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A Moving Mesh Numerical Method

for Hyperbolic Conservation Laws*

By Bradley J. Lucier

Abstract. We show that the possibly discontinuous solution of a scalar conservation law in one

space dimension may be approximated in i-'(R) to within 0(N~2) by a piecewise linear

function with O(N) nodes; the nodes are moved according to the method of characteristics.

We also show that a previous method of Dafermos, which uses piecewise constant approxima-

tions, is accurate to 0(N~l). These numerical methods for conservation laws are the first to

have proven convergence rates of greater than 0(N~l/2).

1. Introduction. It is well-known that the solution of the hyperbolic conservation

law,

u, + f(u)x = 0,       jcgR, f>0,

u(x,0) = u0(x),       xeR,

may be calculated by the method of characteristics where the solution is smooth;

elsewhere, shocks evolve according to the Rankine-Hugoniot and entropy conditions

[16]. In this paper we transform the method of characteristics into a numerical

algorithm by showing that if one carefully chooses O(N) points to track by the

method of characteristics, then for suitably smooth flux functions / and piecewise

smooth, but possibly discontinuous, initial data u0, the error in the approximation is

0(N~2) in L}(R). (For technical reasons our approximation may readily be calcu-

lated only for convex fluxes and certain problems with nonconvex fluxes.) Because

our approximation is taken from the space of discontinuous piecewise linear

functions, our method exhibits optimal-order accuracy (1/N may be considered a

measure of the average mesh size). We also show that a previous method of

Dafermos that uses a piecewise constant approximation has accuracy 0(N~1), and

hence is also optimal-order accurate. Although previous work has been done by

others on formally second-order accurate methods that generate convergent ap-

proximations to solutions of (C) for some fluxes / (see [23], [8]), no other numerical

method for scalar conservation laws has a proven convergence rate of more than

0(N~1/2).
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60 BRADLEY J. LUCIER

There have been basically two approaches to designing adaptive methods for

evolution equations, and specifically for conservation laws. (Hedstrom and Rodrigue

[12] survey adaptive methods for evolution equations.) The first, which we will call

the adaptive mesh approach, includes more meshpoints in the mesh wherever the

approximate solution of (C) has large gradients; meshpoints are added and removed

from the mesh when deemed necessary, but meshpoints are generally not moved

from one timestep to the next, and the number of meshpoints may vary greatly over

time. Öliger and his students [1], [2], [22], Lucier [18], and others (see [12]) have

taken this approach. Osher and Sanders [24] have proved convergence for a method

that uses this approach for conservation laws, but the rate of convergence of their

method when used with any specific mesh selection algorithm is unknown.

The second, moving mesh, approach is to keep a more or less fixed number of

meshpoints, and to move them according to a prescribed algorithm. Methods falling

into this class include the moving finite-element methods of Miller [21] and Herbst

et al. [13], which calculate the meshpoint positions as an integral part of the discrete

weak formulation of the evolution equation; and the method introduced by Davis

and Flaherty [6], who do a separate calculation at each time to determine a

near-optimal grid on which to approximate the solution at that time. (A method may

combine elements of each technique, of course.) One intriguing problem of justifying

the moving-mesh approach is to show that even as shocks and regions of large

gradients are forming in the solution, a predetermined number of meshpoints are

sufficient to approximate the solution for all time. At least for convex fluxes, we

show for our method that even though a smooth solution may develop shocks or

discontinuous initial data should be smoothed into a continuous function with

singularities, the meshpoints necessary for a certain level of approximation may be

determined a priori.

Moving meshpoints along the characteristics is quite natural; see the references in

[13] for previous methods using this idea. Although our method may be considered

the next higher-order generalization of a method introduced by Dafermos [5], the

direct motivation for our work was Miller's moving finite-element method and

Dupont's analysis [7] of various moving-mesh algorithms for evolution equations

that have smooth solutions. Dupont requires, typically, that the L2-norms of the first

derivatives of the solution of the evolution equation be finite, a condition that is not

satisfied by the solutions of (C). Our method is also similar to a method of LeVeque

[17] in which he approximates the solution of (C) by studying the long time behavior

of certain piecewise constant approximations to (C). (One can apply the techniques

in this paper to obtain error estimates for certain variants of LeVeque's method; see

[19].) We must remark that we deal only with the semidiscrete problem; although the

system of differential equations that determine the evolution of the approximation

solution may be solved in closed form, the implementation of the method is left for

another report.

