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A Moving Morphable Components Based Shape
Reconstruction Framework for Electrical

Impedance Tomography
Dong Liu and Jiangfeng Du

Abstract— This paper presents a new computational
framework in electrical impedance tomography (EIT) for
shape reconstruction based on the concept of moving
morphable components (MMC). In the proposed framework,
the shape reconstruction problem is solved in an explicit
and geometrical way. Compared with the traditional pixel
or shape-based solution framework, the proposed frame-
work can incorporate more geometry and prior information
into shape and topology optimization directly and therefore
render the solution process more flexibility. It also has the
afford potential to substantially reduce the computational
burden associated with shape and topology optimization.
The effectiveness of the proposed approach is tested with
noisy synthetic data and experimental data, which demon-
strates the most popular biomedical application of EIT: lung
imaging. In addition, robustness studies of the proposed
approach considering modeling errors caused by non-
homogeneous background, varying initial guesses, differ-
ing numbers of candidate shape components, and differing
exponent in the shape and topology description function are
performed. The simulation and experimental results show
that the proposed approach is tolerant to modeling errors
and is fairly robust to these parameter choices, offering sig-
nificant improvements in image quality in comparison to the
conventional absolute reconstructions using smoothness
prior regularization and total variation regularization.

Index Terms— Electrical impedance tomography, shape
optimization, topology optimization, moving morphable
component, lung imaging, inverse problems.
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I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is an imag-

ing modality that aims to reconstruct the impedance

distribution inside an object of interest from electrical mea-

surement on the body surface. Because of its non-invasiveness,

portability and practical utilities, EIT has been considered in a

number of medical [1]–[4] and industrial applications [5]–[7],

leading to many useful and promising results across a spectrum

of fields.

The EIT image reconstruction problem is a nonlinear ill-

posed inverse problem. Utilizing prior information is critical in

addressing the EIT reconstruction problem (see, e.g., [8]–[13]

for a partial list). To solve such a challenging problem,

regularization is needed to overcome the extreme sensitivity

to measurement noise and modeling errors [14]–[19].

The idea of accounting for shape information based

regularization in the reconstruction is gaining increasing

interest within the scientific community. Several recent

studies [20]–[28] in both medical and industrial applications

have explored applying prior shape information with the objec-

tive of improving image quality. Shape-based reconstruction

methods have been employed with wide success to determine

information concerning the size, shape, location and perhaps

the number of anomalies across multiple application realms

arising in medical imaging and industrial field. Despite this

success, a withstanding challenge in shape reconstruction is

the ability to impose the prior shape information in an explicit

and geometrical way. For example, the factorization method,

that was motivated from the inverse scattering problem [29],

is useful for recovering the shape information, e.g., conduc-

tivity change in EIT [20], [30]; however, its effectiveness

may be questionable in cases using a small amount of data

and it is not presently clear how to incorporate system-

atic a priori information concerning either the geometric/

topological (e.g., number of conductivity components) or

physical properties of the conductivity which is necessary for

the method to work. Concerning other direct shape recon-

struction methods, see the monotonicity-based regularization

method [31]–[33], the enclosure method [34], [35] and the

D-bar method [4], [15], [36] for a partial list.

From a geometry representation point of view, most of

the existing reconstruction methods are developed within the
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shape-based solution framework. For example, in the well-

established level set approaches [37], [38], a shape and

topology description function (STDF), also called a level set

function (LSF), is used to implicitly represent the boundary of

the targets as the zero level set (with respect to the space vari-

ables) with one higher dimension, and it easily handles topo-

logical changes. In traditional level set (TLS) methods, during

the reconstruction, the shape boundary evolution is described

by a Hamilton-Jacobi partial differential equation (PDE) and

is driven by the extension velocity field derived from shape

sensitivity analysis. Although significant progress has been in

the field of shape reconstruction using TLS methods, there

still exist some challenging issues which need to be further

addressed [39]. One of them is that when applying TLS for

shape reconstruction, the implementation of the conventional

discrete level set methods requires appropriate choice of the

upwind schemes, reinitialization algorithms and extension

velocity methods, which may limit the application of the TLS

to EIT shape reconstruction problems.

To overcome these aforementioned drawbacks and retain the

topological benefits of the implicit representation of evolving

boundary, the parametric level set (PLS) methods have been

extensively carried out within the scientific community, such

as structural topology optimization [40], [41], seismic imaging

and inversion [42], EIT [23], [26], [43], etc. The key idea

of PLS is to represent the implicit STDF in a parametric

way, i.e., expressing the STDF parametrically as a linear

combination of a predefined radial basis functions (RBFs) and

(unknown) weighting parameters, thus the Hamilton-Jacobi

PDE will be transformed into a series of ordinary differential

equations through the parameterization process [44]. PLS

parameterization waives reinitialization of the STDF unlike

in traditional LSM, and thus makes the method more efficient

to implement and also improves the condition number of the

inverse problem as compared to TLS methods. However, with

a RBF function, the corresponding weights have no physical

meaning and their ranges cannot be determined explicitly.

In practice, these bounds can only be empirically set. Further-

more, another problem that has not been fully addressed yet

is the determination of the initial distribution of RBF centers.

