tissues, while 

snRNA showed no clear separation by tissue type. snoRNA and scaRNA tSNEs resolved the 

majority of tissue types, however failed to identify pancreas, intestine and kidney. 

 

For each sRNA we next computed the tissue specificity index, TSI, as described previously in 

(Ludwig et al., 2016) (Table S2). We observed that ~ 21% of all detected sRNA were expressed 

in only one tissue (TSI = 1), ~ 19% of all sRNA were highly expressed in one but also present 

in other tissues (0.95 < TSI < 1) while the remaining ~60% were either ubiquitously expressed 

or had high expression scores in multiple tissues (Figure S3B). Brain contains the highest 

number of tissue-specific transcripts (437 with TSI > 0.95) followed by lung (257 with TSI > 

0.95), bone marrow (161) and spleen (152) (Figure 2D). Interestingly, despite of the lowest 

number of transcript counts across profiled tissues, lung contained the largest number of 

distinct sRNAs (2532), followed by spleen (2430) and brain (2081) (Figure 2D). At the level of 

individual RNA class, brain, lung, spleen and bone marrow remained the top four tissues 

harboring the largest number of unique tissue-specific transcripts (Figure S3C), except for 

scaRNA, for which only few transcripts were found to have TSI>0.95. 

 

Tissue-specific miRNAs  

Comparing the expression of miRBase-annotated (Kozomara and Griffiths-Jones, 2014) pre-

miRNAs across all eleven tissues, we identified well-described tissue-specific miRNAs, such 

as miR-122, miR-375, miR-10a enriched respectively in liver, pancreas and kidney (Landgraf 

et al., 2007) to be among the most variable pre-miRNA (Figure 3A and Figure S4). We also 

found a large number of highly expressed miRNA previously unknown to preferentially localize 

within a particular tissue; these include miR-6236 in the bone marrow, miR-194 and miR-215 – 

in the intestine,  miR-381 – in the brain, miR-203 and miR-23b – in testes (Figure 3A and 

Figure S4). In addition, we found several low-expressed miRNAs specific to either one or two 

tissues (Figure 3B and 3C). Moreover, among the top fifty miRNAs with highest expression 

scores in each tissue, only the minority of transcripts appeared to be tissue specific (TSI>0.9) 

while the majority were also expressed in other ten tissues (Figure S4).  

 

We next asked how the identified tissue expression patterns compare to those of individual cell 

types. To investigate that, we correlated our data to the miRNA-seq data generated for primary 

mammalian cells by FANTOM5 consortium (de Rie et al., 2017). Comparing mouse samples 
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first, we found that FANTOM5 embryonic and neonatal cerebellum tissues strongly correlated 

with our brain samples (rs=0.89-0.9), while erythroid cells had the strongest correlation with 

spleen and bone marrow (rs=0.93) (Figure S5A). To perform a comparison with human 

samples, we focused on the expression scores of 531 orthologs detected in both the current 

study and the FANTOM5 samples (Figure S5B). Spearman correlation coefficients reflected 

the cell-type composition of tissues (Figure S5C). As such, we observed that mouse bone 

marrow and spleen had the highest correlation with human B-cells, T-cells, dendritic cells and 

macrophages (0.5<rs<0.6), muscle correlated the most with myoblasts and myotubes (rs=0.47), 

while brain – with neural stem cells, spinal cord, pineal and pituitary glands (rs=0.49) (Figure 

S5C).  

 

Tissue-specific snoRNAs 

Given the ability of snoRNA to separate the majority of profiled tissues based on the expression 

(Figure S3A), we have next focused on identifying the most variable snoRNAs across tissues. 

Among the verified snoRNA we detected sixty that varied across tissues (Figure 3D, Methods). 

Top variable snoRNAs included Snora35 and Snord116, which were highly expressed in the 

brain and previously shown to be specific to neural tissues (Cavaille et al., 2000). Bone marrow 

contained the largest fraction of tissue-specific snoRNAs, while a few were also present in 

spleen, pancreas, liver and testis. Importantly, we found that Snord70 and Snord66, often used 

as normalization controls in qPCR-based assays (Chen et al., 2012; Emde et al., 2015), are 

also expressed in a tissue specific manner. Another example of identified tissues-specific 

snoRNA is Snord123, located 3kb upstream of pancreatic cancer-associated Sema5a gene, 

we found it to be expressed predominantly in the pancreas. (Figure 3E). We also discovered 

several snoRNAs whose existence had been previously predicted but which had not yet been 

detected experimentally to be specifically expressed across profiled tissues (Figure 3E). 

