It is made available under a CC-BY 4.0 International license .

1 A *MUC5B* gene polymorphism, rs35705950-T, confers protective effects in COVID-19 infection.

2

3 Anurag Verma PhD^{1,2†}, Jessica Minnier PhD^{3,4,5†}, Jennifer E Huffman PhD^{6†}, Emily S Wan MD, MPH^{7,8†}, Lina Gao Andrag Verma PhD⁻¹, Jessica Minnier PhD⁻¹, Jennirer E Hurman PhD⁻¹, Emily S Wan MD, MPH⁻¹, Lha Gao PhD^{9,10}, Jacob Joseph MBBS, MD^{11,12}, Yuk-Lam Ho MPH¹³, Wen-Chih Wu MD, MPH^{14,15}, Kelly Cho PhD, MPH^{16,17}, Bryan R Gorman PhD¹⁸, Nallakkandi Rajeevan PhD^{19,20}, Saiju Pyarajan^{21,22}, Helene Garcon MD⁶, James B Meigs MD, MPH²³, Yan V Sun PhD^{24,25}, Peter D Reaven MD^{26,27}, John E McGeary PhD^{28,29}, Ayako Suzuki MD, PhD, MSc^{30,31}, Joel Gelernter MD^{32,33}, Julie A Lynch PhD, RN^{34,35}, Jeffrey M Petersen MD^{36,37}, Seyedeh Maryam Zekavat BS^{38,39}, Pradeep Natarajan MD, MMSc^{40,39,41}, Cecelia J Madison MBl⁴², Sharvari Dalal MD^{43,37}, Darshana N Jhala MD, 4 5 6 7 8 B Mus^{44,45}, Mehrdad Arjomandi MD⁴⁶, Elise Gatsby MPH⁴⁷, Kristine E Lynch MS PhD^{47,48}, Robert A Bonomo⁴⁹, Mat Freiberg⁵⁰, Gita A Pathak PhD^{51,52}, Jin J Zhou PhD^{53,54}, Curtis J Donskey MD⁵⁵, Ravi K Madduri MS⁵⁶, Quinn S Wells 9 10 MD, PharmD⁵⁷, Rose DL Huang MS⁶, Renato Polimanti PhD^{51,52}, Kyong-Mi Chang MD⁵⁸, Katherine P Liao MD, 11 MPH⁵⁹, Philip S Tsao PhD⁶⁰, Peter W.F. Wilson MD^{25,61}, Adriana Hung⁶², Christopher J O'Donnell MD, MPH⁶³, John M 12 Gaziano⁶⁴, Richard L Hauger MD^{65,66}, Sudha K. Iyengar PhD^{67,68*} and Shiuh-Wen Luoh MD PhD^{69*} 13 14 15 ¹Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, USA, ²Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA, ³OHSU-PSU School of Public Health, 16 17 Oregon Health & Science University, Portland, OR, 97239, USA, ⁴Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR, 97239, USA, ⁵VA Portland Health Care System, OR, 18 97239, USA, ⁶MAVERIC, VA Boston Healthcare System, Boston, MA, 02130, USA, ⁷Department of Medicine, 19 Pulmonary, Critical Care, Sleep, and Allergy Section, VA Boston Healthcare System, Boston, MA, 02115, 20 21 USA, ⁸Channing Division of Network Medicine, Brigham & Women's Hospital, Boston, MA, 02115, USA, ⁹Knight Cancer Institute, Biostatistics Shared Resource, Oregon Health & Science University, ¹⁰VA Portland Health Care 22 23 System, ¹¹Department of Medicine, VA Boston Healthcare System, Boston, MA 02115, USA, ¹²Brigham & Women's Hospital, ¹³MAVERIC, VA Boston Healthcare System, Boston, MA, 2130, USA, ¹⁴Department of Medicine, Cardiology, Providence VA Healthcare System, Providence, RI, 02908, USA, ¹⁵Alpert Medical School & School of 24 25 Public Health, Brown University, Providence, RI, 