In the present work, with the primary aim of conducting

shape reconstruction in a more geometrically explicit and flex-

ible way, a so-called moving morphable components (MMC)

based shape reconstruction framework is proposed. The idea

of MMC was originally introduced by Guo et al. [45]

for structure topology optimization, and it was subsequently

extensively carried out by Guo’s team in [46]–[54]. The key

idea of this MMC-based reconstruction approach is that a set

of morphable components represented by STDFs with variable

parameters (such as lengths, thicknesses, orientations) are used

as the basic blocks of shape reconstruction (see Fig. 1 for a

schematic illustration). The optimal shape, i.e., conductivity

distribution, is found by optimizing STDF parameters (lengths,

thicknesses, orientations) and layout (connectivity) of these

morphable components. Compared with the level set-based

solution framework, the proposed MMC-based framework has

the following distinctive features: 1 The shape of the compo-

nents is described by using explicit STDF so that it is able to

Fig. 1. Moving morphable components as basic blocks of shape
reconstruction. (a): Simple candidate components. (b)&(c): Complex
shape topologies. (d): An example of conductivity distribution based on
the MMCs in (c), by assigning binary conductivity to the components and
background, respectively.

incorporate more geometric information into shape reconstruc-

tion directly and therefore render the solution process more

flexibility; 2 The proposed framework has significant poten-

tial to improve the conditional number of the reconstruction

problem and also reduce the computational demand associated

with shape reconstruction. In the proposed framework, shape

description parameters of the components are adopted as

unknown variables. As a consequence, the number of unknown

variables may be quite smaller than that involved in traditional

STDF-based approaches. 3 The proposed framework offers

a mechanism to effectively incorporate the priori information,

such as position, size, etc, of the target object to be imaged

into the reconstruction problem, 4 It can be easily extended

to three-dimensional applications. Table I gives a comparison

of the STDF construction, geometry representation and dimen-

sion reduction properties associated with level set based shape

reconstruction approaches and the proposed approach.

Finally, we evaluate the performance of the proposed

MMC-based reconstruction method via simulations and phan-

tom studies. Both numerical and experimental studies demon-

strate the most popular biomedical application of EIT:

lung imaging. In addition, robustness studies of the pro-

posed approach considering modeling errors caused by non-

homogeneous background (e.g., simulated aorta and heart are

presented in the measurement domain), differing numbers of

candidate shape components, and differing exponent in the

STDF are performed. The simulation and experimental results

show that the proposed approach tolerates these kinds of mod-

eling errors well and is fairly robust to these parameter choices,

leading to high-quality shape reconstructions, as measured by

quantitative metrics such as structural similarity (SSIM) index,

relative inclusion area coverage ratio and relative contrast for

the binary conductivity. The results are compared against the

conventional absolute reconstructions using smoothness prior

regularization and total variation regularization.

The remainder of this paper is structured as follows: we

briefly review the EIT forward model in Section II. The prop-

erties of the proposed MMC-based framework are discussed in

Section III. In Section IV, we overview the EIT simulations,

experimental setup, test cases as well as the implementation

details. The numerical and experimental results are presented

in Section V, and some concluding remarks are given in the

last section.

II. EIT FORWARD PROBLEM

In EIT, to perform bioimpedance measurements, an elec-

trode belt containing L electrodes is placed around the
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TABLE I

A COMPARISON OF DIFFERENT STDF-BASED RECONSTRUCTION APPROACHES

body surface. Let us denote the body under investigation

by � ⊂ R
q , q = 2, 3, and its boundary by ∂�. A set

of electric currents is injected into the body through these

electrodes, and the corresponding voltages are measured using

the same electrodes. The forward problem of EIT can be

stated as follows: given a conductivity distribution σ(x) within

� and a current injection pattern I`, compute the electrical

voltage U(x) on the measurement boundary ∂�. In this work,

the dependence of σ(x) on electrode measurements is modeled

by the Complete Electrode Model (CEM) [55], which consists

of the Laplace equation

∇ · (σ (x)∇u(x)) = 0, x ∈ �, (1)

and the boundary conditions

u(x) + z`σ(x)
∂u(x)

∂ν
= U`, x ∈ e`, ` = 1, ..., L, (2)

�

e`

σ(x)
∂u(x)

∂ν
dS = I`, ` = 1, ..., L, (3)

σ(x)
∂u(x)

∂ν
= 0, x ∈ ∂�\

L�

`=1

e`, (4)

where x ∈ � is the spatial coordinate, z` is the con-

tact impedance between electrodes and the imaged body;

U` denotes the potential corresponding to electrode e`;

ν denotes an outward unit normal.

In addition, the electric current must satisfy the charge

conservation law

L�

`=1

I` = 0. (5)

To determine uniquely the potentials u(x) and U` based on

the CEM, the reference potential must be fixed, for instance,

by setting

L�

`=1

U` = 0. (6)

Approximating the CEM model (1-6) with finite element

method (FEM) and assuming an additive noise model leads to

the observation model:

V = U(σ ) + e, (7)

where vector V consists all the measured voltages, U(σ ) is

the FEM solution to the forward problem, and e is additive

Gaussian noise with mean e∗ and covariance matrix 0e. For the

details of FEM approximation of CEM, see [56], for example.

III. MOVING MORPHABLE COMPONENTS-BASED

SHAPE RECONSTRUCTION FRAMEWORK

In this section, inspired by the work of Guo et al. [45], [46],

we detail a methodology for describing the geometry of a

shape component using explicit parameters. For the sake of

simplicity, we only considered two-dimensional (2D) cases in

the present work. Extensions to three-dimensional (3D) cases

will be studied in a future work. Meanwhile, as a primary

attempt to develop the MMC-based reconstruction framework

in EIT, a relatively simple form of shape component is

introduced here.

Shape and topology are the main concern of the shape-based

reconstruction problem. Inasmuch, candidate shape compo-

nents with simple geometries are selected to serve as basic

blocks in the shape and topology optimization based recon-

struction method; this selection is of computational impor-

tance, especially when the number of candidate components

is relatively large. As shown in Fig. 1, even a small number

of components can represent fairly complicated shapes and

topologies.