Harten and Hyman [9] introduced a constrained moving-mesh algorithm for

systems of conservation laws; Sanders analyzed their method for the scalar equation

[27]. By using an intelligent mesh positioning algorithm, Harten and Hyman

achieved fairly spectacular computational results for various test problems in gas

dynamics. (One difficulty with our method is that it is not obvious how to extend it
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HYPERBOLIC CONSERVATION LAWS 61

to systems of equations.) Sanders' analysis proved convergence of such methods for

scalar conservation laws when the underlying difference scheme is monotone, but he

did not obtain a rate of convergence any better than that for fixed-mesh numerical

schemes.

2. Approximation of Conservation Laws. Kruzkov [14] provided existence and

uniqueness results for certain classes of weak solutions of (C) through the prescrip-

tion of an entropy condition. The theory for solutions of (C) used in this paper is

expressed in the following theorem.

Theorem 1 (KruZkov). If fis locally Lipschitz continuous, then for any u0 e BV(R)

(the class of function whose first derivatives are measures) and for any T > 0 there is a

unique bounded u e BV(R X [0, T]) n C°([0, 7"], Ll]oc(R)) with u(0) = u0 that satis-

fies the following entropy condition: for all 4> e C¿(R X R), with 4> > 0, for all ceR,

and for all t e [0,7],

//   [I« - c\4>r + sgn(M - c)(f(u) -/(c))</>x„] dx"dt"
/-.x RX[0,']

- ¡\\u(x",t) - c\4>(x",t) -\u0(x") - c\<t>(x",0)\dx" >0.
•'R

The analysis of monotone finite-difference schemes for scalar conversation laws is

more or less complete (see [4], [10], [15], [20], [26]). The more successful results are

based on Kuznetsov's general theory of approximation for solutions of (C) [15]. A

formulation of Kuznetsov's theorem in one space dimension follows.

Theorem 2 (Kuznetsov). Let u be the entropy solution of (C) with u0 e BV(R),

and let v: R + —> ¿.^(R) have left and right limits for every t, and be right continuous.

Pick a positive, symmetric function tj(£) with support in [-1,1] and integral 1,

positive numbers e and e0, and let

u(x,t) = —r¡  f   -7,(7)-

Define the "Kruzkov form"

A£/"E= // \v(x",t") - u(x',t')\-zp¡u(x" - x',t" -t')
SxS

+ sgn(v(x",t") - u(x',t'))(f(v(x",t")) -f(u(x',t')))

■ t^u(x" - x', t" - t') dx"dt"dx'df
dx

+ i      L(jc" -jc',0- t')\v0(x")-u(x',t')\
JSXR

-a(x" - x',t- t')\v(x",t - 0) -u(x',t')\\dx"dx'dt',

where S = R X (0, t). Then

\\U(t) -1>(0|U'(R)<||«(0) -f(0)||z.'(R)+(2e +||/||L!pEo)l"olfiK(R)

+ sup \\v(t' + T)-v(t')\\l}m- hy,
t',\T\<e0,-t' <T<t-t'

where ||/||Lip = supx*y\(f(x) - f(y))/(x - y)\.
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The following comparison theorem is the basis for our analysis.

Theorem 3. If f and g are Lipschitz continuous functions, u0, v0 g BV(R), and u

and v are the solutions of

u, + f(u)x = 0,       x g R, t > 0,

m(jc,0) = u0(x),        X G R,

and

vt + g(v)x = °>        x G R, t > 0,

v(x,0) - v0(x),        X G R,

then for any t > 0,

ll"(0 — t»(í)||í.l(R) <ll"0 — uollz.'(R) + 'II/" g||Lipmm(l"olflK(R), \v0\BV(R)).

Proof. We use Kuznetsov's theorem to compare v to u. Kruzkov [14] shows that

(2) sup \\v(t'+ r)-v(t')\\l}(R)^E0\\g\\Lip\v0\Bym.
t',\T\<e0,-t'<T<t-t'

To bound - A£°'£, one may use the fact that v satisfies the inequality of Theorem 1

with the flux g, so that after setting c = u(x', t'), f¡>(x", t") = u>(x" - x', t" - t'),

and integrating (1) over x', t', one only has to bound (after an integration by parts)

//   ¿7 [sgm>(;c", t") - u(x>, t'))((f- g)(v(x", t"))
sxs

(3) -(f-g)(u(x',t')))}

•u(x" - x',t" - t') dx"dt"dx'dt'.