 

miRNAs are expressed in a gender-specific manner 

To address a long standing question of gender bias in miRNA expression (Guo et al., 2017; 

Kolhe et al., 2017), we compared the miRNA expression levels between female and male mice. 

In each somatic tissue, except pancreas, we identified at least two miRNAs to be differentially 

expressed (log2FoldChange > 1, normalized counts > 100) at FDR < 0.01 between genders 

(Figure 4, Figure S6). Kidney and lung contained the highest number of gender-biased 

miRNAs (27 and 18 respectively), while only two were detected in the heart, five in the muscle 

and seven in the brain (Figure S7A). Among the identified gender-biased miRNAs, we found 

miR-411, miR-186, miR-340, miR-182, miR-183, miR-148a, miR-145a, miR-101b to be 

systematically overrepresented in female compared to male tissues and miR-379, miR-195a, 

miR-99a, miR-let-7g, miR-666, miR-15b, miR-151 to be expressed higher in male over female 

tissues (Figure S7B). Interestingly, three out of eight female-dominant miRNAs: miR-182, miR-

148a and miR-145a, were also shown previously to be estrogen regulated (Klinge, 2009) while 
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another miRNA, miRNA-340, was reported to be downregulated in response to elevated 

androgen levels (Fletcher et al., 2014).  

 

Given the innate ability on miRNA to lower the levels of target mRNA (Guo et al., 2010), we 

hypothesized that the levels of protein-coding transcripts targeted by gender-biased miRNA 

would also differ across male and female tissues. To test this hypothesis we correlated the 

expression of gender-biased miRNAs with the levels of their respective target mRNAs across 

profiled tissues (Methods). Among the anticorrelated targets (rs < -0.8, FDR < 0.1) we identified 

two genes previously shown to be sexually dimorphic (Figure S8C). Specifically, we found miR-

423, upregulated in male tissues, to negatively correlate with its target – estrogen-related 

receptor gamma (Esrrg) (rs= -0.9, FDR < 0.1), and female-specific miR-340 to negatively 

correlate with androgen-associated ectodysplasin A2 receptor (Eda2r) (Prodi et al., 2008). 

However, we also found that the majority of the predicted targets were in fact positively 

correlated with the respective miRNAs (rs > 0.8, FDR < 0.1), suggesting that the tested miRNAs 

are not involved in silencing of these targets through degradation. 

 

Novel miRNAs 

To search for novel miRNA in our data, unmapped reads were analyzed with the miRDeep2 

framework (Friedländer et al., 2012). We identified 473 novel miRNAs supported by at least 

five sequencing reads, with the majority being present in only one tissue (312), but a small 

number (4) being found in all eleven tissues (Figure 5A). Principal component analysis on the 

newly identified miRNAs, supported by at least 50 reads, showed a clear separation of brain, 

lung and muscle from other tissues based on the expression values. Similar to annotated 

transcripts, novel miRNAs demonstrate a spectrum of tissue specificity with some being 

ubiquitously expressed, while others are only present in one tissue (Figure S8A). Differential 

expression analysis on putative novel miRNAs identified six miRNAs to be also expressed in a 

gender-specific manner. Strikingly, all six were male-dominant, with one of them even found to 

be consistently upregulated in two tissues, male muscle and pancreas (Figure 5B and S8C). 

We speculate that the prevalence of male-specific novel miRNAs identified in our study reflects 

the inconsistent sampling of both genders by prior murine miRNA research. 