A. Shape and Topology Description

In the MMC-based technique, shown in [45], shape and

topology can be described implicitly in the following way:
⎧
⎪⎨
⎪⎩

f s(x) > 0, ∀x ∈ Ds ,

f s(x) = 0, ∀x ∈ ∂ Ds ,

f s(x) < 0, ∀x ∈ �\Ds .

(8)

Here, Ds ∈ � denotes a subset of � occupied by n

components, which is made of the support of the inclusions

in the domain �. We also have f s(x) = max( f1, f2, · · · , fn)

with fi = fi (x), i = 1, 2, · · · , n, denoting the shape and

topology description function (STDF) of the region occupied

by the i th shape component, i.e., Di , that is,
⎧
⎪⎨
⎪⎩

fi (x) > 0, ∀x ∈ Di ,

fi (x) = 0, ∀x ∈ ∂ Di ,

fi (x) < 0, ∀x ∈ �\Di .

(9)

Obviously, Ds = ∪n
i=1 Di . Fig. 2 provides a schematic illus-

tration of the above geometry representation.

Similar as in [45]–[47], the key idea of the MMC-based

approach is to explicitly represent the locations and geometries

of shape components with use of a few number of shape

‘design variables’ (which are used as parameters). As pointed

out in [47], we apply the following STDF to represent the

locations and geometries of shape components:

fi (x, y) = 1 −
	 x 0

L i


m
−

	 y 0

g(x 0)


m
, (10)
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Fig. 2. A schematic illustration of the geometry representation in
MMC-based shape reconstruction framework.

Fig. 3. Geometrical description of a component using quadratically
varying thicknesses.

with
�

x 0

y 0

�
=

�
cos(θi ) sin(θi)

−sin(θi ) cos(θi )

� �
x − x i

0

y − yi
0

�
. (11)

Here, m is an even number called the exponent, L i denotes

the half length of the component, θi is the inclined angle of

the component measured from the horizontal axis anti clock-

wisely, and (x i
0, yi

0) denotes the coordinate of the center of the

component, respectively. To describe the thickness profile of

the component, a function g(x 0) is introduced and can be taken

different forms. For example, Fig. 3 depicts a shape component

with quadratically varying thickness. For other forms of g(x 0),

we refer the readers to [46], [50]. Given the quadratically-

varying thickness profile of shape components (as shown

in Fig.3), we have the shape design variable vector γi =

(x i
0, yi

0, L i , θi , w
i
1, w

i
2, w

i
3) associated with the i th component.

To sum up, with the above geometry representation scheme,

the shape and topology of conductivity distribution can be

solely determined by the design vector γ = (γ1, γ2, · · · , γn)T.

B. Conductivity Distribution Modeling

Following the common assumption in shape-based recon-

struction methods, the conductivity distribution to be recon-

structed is assumed to be piece-wise constant. For the sake

of brevity, we assume the domain � contains two different

regions Ds and �\Ds with conductivity profiles as σ(x) = σ1

for x ∈ Ds and σ(x) = σ0 for x ∈ �\Ds .

In association with the two regions represented by the STDF

f s(x) using the design vector γ = (γ1, γ2, · · · , γn)T, the

interior conductivity distribution σ(x) in � can be described

as follows

σ(x, γ ) = σ0(1 − H ( f s(x, γ ))) + σ1 H ( f s(x, γ )). (12)

H (ξ) is the Heaviside function, where H (ξ) = 0 for ξ < 0

and H (ξ) = 1, otherwise.

In practice, one cannot differentiate the exact Heaviside

function in the classical sense, thus one often replace it with a

smooth approximation of the Heaviside function, such as the

C2 function

Hτ (ξ) =

⎧
⎪⎪⎨
⎪⎪⎩

0, ξ < −τ,
1

2
[1 +

ξ

τ
+

1

π
sin(

πξ

τ
)], |ξ | ≤ τ,

1, ξ > τ.

(13)

Here, the positive parameter τ defines a band ξb = 2τ within

which the Heaviside function is smoothed.

It is worth remarking that, model (12) in fact maps the

space of unknown region Ds into the space of unknown design

vector γ , and is therefore a mechanism for incorporating

additional geometric information into shape reconstruction.

This feature thereby renders the solution process more flexible,

and also reduces the dimension and the complexity of the

reconstruction problem.

Finally, the observation model in (7) can be updated as

V = U(σ (x, γ )) + e. (14)

Then, the shape reconstruction and estimation of piecewise

constant conductivity σ0 and σ1 in MMC-based approach

amounts to solving the minimization problem

[γ̂ , σ̂0, σ̂1] = arg min{kLe(V − U(σ ))k2 + k(γ − γ
∗)k2

+

1�

j=0

k(σ j − σ ∗)k2}. (15)

Here Le is defined as LT
e Le = C−1

e , where Ce is the obser-

vation noise covariance matrix. γ
∗ and σ ∗

j are predetermined

values (see details in Section IV-E). The last two terms on

the right-hand side of (15) are referred to as the regularization

functionals, promoting stable reconstructions while penalizing

unwanted features in the solution.

C. Sensitivity Analysis for MMC-Based Framework

To solve the nonlinear minimization problem in (15), iter-

ative methods (e.g., Gauss-Newton algorithm) are applied.

During the iterations, the Jacobian matrix J (γ , σ0, σ1) =
∂U

∂(γ ,σ0,σ1)
is required. We derive the Jacobian by first applying

the chain rule which yields

JU (γ )=
∂U

∂γ
=

∂U

∂σ
·

∂σ

∂ f s
·
∂ f s

∂γ
=

∂U

∂σ
· (σ1 − σ0)δ( f s) ·

∂ f s

∂γ
.