Because v(t) g BV(R) for each t, we can find an increasing function v(-,t)+ and a

decreasing function v(-,t)~ so that v(-,t)= v(-,t) + + v(-,t)~. Define v(-,t)' =

v(-,t) + - v(-,t)~, and let h = f — g. Now, because sgn(a - b)(h(a) — h(b)) =

h(a V b) — h(a A b), where a V b = max(a, b) and a A b = min(a, b), a simple

case analysis shows that

|sgn(fj(xí',í") - u(x',t'))(h(v(xx,t") -h(u(x',t')))\

- sgn(v(x'2\t") - u(x',t'))(h(v(x'2\t")) - h(u(x',t')))\

< \h(v(x[', t") V u(x', /')) - h(v(x'2\ t") V u(x', t')) |

+ \h(v(x[',t") A u(x',t')) - h(v(x2,t") A u(x',t'))\

<||A||up|u'«,i") - v'(x'i,t")\.

Therefore,

■^[sga(v(x",t") - u(x',t'))(f-g)(v(x",t") - u(x',t'))]

is bounded, as a measure, by \\f — g\\Up\(dv/dx")(x", t")\. Substituting this expres-

sion in (3), we may bound - AC,°E by the integral of the convolution of the measures

ll/_ SllupKI and w- Because KOIs^r) < I^oIä^r) for a11 ?. and w has integral

one, the integral (3) is bounded by t\\f - glIupl^oIsKíR)- Let e and e0 tend to zero.

The final result follows because of symmetry.   D
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3. Application to Dafermos's Method. Dafermos's method [5], which was tested on

both scalar equations and systems by Hedstrom [11], is described below. Let N be a

positive integer. If the flux / is C2 (a modified argument shows that / need only be

Lipschitz continuous and piecewise C2), then define the continuous, piecewise linear

(with breakpoints at j/N for all j) function /£ by fe(j/N) = f(j/N) for every

integer j. Then ||/e - /||Lip ^ (2N)~l\\f"\\L*>IK). If u0 consists of a finite number of

constant states, then Dafermos gives the entropy solution of

u, +fc(ue)x = 0,        reR,i>0,

ue(x,0) = u0(x),        x G R,

in the following way. Dafermos first reduces the problem to a Riemann problem,

because the initial datum has finitely many jumps. If u0 is specified as

,,       x < 0,
U°{x) x>0,

with u, < ur, then the vertices of the boundary of the convex hull of {(u, v)\u, <

u < ur, v > fe(u)} will consist of a set of points (u¡, f £(w¡)), (w1,/£(i<1)),...,

(uk,fe(uk)), (ur,fE(ur)), where {«'} is a linearly ordered subset of {j/N}. The

solution will then be given by the following set of constant states:

t,     A . x     feW)-f\u,)
u (x, t) = u,   tor - oo < — <

t ,j1u  — u,

,    /'(n1)-/-(«/) ,x j*(u2)-n¿)
1 1   "*~ 2 1u  — u, ' u   — u

uk ^/vwv-1) tx^r(ur)-nuk)
uk - uk~l l u- uk

r(ur)-r(uk) ^x
for-< — < oo.

ii  — uk t

A similar result may be inferred if u¡ > ur by considering the convex hull of the set

{(u, v)\ur < « < M,, ü < fe(u)}. Thus, for all time, the approximate solution uc will

take on only finitely many states (no more than A/||m0IIbk(R) Pms twice the initial

number of states). Theorem 3 implies that

(4) II« - «nU'iR)^ 2Ïv:II/"IIz.=c(R)ImoIbk(R)-

Thus, Dafermos's method is first-order accurate. The error's linear growth in time is

consistent with Hedstrom's numerical results.

Dafermos mentions that there is no known proof that only a finite number of

wave interactions occur in any finite time interval if /E is not convex; however, I

believe that this is the case for the special form of the flux fc and solution wF.

4. A Method Based on Piecewise Linear Elements. We now assume that the flux /

has three bounded derivatives. The initial data u0 will be restricted to the class of

functions in BV(R) whose first derivatives are also in BV(R) outside a finite set of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



64 BRADLEY J LUCIER

points {•$,}. We assume that the support of uQ is contained in [-1,1] and that the

range of u0 is contained in [0,1]. (Generalizations to initial data that is constant

outside an interval will be obvious.) Throughout the following, e will denote \/N, N

being an integer greater than one. Let 5 = min, (e2, \s¡ — Sj\/2).

The function / is approximated by a parabolic spline approximation /£, a

continuously differentiable, piecewise quadratic function whose second derivative is

discontinuous at the breakpoints r\k = k/N for k = 0, 1,..., N. The function /£ is

the unique parabolic spline that has (dfc/dx)(r\k) = f'(t\k), with dfe/dx a linear

function between r,k and r,k+x, and /£(0) = 0. Then ||/f -/||Lip < i||/'"||¿»(R)e2

(see [3]).