 

miRNA-based tissue classification 

We finally asked whether the observed variation in miRNA expression across tissues (Figure 

2B and C) would be sufficient to accurately predict the tissue type based solely on miRNA-seq 

data. To address this question we set out to construct an algorithm that can learn tissue 

characteristics from the data reported in the current study and make predictions on new data 

sets. We first trained a support vector machine (SVM) model (Cortes and Vapnik, 1995) on 134 

data sets generated in this study, each containing the expression scores for 1973 miRNAs 

(Figure S9A). As a validation dataset we used available miRNA-seq data released by the 

ENCODE consortium for multiple mouse tissues (Dunham et al., 2012). Notably, the ENCODE 
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datasets contained data generated for the postnatal and embryonic life stages, as opposed to 

the adult stage profiled in the current study (Table S4). Nonetheless, our SVM model accurately 

classified postnatal forebrain, midbrain, hindbrain and neural tube as brain tissue, as well as 

accurately inferred the tissue types for heart, intestine, kidney, liver, muscle samples, yielding 

an overall accuracy of 0.96 (Methods). For the embryonic tissues, however, our model was 

able to only reach an accuracy of 0.69. This was mainly due to inability of the model to correctly 

classify liver tissues and instead assigning them to bone marrow (Figure 6A). Strikingly, in this 

case our model accurately predicted the hematopoietic function of the organ, known to shift 

from the liver at the embryonic stages to the bone marrow in adulthood (Baron et al., 2012), 

rather than the tissue type itself. Furthermore, we identified hematopoiesis-associated miR-150 

and miR-155 (Bissels et al., 2012) to have highest weights among the features defining the 

bone marrow in our model (Figure S9B).  

 

The random forest (RF) regression model (Tin Kam Ho, 1998) weighted miRNA differently 

(Figure S9C) and was able to predict the postnatal and embryonic tissues with respective 

accuracies 1.0 and 0.9, guessing correctly 27/27 and 44/49 samples and misassigning one of 

the embryonic kidney, lung, liver and intestine samples (Figure 6B). 

 

DISCUSSION 

Small non-coding RNA plays an indispensable role in shaping cellular identity by altering the 

levels of protein-coding transcripts (Matera et al., 2007; Qureshi and Mehler, 2012). Recent 

efforts in profiling the miRNA content of cells and tissues demonstrated the existence of tissue- 

and cell type-specific short non-coding transcripts. (Landgraf et al., 2007; Londin et al., 2015; 

Ludwig et al., 2016; McCall et al., 2017; de Rie et al., 2017). In this work, we show that this 

phenomenon extends beyond one sRNA class and involves not only tissue-specific but also 

gender-specific sRNA expression. Compared to previous studies, we use a large number of 

biological replicates (n=14) and focus on deriving a quantitative rather than qualitative reference 

of sRNA expression across eleven normal murine tissues. We demonstrate that the obtained 

quantitative data can be used to train machine learning algorithms to recognize tissues or even 

their functions based on sRNA expression.   

We found a large number of new tissue-specific sRNA missed by previous studies (Figure 3 

and S4, Table S2) because of low sequencing coverage (Landgraf et al., 2007) or due to 

insignificant expression scores derived from a single biological replicate (McCall et al., 2017). 

By analyzing the expression of several classes of sRNA we discovered a large number of 

snoRNA expressed mainly in the brain, pancreas or bone marrow (Figure 3D). Taken together 

with previous observations (Jorjani et al., 2016), this finding raises additional questions 

regarding the biogenesis pathways of snoRNA as well as its potential specialized functions 

across distinct tissues.  
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More than 60% of protein-coding genes in mammalian genome harbor predicted miRNA target 

sites (Friedman et al., 2008). However, only a handful of them are bona fide miRNA targets, 

while up to 70% are falsely assigned by prediction algorithms (Agarwal et al., 2015; Betel et al., 

2010; Dweep and Gretz, 2015). Currently, the validation of miRNA:mRNA interactions is still 

mainly based on low-throughput labor-intensive approaches such as knock-down or over-

expression assays (Thompson et al., 2015) and thus has been only done for a limited number 

of miRNAs. Growing amounts of both, mRNA- and miRNA-seq data, generated for various cell 

and tissue types, now provide us with a possibility to narrow down the list of putative targets by 

identifying those that go down with elevated miRNA levels (Guo et al., 2010). Here, using our 

tissue miRNA-seq dataset and publicly available mRNA-seq data, we demonstrate the 

implementation of this approach. By correlating the expression of miRNA:target pairs across 

tissues, we show that at least half of the predicted targets are not affected by increasing miRNA 

levels. In parallel, we were able identify targets that show a strong negative correlation with 

miRNAs. On the example of sexually dimorphic miRNA we further demonstrate that the levels 

of some protein-coding transcripts indeed decrease with increased miRNA levels (Figure S6C), 

suggesting miRNAs to contribute to gender-biases in gene expression. 