(16)

Here, δ(·) denotes the Dirac delta function defined as

δτ (ξ) =
d

dξ
Hτ (ξ) =

⎧
⎨
⎩

0, |ξ | > τ,
1

2τ
[1 + cos(

πξ

τ
)], |ξ | ≤ τ.

(17)
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Jacobian term ∂U
∂σ

can be computed using the standard

method [14] and
∂ f s

∂γ
can be computed analytically.1

Similarly, we have

JU (σ0) =
∂U

∂σ0
=

∂U

∂σ
·

∂σ

∂σ0
=

∂U

∂σ
· (1 − H ( f s)), (18)

and

JU (σ1) =
∂U

∂σ1
=

∂U

∂σ
·

∂σ

∂σ1
=

∂U

∂σ
· H ( f s). (19)

Finally, the minimization problems in (15) is solved with

an iterative Gauss-Newton optimization regime, which is

equipped with a line-search algorithm to determine the step

size λk in the solution 2̂k = 2̂k−1 + λk2̄. Here, 2̂k is the

current estimate and 2̄ is the least squares update.

IV. METHODS

In this section, the performance of the MMC-based recon-

struction approach is tested with numerical simulations and

experimental data. The test cases, implementation details,

parameter selection used in the reconstruction and experimen-

tal evaluation are explained. For the results and discussion, see

Section V

A. EIT Measurement Simulations

To study the performance of the MMC-based approach,

three simulated cases, denoted Cases 1-3, were conducted with

a thorax-shaped domain obtained from a computed tomogra-

phy scan of a human thorax. On the domain boundary L = 16

electrodes with length 2 cm were equidistantly placed and

applied for use in EIT measurements. A total of 54 pairwise

current injections were applied between electrodes i and j ,

i = 1, 5, 9, 13, j = 1, . . . , 16\i . The amplitude of the

current was 1 mA, and the contact impedances z` were set to

5 � · cm for all the electrodes. The simulated conductivities

of the tissues were set as 0.5 mS/cm for lung, 3 mS/cm for

heart, 3.1 mS/cm for aorta and 2 mS/cm for background,

respectively. The discretization details of the measurement

domain are given in Table II. To simulate real conditions,

Gaussian noise with 0.1% standard deviation of the difference

between the maximum and minimum value of the noiseless

data was added to the simulated data. The selected noise level

corresponds to the signal to noise ratio SNR = 42 dB.

It is important to remark that in the simulations, we did not

use design variables to represent the boundary of regions for

assigning conductivity profiles. Rather, the regions of lungs,

heart and aorta were identified with the structural mesh.

B. Experimental Setup

In the experimental studies (Cases 4-6), the experiments

were conducted with a human thorax-shaped water tank. The

horizontal and vertical radii of the tank were Rh = 17.5 cm

and Rv = 14 cm, respectively. Sixteen identical metallic

rectangular electrodes with a width of 2 cm were attached

to the interior lateral surface of the tank. The tank was filled

1The partial derivatives of f s with respect to design variables can be found
in symbolic form using the diff command in Matlab

TABLE II

DISCRETIZATION DETAILS OF THE MEASUREMENT AND

RECONSTRUCTION DOMAINS IN THE TEST CASES.

Nu IS THE NUMBER OF NODE POINTS IN THE

2ND ORDER MESH FOR APPROXIMATION

OF u(x ), AND Nσ IS THE NUMBER OF

NODE POINTS FOR APPROXIMATION

OF σ(x ) IN THE 1ST ORDER MESH

with saline having a conductivity of 2.05 mS/cm. To simulate

different conductivity distributions, lung and heart shaped

inclusions made of agar and aorta made of copper were placed

inside the tank. Note that more salt was added into the agar

gel for making the heart, thereby the conductivity of heart is

much higher than lung. The experiments were carried out with

KIT4 measurement system [57]. The current patterns described

in Section IV-A and adjacent measurement patterns were used

in the measurements.

C. Test Cases

To study the performance of the MMC-based method in

medical EIT application: lung imaging, the following two

types of test cases were carried out.

1) Cases 1&4: Lung Imaging With Homogeneous Back-

ground: In this type of test cases, the heart and aorta were

assumed to be in an ideal state, having the same conductivity

value as the background, i.e., σ0 is constant.

2) Cases 2-3&5-6: Lung Imaging With Non-Homogeneous

Background: From a practical point of view, the heart and aorta

have different conductivity profiles compared to the back-

ground. For this reason, a more realistic type of test was con-

sidered: in Cases 2&5, the heart was assigned or constructed

with different conductivity value/material; in Cases 3&6,

the heart and aorta were assigned or constructed with different

conductivity values/materials. This type of test cases leads to

a non-homogeneous background. That is, σ0 is not constant

anymore, leading to modeling errors in MMC-based recon-

struction, since the current work is devoted to the problems

with single-phase inclusions. We note that it is possible to

apply multiple STDFs [53] for representing the regions of

lung, heart and aorta. However, as our primary interest in

this study is to evaluate the performance of the MMC-based

method for lung imaging, we defer this work to the future.

The main reason for considering both types is to study

the performance of MMC-based method with and without

modeling errors due to the non-homogeneous background.