The function uc0 and the initial meshpoints £, are to be chosen as follows.

(a) Modify u0 near each discontinuity s¡ by redefining it as a continuous linear

function between si - S and 5, + S, which we will take as our first meshpoints.

(b) In the intervals where u0 is smooth, insert a minimal number of meshpoints so

that

\tt+i-i,\f \*¿\dx<e2
"U.i.-u)

(c) Set w0(£/) = mo(£j) f°r au '"> and ^et "o De a linear function between the

meshpoints £,.

(d) Insert new meshpoints £,- at the points where m0(£,) = i¡k, for all k.

This approximation ensures that

II M0 — U0 ||/,i(R) =C  I | «o IflK(R) +

(see [3]).

Theorem 4. There are fewer than 4k + (|"oIsk(R) + 2)yV meshpoints ¿(, where u0

has k discontinuities.

Proof. Step (a) starts the mesh with 2k points. It is known [3] that step (b)

introduces no more than N meshpoints. Consider now only the meshpoints £. added

by step (d), order them separately, and call them vt. At most 2k + N intervals

[v¡, vi+l] may contain previously inserted meshpoints, and if [v¡, vi+1] contains no

old meshpoints, then |w£)(i',) - «oí^+i)! = 1/-W> because uc0 is linear between the

original meshpoints. Thus, step (d) adds at most (|w0Ibi'(R) + 1)^ + 2fc meshpoints

The solution of the approximate problem,

u,+f'(uB)x = 0,       x g R, t > 0,

ue(x,0) = ue0(x),        x g R,

may now be calculated, for example, by the method of characteristics. Because /£ is

quadratic on the range of ue in each interval (£,■(/), l,+i(0) where ue is continuous,

u8 is linear on that interval, and only the nodal values need be determined. The

evolution of shocks may again be determined by the Rankine-Hugoniot condition, as

long as the entropy condition is verified. In particular, uc(x, t) may be found as

follows. Let uc(x,t) have left and right limits of l¡(t) and r,(r) at the meshpoint

¿,(f). Then /,, r, and £, satisfy the following differential equations (for clarity, we

du0

dx BV(R\ls,))

dx BV(R\ts,})
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write / in place of fe):

//'(/,(,))    if/,(0 = r,(0,

(5a) -jf = {f(lM)-f(rM)     ......    (A

(0    iil,(t) = r,(t),

(5b)      -ft =    lM-n-Mlf(iM)-f(r,(t)) _ ,,,. (A.
UM-i,-i(t)\      li(t)-r,(t) nW))

il l,(t) * r,(t),

(0   if /,(/) = r,(0,

(5c)       ̂ = /, + i(0-/-,(0f/(/,(0)-/(r,(0)
I   i,+1(0-É,(0l     /|(0-r,(0        M,WJ

if/,.(0*r,(r).

Note that most of the equations are trivial; whenever ue is continuous at £,(0>

dijdt is constant, while oV/oV and o7,/o7 are 0. That is, the meshpoint moves along

the characteristic of the perturbed equation, and the approximate solution is

constant along the characteristic. Even where there is a shock in the approximate

solution, the system of equations may be solved in closed form between shock

interaction times. The behavior of w£ on either side of a shock is easy to determine,

and one only needs to find the trajectory of the meshpoint £,. With the help of the

symbolic manipulation program Macsyma, I used the fact that mass is conserved

near the discontinuity to find that the shock trajectory is given as part of the zero set

of a polynomial P(x, t) = 0 of total degree three. The coefficients of the polynomial

are given in Table 1. To the left of the shock, the approximate flux has the value

fc(u) = a,u2 + 2b¡u + c,, and ue has initial slope sj, similarly to the right of the

shock. The initial shock position and the left and right limits of ue(x, 0) at the shock

are given by £,, /,, and r,.

The entropy condition must be checked for the solution u\ however. That is, if u"

is discontinuous at £,(r), then

,SH,   fe(i,(t))-r(n(t))   nn-f'Mt)) fnrtt=\r(A,(tw
(5d) l,(t)-r,(t) > S-rM f°r^k(<U(0]

if /,(/) > rt(t), or

,rA       fe(ri(t))-r(l,(t))       f'(n-fVM)     .    ,^tl(A     ,,*,

if r,(r) > f(t). It is not difficult to show that if / is convex, then fe is convex, and,

because ue0 is continuous, the entropy condition will be trivially satisfied for any

solution of the above system of differential equations, and no new meshpoints are

introduced during the evolution of ue. There are cases when / is not convex where

the entropy condition is trivial to verify for certain data; see the second example

below. We are led to the following theorem.
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Table 1