02903, USA, ¹⁶MAVERIC, VA Boston Healthcare System, 150 S 26 Huntington Ave, Boston, MA, 02130, USA, ¹⁷Medicine, Aging, Brigham and Women's Hospital, Harvard Medical 27 28 School, Boston, MA, 02130, USA, ¹⁸VA Boston Healthcare System, 150 S Huntington Ave, Boston, MA, 02131, 29 USA, ¹⁹Yale Center for Medical Informatics, Yale School of Medicine, New Haven, CT, 06511', USA, ²⁰Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, CT, 06516', USA, ²¹VA 30 Boston Healthcare System, Boston, MA, 2115, ²²Department of Medicine, Harvard Medical School, ²³Medicine, 31 General Internal Medicine, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02115, USA, ²⁴Epidemiology, 32 33 Emory University School of Public Health, 1518 Clifton Rd. NE, Atlanta, GA, 30322, USA, ²⁵Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA, ²⁶Deptartment of Medicine, Phoenix VA Healthcare 34 System, Phoenix, AZ, 85012, USA, ²⁷Univ. of AZ, ²⁸Department of Psychiatry and Human Behavior, Providence VA 35 Medical Center, Providence, RI, 2908, USA, ²⁹Brown University Medical School, ³⁰Department of Medicine, 36 37 Gastroenterology, Durham VA Medical Center, 508 Fulton St, Durham, NC, 27705, USA, ³¹Department of Medicine, Gastroenterology, Duke University, Durham, NC, 27710, USA, ³²Psychiatry, Human Genetics, Yale Univ. School of 38 Medicine, 950 Campbell Avenue, West Haven, CT, 06516, USA, ³³VA CT Healthcare Center, ³⁴VA Informatics & 39 Computing Infrastructure, VA Salt Lake City Health Care System, Salt Lake City, UT, USA, ³⁵Department of Medicine, 40 41 University of Utah School of Medicine, Salt Lake City, UT, ³⁶Pathology and Laboratory Medicine, Corporal Michael 42 Crescenz VA Medical Center, Philadelphia, PA, 19104, USA, ³⁷Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA, ³⁸Computational Biology & Bioinformatics, Yale School of Medicine, 43 333 Cedar St, New Haven, CT, 6510, USA, ³⁹Program in Medical and Population Genetics, Cardiovascular Disease 44 45 Initiative, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA, ⁴⁰Cardiovascular Research Center, 46 Massachusetts General Hospital, Boston, MA, 02114, USA, ⁴¹Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA, ⁴²Clinical Data Science Research Group, ORD, Portland VA Medical Center, Portland, OR, 47 97239, USA, ⁴³Pathology and Laboratory Medicine, Corporal Michael J Crescenz VA Medical Center, Philadelphia, 48 49 PA, 19104, USA, ⁴⁴Pathology and Laboratory Medicine, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, 19104, ⁴⁵Perelman School of Medicine, University of Pennsylvania, 19104, ⁴⁶Medicine, Pulmonary and Critical 50 Care, San Francisco VA Healthcare System; University of California San Francisco, San Francisco, CA, 94121, 51