D. Estimates for Comparison

For comparison purposes, we also computed conventional

reconstructions based on smoothness prior and total variation

prior listed below. For parameter choices in each reconstruc-

tion, see Section IV-E.
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TABLE III

INITIAL DESIGN VARIABLES USED IN THE MMC-BASED RECONSTRUCTIONS

• Reconstructions based on smoothness prior (SMP):

σ̂ = arg min
σ>0

{kLe(V − U(σ ))k2 + kLσ (σ − σ ∗)k2},

(20)

where σ ∗ is the expectation of σ and LT
σLσ = 0−1

σ , and

0σ is determined element wise, where the matrix element

(τ, κ) for a distributed parameter σ at locations xτ and

xκ is given by

0σ (τ, κ) = a exp


−

kxτ − xκk2
2

2b2

�
+ dδτκ . (21)

Here, the scalars a, b and d are positive, and δτκ denotes

the Kronecker delta function, where δτκ = 1 for τ = κ

and δτκ = 0, otherwise. In a basic sense, parameter a

contrtols the weighting, b incorporates spatial correlation,

and d is a small positive value which is used to ensure

that 0σ is well-conditioned.

• Reconstructions based on total variation prior (TVP):

σ̂ = arg min
σ>0

{kLe(V − U(σ ))k2 + αTV(σ )}. (22)

Here, α > 0 is a weighting parameter, and

TV(s) =

Ne�

k=1

|ek|

�
k(∇s)|ek k

2 + β

is a differentiable approximation of the isotropic total

variation functional. (∇s)|ek is the gradient of s at ele-

ment ek with k = 1, 2, . . . , Ne , and Ne is the number

of elements. β > 0 is a small positive stabilization

parameter.

Note that, in both conventional estimates, the conduc-

tivity is reconstructed by treating the internal distribution

as continuous i.e. without taking into account the assump-

tion of piecewise constant distributed conductivity. Thus

the corresponding unknown parameters vector in SMP

and TVP was σ̂ T ∈ R
Nσ .

E. Implementation Details

In this subsection, we discuss important information related

to the implementation of the proposed reconstruction method.

To start, we remark that the even number (exponent) m of

STDF in (10) was set to 2 in this paper, and n = 6 candidate

components were used for representing the inclusions shape,

except in the robustness study of the proposed approach with

respect to different number of components n and exponent m

(see details in Sections IV-F & V-B).

The initial candidate components were empirically selected,

and the center (x0, y0) of initial components were defined

by using the polar coordinates r and ψ , i.e., (x0, y0) =

(rcos(ψ), rsin(ψ)). Details of the polar coordinates (r, ψ) and

other initial design variables of γ
∗ used in the MMC-based

reconstructions are listed in Table III. In addition, for shape

representation, Heaviside function (13) with τ = A/2 was

used. Here, A denote the mean value of the element area in

the FEM mesh, namely, A = Area of domain �
Number of elements

.

Next, the expected values σ ∗
0 and σ ∗

1 in the penalty term

were set to the best homogeneous estimate:

σhom = arg min{kLe(V − U(σ ))k2}. (23)

In SMP based reconstruction, to construct the prior covari-

ance in (21), parameters a, b and d were empirically selected

as a = 1.5 and a = 9 for the numerical test cases and

experimental test cases, respectively; b = 3 and d = 1 ×10−3

are fixed for both numerical and experimental test cases.

In TVP based reconstruction, we selected the parameters α

and β in (22) by applying a confidence-based strategy studied

in [58]. The parameters used in this paper are α = 0.5 and

β = 1 × 10−3, respectively.

F. Robustness Studies

In MMC-based shape reconstruction framework, shape

components are served as the basic blocks of shape and

topology optimization. Then two natural questions arise here:

How many candidate components should be considered in

the reconstruction problem, and what is the performance of

MMC-based reconstruction when the exponent m of STDF

increases? For example, in some cases one might also be inter-

ested to check the performance with components number n

more than six and exponent m bigger than two. To get insight

to these questions, we carried out a set of reconstructions of

Case 1 using n = 6, 8, 12 and 24 with a fixed exponent m = 2

to investigate how the number of components n influences the

reconstruction; we also carried out a set of reconstructions of

Case 1 using different exponent m = 2, 4, 6 and 8 with a fixed

number of components n = 6.

Note that studying the performance of the proposed

approach by varying the component’s number n could be

treated as an alternative way to check the performance of

the approach w.r.t different expected values of γ
∗ in the

minimization problem of (15). Further, to explore the effect of

initial piecewise constant conductivity values in (15) for the

proposed approach, we performed a set of reconstructions of

Case 1 by assigning different values to σ ∗. For this purpose,

we define

σ ∗ = ησhom, (24)
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TABLE IV

EVALUATION CRITERIA IN SIMULATED TEST CASES: SSIMS AND RCOS

TABLE V

EVALUATION CRITERIA FOR EXPERIMENTAL

STUDIES: RCOS AND RCRS

where η is the initial conductivity coefficient. With η =

[0.2, 0.4, · · · , 2], a total of 10 images were obtained. The

evaluation parameters described in Section IV-G versus η were

computed for all the images and are shown in Fig.10.

G. Evaluation Criteria

To evaluate the performance of the proposed approach we

apply some criteria measuring the reconstruction ability. First,

to access quantitatively the recovery of binary conductivity

values, we calculated a relative contrast (RCo):

RCoσ j =
�σ j

σTrue
j

. (25)

To allow easy comparison of the values in Tables IV & V, the

relative quantity RCo was used here instead of the respective

quantity �σ j . For RCo, a value of 1 would indicate exact match

of the true and estimated binary conductivity values, while a

value greater or less than 1 would indicate overestimation or

underestimation, respectively. As mentioned in Section IV-D,

the internal conductivity distribution was treated as continuous

in the SMP and TVP-based estimates. Therefore, we didn’t

compute RCo for both reference estimates. As an additional

metric, we utilize the structural similarity (SSIM) for measur-

ing the similarity between the true and reconstructed images

in the numerical test cases for all the estimates.