Our work, to our knowledge, is the first to demonstrate that the expression of short non-coding 

transcripts can be used to accurately predict tissue types (Figure 6). Within the current study 

we show that machine learning algorithms applied to quantitative sRNA expression estimates 

yield robust tissue classifiers applicable to data generated by other groups. Given the emerging 

evidence of strong miRNA dysregulation in disease (Mendell and Olson, 2012), particularly in 

cancers (Jansson and Lund, 2012; Peng and Croce, 2016), we anticipate that in the future 

sRNA-based classifiers could be expanded to recognize affected tissues or various disease 

types. 

sRNAs have been long known to regulate development and functions of the brain (Qureshi and 

Mehler, 2012). Our study finds that brain, in fact, contains the largest number of unique 

mammalian sRNA transcripts that are absent in other tissues. We found that lung also contains 

a large number of tissue-specific sRNAs, and expresses the largest number of distinct sRNA 

among eleven profiled tissues (Figure 2D). Given the complexity of tissues, one would expect 

that the majority of specific transcripts are residing within a particular cell type or state uniquely 

present in the tissue. However, our knowledge of cell-specific miRNA expression is not 

complete and does not yet allow us to identify all the cell types driving the complexity (McCall 

et al., 2017; de Rie et al., 2017). We directly observed this phenomenon in miR-92b, miR-448 

and miR-1298, which we identified as expressed in both, brain and lung tissues (Figure 3B 

and S4). According to the cell-type-based studies, however, these transcripts are specific to 

neural and stem cells (de Rie et al., 2017), which explains why we see them in the brain, but 

does not explain their presence in the lung. This inability to fully explain the roots of tissue 

complexity elucidates the need for further characterization of the sRNAs content of specific cell 

types or even, similarly to mRNA, that of single cells (Faridani et al., 2016; Trapnell, 2015). This 
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atlas, meanwhile, will set a solid pillar for future sRNAs studies and will serve as a powerful 

resource of sRNA tissue identity for fundamental and clinical research.  
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FIGURE LEGENDS 

 

Figure 1. sRNA expression across mouse tissues. (A) Tissues and sRNA classes profiled 
in the current study. Ten somatic tissues were collected from adult mice (n=14). Testes were 
collected from male individuals (n=4). (B) sRNAs identified in the current study. High 
confidence pre-miRNA were retrieved from miRbase v22. (C) Genomic map of sRNAs 
expression across mouse genome. Circles represent sRNAs. Size of each circle 
corresponds to the log-transformed normalized expression counts of that sRNA. sRNAs, 
expression of which fell within the first quartile of all expression values, are depicted in blue, 
the rest are shown in red. Bars around the circle represent the variance of each sRNA across 
ten mouse tissues. Green and grey bars denote variability of each sRNAs across tissue types. 
Green denote highly (the standard deviation of expression above 25% of the mean value) and 
grey - low variable sRNAs (standard deviation below 25% of the mean value). 
 

 
Figure 2. Tissue-specific patterns of sRNA expression. (A) Average number of sRNA 
found in each tissue. (B) Heatmap of normalized log-transformed RNA-seq counts of ~300 
sRNAs detected in various mouse tissues. To obtain the miRNA expression estimates 
presented in the heatmap, we have first mapped the raw sequencing reads to the mouse 
genome using STAR (Dobin et al., 2013), then computed and normalized the sRNA counts 
using FeatureCounts (Anders et al., 2015) and DESeq2 (Love et al., 2014) packages 
respectively. (C) t-SNE projection of sRNA expression patterns performed on ~3000 sRNA 
genes detected in eleven mouse tissues. (D) Number of tissue-specific sRNAs detected in 
each tissue. Size of the circle corresponds to the average number of normalized counts across 
each tissue. 
 
Figure 3. Tissue specificity of mi- and snoRNAs. (A) Top 60 most variable miRNAs across 
profiled tissues. Heatmap of normalized log-transformed RNA-seq counts detected in various 
mouse tissues. (B) Examples of miRNAs previously unknown to be specific to a certain tissue. 
(C) Examples of miRNAs expressed only in two profiled tissues. (D) Top 60 most variable 
snoRNAs across profiled tissues. (E) Examples of snoRNAs previously unknown to be 
specific to a certain tissue. 
 