It is made available under a CC-BY 4.0 International license .

USA, ⁴⁷VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Healthcare System, Salt Lake City, 52 ⁴⁸Internal Medicine, Epidemiology, University of Utah School of Medicine, Salt Lake City, UT, ⁴⁹Case Western 53 UT. Reserve University, Cleveland, OH, ⁵⁰Vanderbilt University Medical Center, Nashville, TN, ⁵¹Department of 54 55 Psychiatry, Division of Human Genetics, Yale School of Medicine, New Haven, CT, 06511, USA, ⁵²VA Connecticut Healthcare System, West Haven, CT, 06516, USA, ⁵³Medicine, University of California, Los Angeles, Los Angeles, CA, 56 90024, USA, ⁵⁴Epidemiology and Biostatistics, University of Arizona, AZ, 85724, USA, ⁵⁵Infectious Disease Section, 57 Louis Stokes Cleveland VA and Case Western Reserve University, Cleveland, OH, 44106, USA, ⁵⁶Data Science and 58 Learning, Argonne National Laboratory, 9700 S Cass Ave, Lemont, IL, 60439, ⁵⁷Departments of Medicine, 59 60 Biomedical Informatics, and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA, ⁵⁸Corporal Michael J Crescenz VA Medical Center, ⁵⁹Medicine, Rheumatology, VA Boston Healthcare System, 61 62 Boston, MA, 02130, ⁶⁰Precision Medicine, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA, ⁶¹Emory University School of Medicine, Atlanta, GA, 30322, USA, ⁶²(No affiliation data 63 provided), ⁶³Medicine, Cardiology, VA Boston Healthcare System, 1400 VFW Parkway, Boston, MA, 2132, USA, ⁶⁴VA 64 Boston Healthcare System, Boston, MA, ⁶⁵Center of Excellence for Stress & Mental Health, VA San Diego 65 Healthcare System, San Diego, CA, 92161, USA, ⁶⁶Center for Behavioral Genetics of Aging, University of California 66 San Diego, La Jolla, CA, 92093, USA, ⁶⁷Case Western Reserve University, Cleveland, OH, 44106, USA, ⁶⁸Louis Stokes 67 Cleveland VA Medical Center, Cleveland, OH, 44106, USA, ⁶⁹VA Portland Health Care System, Portland, OR, 97239, 68 69 USA

70 Joint Authorship

- 71 ⁺These authors contributed equally to this work
- 72 *These authors jointly supervised this work
- 73

Supported by MVP035 award from Million Veteran Program, Office of Research and Development,
 Veterans Health Administration, and Veteran Affairs of the United States Government BX 004831
 (P.W/K.C). This publication does not represent the views of the Department of Veteran Affairs of the
 United States Government.

78

Author contributions: A.V, J.E.H, S.I, S.L, L.G and J.M and E.S.W. analyzed data. J.E.H., A.V., L.G., E.S.W.,
S.I., S.L. supervised data collection. A.V., J.E.H, L.G., J.M., E.S.W., S.I. and S.L. wrote the manuscript. A.V.,
J.E.H, L.G. J.M., E.S.W., S.I. and S.L. conceived the study design, supervised data collection and analysis,
and wrote and edited the manuscript. All authors revised and approved the final version to be
published.

84

85 Correspondence should be addressed to Shiuh-Wen Luoh (<u>Shiuh-Wen.Luoh@va.gov</u>), Sudha K lyengar
 86 (<u>ski@case.edu</u>)

- 87
- 88 Manuscript word count: 2,896
- 89
- 90
- 91
- 92
- 93
- 94

It is made available under a CC-BY 4.0 International license .

95 Abstract

96	Rationale: A common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic
97	pulmonary fibrosis, but its role in the SARS-CoV-2 infection and disease severity is unclear.
98	Objectives: To assess whether rs35705950-T confers differential risk for clinical outcomes associated
99	with COVID-19 infection among participants in the Million Veteran Program (MVP) and COVID-19 Host
100	Genetics Initiative (HGI).
101	Methods: MVP participants were examined for an association between the incidence or severity of
102	COVID-19 and the presence of a <i>MUC5B</i> rs35705950-T allele. Comorbidities and clinical events were
103	extracted from the electronic health records (EHR). The analysis was performed within each ancestry
104	group in the MVP, adjusting for sex, age, age ^{2,} and first twenty principal components followed by a
105	trans-ethnic meta-analysis. We then pursued replication and performed a meta-analysis with the trans-
106	ethnic summary statistics from the HGI. A phenome-wide association study (PheWAS) of the
107	rs35705950-T was conducted to explore associated pathophysiologic conditions.
108	Measurements and Main Results: A COVID-19 severity scale was modified from the World Health
109	Organization criteria, and phenotypes derived from the International Classification of Disease-9/10 were
110	extracted from EHR. Presence of rs35705950-T was associated with fewer hospitalizations
111	$(N_{cases}=25353, N_{controls}=631,024; OR=0.86 [0.80-0.93], p=7.4 x 10^{-5})$ in trans-ethnic meta-analysis within
112	MVP and joint meta-analyses with the HGI (N=1641311; OR=0.89 [0.85-0.93], p =1.9 x 10^{-6}). Moreover,
113	individuals of European Ancestry with at least one copy of rs35705950-T had fewer post-COVID-19
114	pneumonia events (OR=0.85 [0.76-0.96], p =0.008). PheWAS exclusively revealed pulmonary
115	involvement.
116	Conclusions : The <i>MUC5B</i> variant rs35705950-T is protective in COVID-19 infection.
117	Keywords: coronavirus disease 2019; severe acute respiratory syndrome coronavirus 2; idiopathic