To quantitatively access the recovery of the shape in the

experimental studies, we computed the relative area coverage

ratio (RCR), shown in Table V, for the inclusions in the

reconstructed images:

RCR =
CR

CRTrue
, (26)

where CR denotes the coverage ratio defined as the ratio of

the area of the recovered inclusions to the total area of the

water tank. Correspondingly, CRTrue is the CR of the true

inclusion. Value one would indicate exact match of area of

the recovered and true inclusions, while a value less or greater

than one would indicate underestimation or overestimation,

respectively.

Note that, for the experimental studies, 75% of the measured

saline conductivity was applied as the threshold for detecting

Fig. 4. Reconstructions of Cases 1-3 using simulated data. All the
images have color bar scale from 0.45 mS/cm to 3.10 mS/cm.

Fig. 5. Plots of initial candidate components and final components in
Cases 1-6 with MMC-based approach.

the inclusions, and ImageJ was used to determine the approx-

imated true areas of the lung-shaped inclusions.

V. RESULTS

In this section, we first show the MMC-based reconstruc-

tions for numerical test cases. Then, robustness studies of

the proposed approach against different component numbers,

exponent in the STDF as well as modeling errors caused by

the presence of non-homogeneous background are presented.

Finally, experimental data is used for investigating the perfor-

mance of the proposed approach.

A. Reconstructions From Simulated Data

Fig. 4 shows the results of test Cases 1-3: the images

on the first column denote the (simulated) true conductivity

distributions; the final MMC-based reconstructions are shown

in the second column; The conventional reconstructions SMP

and TVP are shown in the third and last columns, respectively.

Note that the initial and final component distributions of

MMC-based approach in Cases 1-3 are shown in the first row

of Fig. 5.

We observe that the conventional approaches (SMP and

TVP) and the proposed MMC-based approach successfully

detect the inclusions and track the shape of the lung relatively

well. However, the quality of the estimates obtained with the

proposed MMC approach and TVP are visibly superior to

quality of SMP estimate. The SMP estimate, on the other

hand, produces artifacts that appear in the domain as blurred

anomalies, making it difficult to track a clear interface between

lungs and background. This is an expected result, since the

true conductivity is piecewise constant distributed, i.e., the
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conductivity is discontinuous, so the selected smoothness prior

of SMP is obviously not the best option in these test cases.

In other words, the assumption of smoothness in not realistic.

On the other hand, MMC-based estimate provides quanti-

tatively accurate reconstructions for the shape of lungs and

the binary conductivities, In overall, MMC-based estimate is

more reliable than SMP and at least comparable to TVP, which

is especially evident with the best SSIM parameter listed in

Table IV.

Further, when there is modeling error (caused by non-

homogeneous background) presented in the reconstruction

problem of Cases 2&3, the MMC-based estimate still gives

feasible reconstructions of the lung. This is mainly because

the EIT measurement data is more sensitive to large inclusions

with low conductivity and is relatively insensitive to small

inclusions with high conductivity presented in the domain. For

example, in real medical applications, lungs are less conduc-

tive than the background due to the presence of air. Moreover,

the size of the heart and/or aorta is significantly smaller than

the lungs while the conductivity is higher. It is therefore

apparent that there is a trade-off between the sizes and relative

conductivities present in the background, heart, aorta and

lungs. For this reason, the heart and aorta are ‘absorbed’ by

the background during the reconstruction automatically. These

findings and features are accordance to our previous works

using PLS-based reconstructions [23] and [43]. In some special

cases, as mentioned in Section IV-C, one may apply two or

three STDFs [53] for representing the regions of lung, heart

and aorta, respectively. A general strategy for representing

multiple regions using multiple STDFs will be discussed in

Section V-D.

Note that, for the sake of comparison to other shape-

based estimate, we recall our previous results for the same

test Cases 1&2 using PLS method in Fig.7 of [23]. The

MMC-based estimate is slightly better than the PLS-based

estimate, e.g., in Case 2, SSIM for MMC-based estimate is

0.92 and that one for PLS-based estimate is 0.91. Since both

values are very close to the true value one, we believe that

both methods have a similar performance and are comparable

to each other in terms of image quality.

Fig. 6 shows the evolution of components during the shape

optimization process of Case 1. From this figure it can be

clearly observed how the final shape and topology of the

inclusions are progressively reached by updating the positions

and shapes of the components.

To see how are the binary conductivity values σ j updated

in the MMC-based reconstruction, in Fig. 7(left) we show

the comparisons between the true and estimated binary con-

ductivity values at each iteration. To check the convergence

behaviors of the MMC-based approach, the root mean square

error (RMSE) between the estimated conductivity distribution

σ̂ (x, γ ) and the true σ(x) was computed as

RMSE =
kPσ(x) − σ̂ (x, γ )k2

kPσ(x)k2
× 100%, (27)

where P is a matrix that interpolates σ(x) from a fine mesh

onto a coarse mesh. The RMSE versus the number of iteration

steps is shown in Fig. 7(right).

Fig. 6. Evolution of candidate components during the shape optimization
process in Case 1.

Fig. 7. Estimation of binary conductivity values and RMSE versus
number of iteration steps for the MMC-based reconstruction in Case 1.

B. Results of Robustness Studies

Fig. 8 investigates how the number of candidate components

n influences the reconstruction. As can be seen from Fig. 8,

estimates with n = 6, 8 and 12 well recover the lung shape

and binary conductivity values, leading to evaluation criteria

very close to the true value one, see details in bottom row of

Fig. 8. On the other hand, when more candidate components

are considered, e.g., n is chosen to be 24, the geometry of

the shape becomes severely distorted and the conductivity

of the inclusion is significantly overestimated. This feature

does not go beyond our expectation, since estimate with a

large number of n will inevitably increase the number of

(unknown) design variables. For example, the dimension of

unknown design variable vector γ is 24 × 7 for n = 24.