Figure 4. Gender-specific miRNA expression. Volcano plots showing miRNAs differentially 
expressed between female and male brain, kidney, muscle, bone marrow and heart.  
 
 

Figure 5. Novel miRNA detected in the present study. (A) Distribution of novel miRNAs 
across mouse tissues. (B) Volcano plots showing novel miRNAs differentially expressed 
between female and male tissues. (C) Examples of tissue-specific novel miRNAs. 
 
 
Figure 6. miRNA-based tissues classifier. Confusion matrices obtained for (A) SVM and (B) 
RF tissue predictions for postnatal and embryonic datasets. 
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STAR Methods 

 

Subject details 

Animals  

All procedures followed animal care and biosafety guidelines approved by Stanford University’s 

Administrative Panel on Laboratory Animal Care and Administrative Panel of Biosafety. Wild 

type C57BL/6J mice, 4 males and 10 females, aged ~3 month old were used (Table S1).  

 

Methods details 

 

Tissue handling and RNA extraction 

Upon collection, tissue samples were submerged and preserved at -80C in RNAlater 

stabilization solution (ThermoFisher cat # AM7021) until further processing. Total RNA was 

isolated from ~ 100 mg of tissue using Qiagen miRNeasy mini kit (cat # 217004) and the Qiagen 

tissue lyser using 5 mm stainless steel beads. RNA integrity was assesses using Agilent 

Bioanalyzer using RNA 6000 pico kit (Agilent Technologies cat # 5067-1513).  

 

Library preparation and sequencing 

Short RNA libraries were prepared following the Illumina TruSeq Small RNA Library 

Preparation kit (cat # RS-200-0012, RS-200-0024, RS-200-0036, RS-200-0048) according to 

the manufacturer’s protocol and size-selected using Pippin Prep 3% Agarose Gel Cassette 

(Safe Science) in a range 135 bp – 210 bp. Samples were pooled in batches of 48 and 

sequenced using the Illumina NextSeq500 instrument in a single-read, 50 or 75 -base mode. 

 

Data processing 

Sequencing reads were demultiplexed by BaseSpace (Illumina). Reads were trimmed from 

the adaptor sequences and aligned to the mouse genome (GRCm38) using STAR v2.5.1 

(Dobin et al., 2013) with the following parameters --outFilterMismatchNoverLmax 0.05 --

outFilterMatchNmin 16 --outFilterMatchNminOverLread 0 --outFilterScoreMinOverLread 0 --

alignIntronMax 1 --outMultimapperOrder Random --clip3pAdapterSeq TGGAATTCTC --

clip3pAdapterMMp 0.1 . Spliced alignments and hard/soft-clipping were disabled. Reads 

mapping with insertions or deletions were removed. We used ENCODE GRCm38 and 

miRBase v22 annotations to count the number of sRNA transcripts. Reads were assigned 

to one of the annotated biotypes: miRNAs, snoRNAs, snRNAs and scaRNA from ENSEMBL 

or to pre-miRNAs from miRBase v22 using featureCounts v 1.6.1 (Liao et al., 2014). We first 

counted reads from both intronic and exonic regions of the protein coding and lincRNAs 

attempting to capture small RNAs transcribed from these regions (Figure S1A and B), using 

the following command: featureCounts -a Mus_musculus.GRCm38.90.gtf -M –primary -s 0. 

We used a –M -primary option to count reads mapping to multiple genomic locations marked 

as “primary alignment” by STAR. Next, we only counted uniquely mapping sRNAs using the 
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following parameters featureCounts -a Mus_musculus.GRCm38.90.gtf -s 0. We excluded 

libraries with fewer than 10,000 mapped reads. All tissue specificity and differential 

expression analyses in the manuscript were carried out on uniquely mapping counts (i.e., 

only mapped to one genomic location), except where otherwise noted.  