118 pulmonary fibrosis; electronic health records; genetic association

It is made available under a CC-BY 4.0 International license .

119 Introduction

120	A respiratory disease caused by a novel coronavirus was first reported towards the end of 2019, now
121	known as SARS-CoV-2 (COVID-19). Despite massive public health measures and vaccination initiatives,
122	the COVID-19 pandemic remains a major global health threat. By September 2, 2021, the coronavirus
123	disease-2019 (COVID-19) pandemic had caused more than 219 million confirmed infections and more
124	than 4.5 million deaths worldwide(1).
125	
126	Parenchymal fibrosis is a late complication of respiratory infections with COVID-19(2-4). Among chronic
127	lung diseases, idiopathic pulmonary fibrosis (IPF)(5), a disorder characterized by progressive pulmonary
128	scarring which is associated with a median survival of 2-3 years in the absence of lung
129	transplantation(6), shares several risk factors with those for severe COVID-19 disease, including
130	advanced age(7), cardiovascular disease, diabetes, and history of smoking(5). Thus, common
131	pathological processes may be shared between the fibrotic response towards COVID-19 infection and
132	those underlying IPF.
133	
134	IPF likely develops from a multifaceted interaction between genetic and environmental factors, age-
135	related mechanisms, and epigenetic profibrotic reprogramming(8, 9). One of the most robust genetic
136	risk factors identified for IPF susceptibility is rs35705950-T, a common G to T transversion located
137	approximately 3 kb upstream of the mucin 5B, oligomeric mucus/gel-forming MUC5B gene (10, 11).
138	Laboratory evidence supports that rs35705950-T is: 1) a functional variant located within an enhancer
139	subject to epigenetic programming and 2) contributes to pathologic mis-expression in IPF (12).
140	
141	Given the high minor allele frequency (MAF) of rs35705950-T (~20% among individuals of European
142	ancestry) and possible shared pathophysiological pathways between IPF and severe COVID-19 disease,

It is made available under a CC-BY 4.0 International license .

143	we examined the association between rs35705950-T and the clinical outcomes of COVID-19 infection in
144	the Million Veteran Program (MVP), a multi-ethnic cohort of over 650,000 U.S. Veterans with detailed
145	EHR and genotyping data(13). Following our primary analysis in the MVP, we validated our results with
146	a comparable analysis conducted in the Host Genetics Initiative (HGI), a global collaboration of over 160
147	genetic studies assembled to facilitate rapid discovery and dissemination of COVID-19 related science
148	(14).
149	
150	Methods
151	Data Sources
152	Data from the MVP, a multi-ethnic genetic biobank sponsored by the United States Veterans Affairs
153	(VA), were analyzed (13). All protocols were approved by the VA Central Institutional Review Board and
154	all participants provided written informed consent. For detailed Materials and Methods, please see
155	methods in the online data supplement.
156	
157	Demographic and pre-existing comorbidity data were collected from questionnaires and the VA EHR;
158	"pre-COVID" data was from the time of enrollment into the MVP to September 30, 2019. The cohort
159	demographics and a description of the clinical conditions for all tested patients in the two years
160	preceding the index dates are presented in a supplemental table (Table E1).
161	
162	Genotyping was performed using a custom Thermo Fisher Axiom genotyping platform (MVP 1.0) which
163	included direct genotyping of rs35705950-T. Ancestry was defined using Harmonized ancestry, race, and
164	ethnicity (HARE) derived from self-report and genetic ancestry data(15).
165	

166 <u>COVID-19 outcome definitions</u>

It is made available under a CC-BY 4.0 International license .