In fact, by increasing the number of candidate components,

not only the reconstruction problem becomes increasingly ill-

posed and more computationally demanding, the size of the

solution space also increases [59].

Fig. 9 illustrates the sensitivity of the reconstruction scheme

against the choice of the even number (exponent) m in STDF.

It can be seen that the estimate with m = 2 shows superior

performance and tracks the shape of the inclusions remarkably
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Fig. 8. Robustness study of the MMC-based estimate with respect to
the number of components n. The same data of Case 1 and exponent
m = 2 were used for the reconstruction. The second column with n = 6
is a repetition of the first row in Fig. 4 but with different color bar range.

Fig. 9. Robustness study of the MMC-based estimate with respect to
exponent m. The same data of Case 1 and component number n = 6
were used for the reconstruction. The second column with m = 2 is also
a repetition of the first row in Fig. 4 but with different color bar range.

well, as evidenced by the evaluation parameters shown in the

bottom row of Fig.9. On the other hand, edge serrations are

produced when m increases, causing shape distortions to the

reconstructed images.

The second row of Fig.9 illustrates how, as the exponent m

increases, the initial candidate components gradually change

from ellipses to rounded rectangles. In fact, as the exponent

m approaches a relatively large value, the candidate com-

ponents become possessing sharp corners. From experience

with medical applications, organ and inclusions in the body

are often smooth, therefore, m should be selected in such a

way that it will allow the candidate components to possess

smooth boundaries (e.g., edges with relatively large radii).

However, if one is interested in reconstructing inclusions that

may have sharp corners, a relatively large value of m should be

utilized. For example, in the well-studied examples of structure

topology optimization [45], [46], [53], m was set to six.

Fig. 10 shows the evaluation criteria of the robustness study

of the proposed approach against different initial piecewise

constant conductivity values σ ∗. Based on these results, we can

conclude that the proposed approach is quite robust to the

varying initial σ ∗, resulting very good reconstructions of the

lung shape and estimation of the binary conductivity values.

C. Reconstructions From Experimental Data

Next, we proceed to reconstructions from water tank

data. Fig. 11 depicts the results of Cases 4-6 described in

Fig. 10. Evaluation parameters of the robustness study of the
MMC-based approach versus the initial conductivity coefficient η. The
same data set as Case 1 was used for the reconstruction. The dashed
vertical line denotes the case shown in Fig. 4.

Fig. 11. Reconstructions of Cases 4-6 using experimental data.
In Cases 5&6, the conductivity of lung is entirely different from the heart
because more salt has been added to the agar gel to make the heart.

Section IV-C. The initial candidate and final components are

shown in the second row of Fig. 5. The contrast RCo based on

MMC estimate for background, i.e., saline, and the coverage

ratios based on the estimates (MMC, SMP and TVP), of the

lung-shaped inclusions are tabulated in Table V. Note that

we only show the RCo for the background with MMC based

estimate, since the exact conductivity values of the lung-

shaped inclusions were not known. Also, as mentioned in

Section IV-D, in the estimates with SMP and TVP, the internal

conductivity distribution was treated as continuous, such that

RCo is not available for both reference estimates.

As the results shown in Fig. 11, all the estimates are able to

recover the shape and location of lung-shaped inclusions rela-

tively well. However, the quality of the estimate obtained with

the proposed MMC approach is better compared to the esti-

mates using SMP and TVP. The coverage ratio RCR (26) with

MMC is very close to the true value in Case 4, see Table V.

Meanwhile, the boundaries of the lung-shaped inclusions are

sharper than in the estimates with SMP and TVP. Despite

the modeling error (caused by non-homogeneous background)

presented in the reconstruction problem of Cases 5&6, the

MMC-based estimate still provides feasible reconstructions of

the lung-shaped inclusions. This is also consistent with the

results of Cases 1-3 in Section V-A. We note that the RCRs

of Cases 5&6 in Table V are slightly underestimated, which

does not exceed our expectation, due to the modeling errors

caused by the non-homogeneous background.
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D. Limitations and Further Developments

The present framework is limited by the fact that it is based

on the context of absolute imaging. As such, a number of

issues need to be mentioned.

• First, it is well known that, for absolute imaging,

the use of non-linear iterative methods coupled with

a line search takes several minutes or hours to obtain

the final reconstructions. As an example, the final

reconstructions of SMP and TVP shown Case 1 were

obtained from a MATLAB implementation of the esti-

mates described in Section IV-D on a desktop PC with an

Intel Core i7-6700K processor and 32GB memory within

9 iterations at average speed of 6.7 minutes/iteration,

and 8 iterations at average speed of 35 minutes/iteration,

respectively.

We would like to point out that the proposed MMC-based

approach holds the potential to improve the condi-

tional number of the reconstruction problem and also to

reduce the computational demand associated with shape

reconstruction. As a demonstration of this realization,

in Case 1, the MMC-based estimate was obtained from

a MATLAB implementation of the proposed approach

on the above PC within 27 iterations at average speed

of 4.5 minutes/iteration. Note that, in fact, in MMC

reconstruction, the updates after 9 iterations become

sufficiently small to reach the stopping criteria. Even

though the MMC-based iteration process is faster than

SMP and TVP-based estimates, this still makes the usage

of the MMC-based shape reconstruction in real-time pro-

hibitive. It is highly desirable to develop a methodology,

in principle, that uses the MMC-based technique, which

can be deployed in real-time. As a potential solution to

improve the efficiency, the proposed algorithm can be

accelerated using more efficient forward solvers and more

advanced optimization methods. Possible approaches to

accelerate the minimization include approximation error

model [60] and also reduced order models [61] to speed

up the inversion. This would be crucial with a view to

practical medical applications.