 

Unsupervised clustering and dimensionality reduction analysis 

sRNA raw counts were normalized and log-transformed using DESeq2 package. Batch 

effects were corrected using limma R package (Ritchie et al., 2015). Hierarchical clustering 

was performed using log2 transformed expression values and using complete linkage as 

distance measure between clusters. We computed Euclidian distances between samples 

and used these values to perform the t-distributed stochastic neighborhood embedding (t-

SNE) (Laurens Van Der Maaten and Geoffrey Hinton, 2008) with the following parameters: 

perplexity = 20, initial dimensions of 50 and maximum iteration of 1,000. Transcripts 

detected in one or more samples with overall log2 expression scores <1 were excluded from 

this analysis. 

Tissue specificity index 

To compute the tissue specificity index we used the formula described previously in (Ludwig 

et al., 2016): 

 

Where N is the total number of tissues measured and xj,i is the expression score of 

tissue i normalized by the maximal expression of any tissue for miRNA j. 

 

Comparison with available miRNA data  

To compute Spearman correlation coeffitients between samples generated in the current study 

and mouse miRNA data generated by FANTOM5 consortium (de Rie et al., 2017) we used 

DESeq2-normalized scores of 2207 annotated miRNAs. To compare the miRNA expression 

between mouse tissues and human cell types we generated a curated list of orthologous 

miRNAs that contained maximum two mismatches per ortholog mature miRNA. 531 miRNA 

passed this criteria and were used to compute Spearman correlation coefficients shown in 

Figure S5. 

Differential expression analysis with DESeq2 

miRNAs differentially expressed between female and male tissues were computed using 

DESeq2 (Love et al., 2014). To test for the NULL hypothesis, we performed a permutation 

test in which we randomly re-assigned the sex labels to 14 samples across each tissue and 

TSIj =

PN

i=1
(1− xj,i)

N − 1
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plotted the distribution of DESeq2 p-values computed for the two groups (i.e. female and 

male) (Figure S6). We used Benjamini-Hochberg-corrected p-values to assess the 

statistical significance of the computed DE scores (Figure 4 and S7A). The differentially 

expressed miRNAs were visualized on volcano plots, where male- and female-specific 

miRNAs (adjusted P-value < 0.01 and absolute fold change > 1) were labeled accordingly. 

Analysis of correlation between miRNA expression and the expression of its targets 

Putative miRNA target genes were extracted from TargetScan, DIANA, miRanda, or mirDB 

databases (Agarwal et al., 2015; Griffiths-Jones et al., 2007; Paraskevopoulou et al., 2013; 

Wong and Wang, 2015). Only targetes present in two or more databases were used. The gene 

expression scores of the respective targets in various tissues were extracted from the ENCODE 

database (Pennisi, 2012) (Table S6). Spearman correlation coefficients were computed 

between FPKM retrieved from the ENCODE mRNA expression tables and DESeq2-normalized 

miRNA counts across ten profiled tissues using corr.test() function from ‘psych’ R package 

(Revelle, W.) and threshholded above Benjamini-Hochberg adjusted P-value of 0.1 and 

Spearman correlation coefficient (-0.8< rs<0.8).  

Identification of candidate novel miRNA. 

Candidate novel miRNA were identified using miRDeep2 software (Friedländer et al., 2012). 

Only miRNAs supported by > 5 reads were reported in this study. We analyzed tissue- and 

gender- specificity of novel miRNAs based on transcripts supported by at least 50 

sequencing reads across all samples. Statistical analysis and data visualization were 

performed as described above for annotated miRNAs. 

Machine learning 

We trained the radial kernel SVM and the Random Forest models on 136 samples 

corresponding to different tissue types (Figure S9A) using e1070 (Meyer et al., 2017) and 

caret (Kuhn, 2018) R packages respectively. We used z-scores of DESeq2 normalized 

counts obtained in this study as a train dataset and those obtained from ENCODE miRNA-

seq data as test dataset (Table S4). We normalized and scaled train and test datasets 

separately.  

To measure the predictive power of each model we used the accuracy measure, calculated 

as the following:  

Σ True positive + Σ True negative 

Σ Total observations
 

 

We tuned the SVM model to derive optimal cost and gamma using tune.svm() function and 

searching within gamma Î [2^(-10): 2^10] and cost Î [10^(-5):10^3]. We tuned RF model 

using first random and then grid search, with an evaluation metric set to “Accuracy”. The 
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accuracy was computed using 10-fold cross-validation procedure (Japkowicz and Shah, 2011). 