1	6	7
- 1	Ο	1

190

168	COVID-19 infection status from 02/2020 - 04/2021 was assessed by either self-report (if testing was
169	performed outside the VA) or by a positive polymerase chain reaction (PCR)-based test(16, 17). For
170	subgroup analyses of severity, only patients with confirmed PCR-based tests were examined. The index
171	date was defined as a COVID-19 diagnosis date, i.e., specimen date, or a self-reported date of diagnosis;
172	and for a hospitalized patient, the admission date up to 15 days prior to the COVID-19 case date.
173	
174	Our analyses used harmonized definitions with the HGI to enable us to obtain larger sample sizes and
175	consistent results. In accordance with the HGI definitions, the three following analyses were performed:
176	(1) COVID Susceptibility: COVID-19 positive vs. population controls; (2) COVID Hospitalization-v1: COVID-
177	19 positive and hospitalized vs. population controls; (3) COVID-19 hospitalization-v2: COVID-19 positive
178	and hospitalized vs. COVID-19 positive but not hospitalized.
179	
179 180	Our other analyses focused on data present in MVP only and addressed the outcome severity and post-
179 180 181	Our other analyses focused on data present in MVP only and addressed the outcome severity and post- index events. For these sets of analyses, we only focused on patients who received their PCR-based
179 180 181 182	Our other analyses focused on data present in MVP only and addressed the outcome severity and post- index events. For these sets of analyses, we only focused on patients who received their PCR-based COVID-19 testing within VA systems. COVID-19 severity scale was derived from the WHO COVID-19
179 180 181 182 183	Our other analyses focused on data present in MVP only and addressed the outcome severity and post- index events. For these sets of analyses, we only focused on patients who received their PCR-based COVID-19 testing within VA systems. COVID-19 severity scale was derived from the WHO COVID-19 Disease Progression Scale(18) as mild, moderate (hospitalization), severe (Intensive Care Unit-level
179 180 181 182 183 184	Our other analyses focused on data present in MVP only and addressed the outcome severity and post- index events. For these sets of analyses, we only focused on patients who received their PCR-based COVID-19 testing within VA systems. COVID-19 severity scale was derived from the WHO COVID-19 Disease Progression Scale(18) as mild, moderate (hospitalization), severe (Intensive Care Unit-level care), or death within 30 days of PCR-confirmed COVID-19 infection. All data and variables were
179 180 181 182 183 184 185	Our other analyses focused on data present in MVP only and addressed the outcome severity and post- index events. For these sets of analyses, we only focused on patients who received their PCR-based COVID-19 testing within VA systems. COVID-19 severity scale was derived from the WHO COVID-19 Disease Progression Scale(18) as mild, moderate (hospitalization), severe (Intensive Care Unit-level care), or death within 30 days of PCR-confirmed COVID-19 infection. All data and variables were assessed centrally by the MVP data core's Shared Data Repository (SDR).
179 180 181 182 183 184 185 186	Our other analyses focused on data present in MVP only and addressed the outcome severity and post- index events. For these sets of analyses, we only focused on patients who received their PCR-based COVID-19 testing within VA systems. COVID-19 severity scale was derived from the WHO COVID-19 Disease Progression Scale(18) as mild, moderate (hospitalization), severe (Intensive Care Unit-level care), or death within 30 days of PCR-confirmed COVID-19 infection. All data and variables were assessed centrally by the MVP data core's Shared Data Repository (SDR).
179 180 181 182 183 184 185 186 187	Our other analyses focused on data present in MVP only and addressed the outcome severity and post- index events. For these sets of analyses, we only focused on patients who received their PCR-based COVID-19 testing within VA systems. COVID-19 severity scale was derived from the WHO COVID-19 Disease Progression Scale(18) as mild, moderate (hospitalization), severe (Intensive Care Unit-level care), or death within 30 days of PCR-confirmed COVID-19 infection. All data and variables were assessed centrally by the MVP data core's Shared Data Repository (SDR).
179 180 181 182 183 184 185 186 187 188	Our other analyses focused on data present in MVP only and addressed the outcome severity and post- index events. For these sets of analyses, we only focused on patients who received their PCR-based COVID-19 testing within VA systems. COVID-19 severity scale was derived from the WHO COVID-19 Disease Progression Scale(18) as mild, moderate (hospitalization), severe (Intensive Care Unit-level care), or death within 30 days of PCR-confirmed COVID-19 infection. All data and variables were assessed centrally by the MVP data core's Shared Data Repository (SDR).