• Second, to speedup the reconstruction, another option is

to formulate the MMC-based reconstruction approach in

the context of linear difference imaging, since it is known

that the shape information in EIT is some sense invariant

under linearization [62]. Generally, in difference imag-

ing, the nonlinear forward problem U(σ ) is linearized

at a (homogeneous) conductivity distribution σhom by

using the first order Taylor series: U(σ ) ≈ U(σhom) +

JU (σhom)(σ − σhom). Then, by fixing the Jacobian term

JU (σhom), the support of the conductivity difference

1σ(x, γ ) = σ − σhom can be obtained through solving

a least square based minimization problem and updating

the Jacobian J1σ (γ ), for example. Since JU (σhom) can

be computed off-line, it can significantly speed up the

MMC-based reconstruction. We defer the details of study-

ing the new MMC-based difference imaging approach to

future work.

• Third, in the robustness studies of the proposed approach

with non-homogeneous background by presenting a heart

Fig. 12. Modeling multiple regions with STDFs. Each region is char-
acterized by a different sign combination of the two STDFs fs1(x ,γ 1)

and fs2(x ,γ 2).

and/or aorta in the measurement domain, the main interest

in these studies is to track the lung shape. However,

a natural question that arises here is whether the proposed

MMC-based approach is capable of reconstructing the

heart and/or aorta instead of lung? Here, we address

this question by recalling the common phenomenon: EIT

measurement is more sensitive to large inclusions with

low conductivity and is relatively insensitive to small

inclusions with high conductivity. Considering that in the

real applications, lungs are resistive due to presence of

air, conductivity contrast of lung is quite high with respect

to background, and heart/aorta size is significantly small

compared to lung, such that the corresponding voltages

induced by lung have more effect than that of heart

or aorta on the EIT measurements. Therefore, the heart

and aorta are ‘absorbed’ by the background during the

reconstruction automatically. However, for some special

cases, one may apply multiple STDFs to do multiphase

estimation for both shapes of lung and heart/aorta.

In multiphase estimation, the key point is to model

the conductivity distribution by using some characteris-

tic functions, e.g., multiple STDFs. Similar as in [43],

a number of p STDFs can be used to represent up

to ω = 2p different phases by distinguishing all pos-

sible sign combinations of these STDFs. For sake of

simplicity, we illustrate the idea with the simple but

representative case where p = 2. Suppose, there are

four regions/phases in the domain with piecewise constant

conductivity values of regions as σ = (σ0, σ1, σ2, σ3).

The four regions/phases are represented by two STDFs

f s1(x, γ 1) and f s2(x, γ 2) that can be described through

inner conductivity distribution σ(x, γ 1, γ 2) as

σ(x, γ 1, γ 2) = σ0(1−H ( f s1(x, γ 1)))(1−H ( f s2(x, γ 2)))

+ σ1 H ( f s1(x, γ 1))(1 − H ( f s2(x, γ 2)))

+ σ2(1 − H ( f s1(x, γ 1)))H ( f s2(x, γ 2))

+ σ3 H ( f s1(x, γ 1))H ( f s2(x, γ 2)).

Fig.12 outlines a general idea on how two STDFs

f s1(x, γ 1) and f s2(x, γ 2) are used in this strategy for

representing four different regions, in which σ |D j =

σ j , j = 0, · · · , 3. We remark that, studying the

implementation of MMC-based multiphase reconstruction
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framework is out of the scope of this paper, hence it was

left as a future research.

• Lastly, the proposed reconstruction approach is based

in the framework of absolute imaging and is still in

its infancy. As such, much additional work needs to be

done to improve its efficiency, and to explore its robust-

ness to modeling error, e.g., errors due to inaccurately

known contact impedances and domain boundary shape.

We are currently extending the proposed framework to

difference imaging to reduce stringency with respect to

the requirement for accurate knowledge of the domain

boundary shape ever-present in absolute imaging. Clearly,

this matter is beyond the scope of this paper and is

planned to be presented in a future work. Moreover, for

sake of simplicity in this paper we considered only 2D

problems, whereas the capability and efficiency of the

proposed framework is more pronounced for 3D shape

reconstructions where the contrast between the number

of voxels and the number of design variable parameters

in a MMC-based approach is more significant. Studying

3D scenarios via the propose framework is an important

future direction and a continuation of the current work.

VI. CONCLUSION

In this paper, we proposed a moving morphable component-

based framework for the EIT shape-reconstruction problem.

In this effort, we demonstrated shape reconstruction in an

explicit and geometrical way using the proposed approach. The

key idea of the proposed approach is that a set of morphable

components represented by STDFs with variable parameters

(such as lengths, thicknesses, orientations) is treated as the

basic blocks of shape reconstruction. The optimal conductivity

distribution, i.e., geometric shape, is found by optimizing

STDF parameters and layout (connectivity) of these morphable

components. Moreover, based on the fact that the number of

underlying parameters in the proposed approach are usually

much less than those involved in traditional STDF-based

approaches, the conditional number of the reconstruction

problem is intrinsically improved. In particular, the proposed

framework offers a mechanism to directly and effectively

incorporate prior information, such as position, size, etc.,

of the inclusions to be imaged into the reconstruction problem,

which may has practical advantages in medical applications.
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