The reported accuracy is computed as a mean over the 10 testing sets in which 9-folds are 

used for training and the held-out fold used as a test set. The R script used to train the models 

and compute the predictions is included in the supplement. 

 

Data availability 

The datasets generated and analyzed in the study are available in the NCBI Gene 

Expression Omnibus (GEO) under the entry GEO:GSE119661. 
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Supplementary figures: 
 
Figure S1. sRNA read statistics. (A) Average number of reads mapping to sRNAs per tissue. 
(B) Genomic localization of identified sRNAs with respect to protein-coding genes. (C) Number 
of unique transcripts per tissue across four sRNAs classes. 
 
 
Figure S2. Unsupervised clustering of RNA-seq datasets. Heatmap of normalized log-
transformed RNA-seq counts detected in various murine tissues across four sRNAs classes.  
 
Figure S3. Tissue-specific patterns of sRNA expression. (A) t-SNE projection of expression 
values for each sRNAs class. (B) Tissue specificity index of sRNA. (C) Tissue-specific as well 
as unique sRNAs transcripts detected in each tissue, separated by scnRNA class. Size of the 
circle corresponds to the average number of normalized counts across each tissue.  
 
Figure S4. Top 50 highest miRNA expression scores across eleven tissues. Heatmaps 
show highest expression scores for each tissues alongside the scores of the same miRNA in 
all other tissues.  
 
Figure S5. Correlation of our data with previously published miRNA datasets generated 
for mammalian cell- and tissues- types. (A) Spearman correlation coefficients of comparison 
between expression scores obtained in this study and mouse miRNA-seq data generated by 
FANTOM5 (de Rie et al., 2017). (B) Number of miRNA orthologs used to compare FANTOM5 
human and current mouse datasets. (C) same as A but for human FANTOM5 samples.  
 
Figure S6. Differential expression analysis. NULL hypothesis testing. Distribution of 
DESeq2-derived p-values computed for miRNAs differentially expressed between actual and 
permuted female and male samples.  
 
Figure S7. Gender-specific expression of miRBase-annotated miRNA. (A) Volcano plots 
showing annotated miRNAs differentially expressed between female and male intestine, 
spleen, liver and pancreas. (B) Sexually dimorphic miRNAs. miRNAs found to be consistently 
upregulated in female tissues shown in dark red and those in male tissues – in dark blue. miR-
182, miR-148a and miR-145a are upregulated by estrogen (“E”), while miR-340 is down-
regulated by androgen. (C) Spearman correlation of miRNA expression and the expression of 
respective targets. A list of target mRNAs was obtained from TargetScan, DIANA, miRanda, or 
mirDB databases (Agarwal et al., 2015; Griffiths-Jones et al., 2007; Paraskevopoulou et al., 
2013; Wong and Wang, 2015). Only targets listed in two or more databases were used in this 
analysis. mRNA expression values for the respective tissues were retrived from the ENCODE 
database (Pennisi, 2012). Only rs scores of correlations that passed FDR<0.1 threshhold are 
shown. Positively correlated miRNA:mRNA scores are depicted in red, while negatively 
correlated – in blue. 
  
Figure S8. Tissue- and gender-specific expression of novel miRNA. (A) Principal 
component analysis performed on novel miRNAs detected in one or multiple mouse tissues. 
(B) Examples of an ubiquetous and a tissue-specific novel miRNA. (C) Volcano plots showing 
novel miRNA differentially expressed miRNA between female and male brain, spleen, heart, 
intestine, kidney and liver.  
 
Figure S9. Machine learning statistics. (A) RNA-seq samples used to train machine learning 
models. Left: number of train datasets corresponding to each tissue, right: examples of feature 
scores. (B) miRNAs assigned highest weights in defining bone marrow in SVM model. (C) top 
20 miRNAs atributed highest weights in defining tissue types by RF model.  
 
 
 

Supplementary tables: 
 
Table S1. Animals used in the study. 
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Table S2. Mean normalized expression counts. 

Table S3. Novel miRNAs, sequence and expression counts. 

Table S4. ENCODE data used for ML predictions. 

Table S5. Targets of sexually dimorphic miRNAs. 

Table S6. ENCODE mRNA datasets used in the study. 
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