Coefficients for discontinuity curve P(x,t) = 0

x2t 2(ar - a,)s,sr

xt' %(a,br - arb¡)s,sr

%(a,ar(cr - c,) + arbf - a,b2)s,sr

Si —  Sr

Xt

4[(a, - ajsprt,

+ (arl,sr - a,rtSi) + (brsr - b,s,)]

%(arb, - a,br)s,sr^ + 4(bjs, - b2sr)

+ 4a,ar(r2s, - l2sr) + 8(a,V,-í/ ~ «W,-*,-)

+ 4(arcrsr - arc,sr + a,crs, - a^/S,)

2(sr - s,)l + 2(1, - rt)

2(ar - at)s,sri2

+ 4(alrisl - arfsr + b,s, - brsr)£,

+ 2(/£(r,)-/£(/,))

(s, - sr)tf + 2(r, - l,H,

Theorem 5. Let /g W¿(R) be convex, and let u0 G BV(R), with u'0 in BV(R)

outside k points {s,}. // u(x, t) is the entropy solution of (C), then by choosing

4k + (|w0lsi/(R) + 2)N meshpoints ¿, and solving the algebraic-differential system

(5a-e) with initial data £,(0), r,(0), and /,(0) derived from ue0, we ensure that

||M£(-,0-"(■,') IL'

< \U0\BV(R)

(R)

dun

dx BV'R\{s,))
4 l"olßK(R)ll/'"IU00(R)i+   T   W /N2.

Because uc is specified in terms of O(N) parameters,  this algorithm generates a

second-order approximation to u.

Note that the error estimate applies for nonconvex / as well; the only questions

that arise are whether more meshpoints are generated during the evolution of w£,

and whether infinitely many wave interactions may occur in a finite time interval.

We believe that both statements are false for the special form of fe given above.

It is interesting to note that the above node placement strategy is not optimal for

higher-order approximations. Specifically, consider the problem,

u, +(w3)x = 0,       x g R, t > 0,

with initial data that is 1 for x < 0,1 - x for 0 < x < 1, and 0 for x > 1. Then,

¡1, JC<l/2,

u(x, 1/6) = / 1 _ J2x-\,    1/2 < x < 1,

lo, 1 < x.
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If the nodes are initially placed at the points j/N, for j between 0 and N, then the

nodes at time 1/6 are placed at (1 + j2/N2)/2 for j between 0 and N. One may

then calculate u, the best L^'R) approximation to w(-,l/6), using continuous

piecewise quadratic elements with the additional requirement that û(x) = u(x)

whenever x is a node (see Rice [25, p. 102]). The first term in the asymptotic series in

N of ||m(-,1/6) "II/.'(R) 1S

16/V

/V-l

E ij +1 ■

This calculation shows that the best Ll{R) approximation with the given nodes has

error 0(N~3 log A7), and not 0(N~3), which is possible with a different node

placement (see [3]). Thus, the node placement algorithm is not adequate to ap-

proximate the given singularity within the class of piecewise quadratic functions.

5. Computational Results. Two examples illustrate the placement of the mesh-

points by our algorithm. The first example, illustrated in Figure 1, is the solution of

u, +(u3)x = 0,       x g R, t > 0,

u(x,0) = X[o.i](x),       x g R,

up to time 1/4 with N = 20. For this problem, we have

I"o!bk(ri = 2,    \duo/dx\BV(RS[Si)) = 0,   and ||/'"||l»(R)= 6.

We can conclude that ||k(í) - w£(OIIl'(R) = (2 + 3t)e2; the error is less than 0.007.

ue(x,0.25)

Figure 1

The graph of us(x, 1/4) for the first example (see text). The

tick marks indicate the position of the nodes, between which the

solution is linear.
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I-1-1-1-1-1-1-'-1-1

0 c.,        .* 1 X
ufc(x, 1)

Figure 2

The graph of ue(x, 1) for the second example (see text). The

tick marks indicate the position of the nodes, between which the

solution is linear.

The second example (Figure 2) has f(u) = i(l - cos(7rw)) and u0 = X(-»,o]-

This flux is not convex, but the only difficulty in determining the numerical solution

is in calculating the location of the shock. By conservation of mass, one places the

shock so that the integral of u" between -e2 and the position of the shock, in which

region ue may be calculated from (5), is equal to e2 + (/£(1)-/e(0))r. In this

example, N is 40 and t is 1. We have incurred a mass error equal to (/(l) - /£(l))i,

which is of the order of e2t. The same level of approximation may be achieved

without a mass error by using the modified approximate flux fe(u) —

fe(u)f(\)/f\\).
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