boosted unstructured notes, ICD and Current Procedural Terminology (CPT) codes, and medications are

It is made available under a CC-BY 4.0 International license .

191 taken 2 years prior. Post-index conditions, including pneumonia, were derived using ICD and CPT codes,

- 192 and medications 60 days after the index date. Association with post-index pneumonia events
- 193 (pneumonia60d) were performed among patients who received confirmatory COVID-19 PCR testing at
- 194 VA sites.
- 195
- 196 Statistical analysis
- 197 Firth logistic regression(19, 20) as implemented in the R (v3.6.1) package "brgIm2" (version 0.7.1)(21)
- 198 was used to examine the association between COVID-19 outcomes and rs35705950-T (additive model)
- 199 separately by ancestry, with adjustment for age, age², sex, and ethnicity-specific principal components.
- 200 Trans-ethnic meta-analyses were performed using random-effects models in "metafor" (version 2.4-
- 201 0)(22). Interactions between COVID-19 infection status and rs35705950-T on the outcome of post-index
- 202 pneumonia at 60 days were assessed using a multiplicative interaction term followed by stratified
- analyses by COVID-19 infection status, with additional covariate adjustment of pre-index pneumonia.
- 204

205 Phenome-wide and Laboratory-wide association studies (PheWAS and LabWAS)

- 206 Associations between rs35705950-T allele and pre-existing comorbid conditions and laboratory values
- were examined using preclinical data prior to the COVID-19 era (Sept 2019). Individuals with ≥ 2
- 208 Phecodes(23) were defined as cases. Phecodes with <200 cases within each ancestry group were
- excluded, resulting in 1618 (EUR), 1289 (AFR), 994 (HIS) Phecodes. LabWAS was conducted for 69 clinical
- 210 tests; for individuals with repeated measures, the median of the individuals' EHR record was used.
- 211 Logistic/Firth regression and linear regression were used for Phecodes and laboratory measurements,
- 212 respectively. Bonferroni-adjusted thresholds for significance (by ancestry) were: EUR = 3.09×10^{-05}
- 213 (0.05/1618), AFR = 3.8×10^{-05} (0.05/1289), HIS = 5.03×10^{-05} (0.05/994). Analyses were performed using
- 214 PLINK2(24) (Additional details in supplemental methods).

It is made available under a CC-BY 4.0 International license .

215 Meta-analysis with HGI

- 216 Data from Release 5 (01/18/2021) of the COVID-19 Host Genetics Initiative (HGI) were utilized for
- 217 replication via an inverse-variance weighted meta-analysis using plink2a(24) and
- 218 GWAMA(25)(Additional details in supplemental methods).
- 219
- 220 Results
- 221 Elucidation of the shared genetics with the MUC5B rs35705950-T by PheWAS and LabWAS
- ln order to understand the pathophysiology associated with the *MUC5B* rs35705950-T allele, and more
- specifically how the presence of the *MUC5B* rs35705950-T allele(s) might impact the susceptibility and
- severity of COVID-19, we performed PheWAS and LabWAS to search for the *MUC5B* rs35705950-T allele
- associated conditions prior to COVID-19 infection. The sample sizes for MVP participants used for
- 226 PheWAS and COVID-19 association studies, as well as HGI participants examined in this study, are shown
- in Table 1 (Figure E1). The results of the PheWAS are shown in Figure 1 and Table E3.
- 228
- 229 In the PheWAS analysis between this *MUC5B* variant and 1605 phenotypes (cases > 200) from
- participants of European ancestry, we found significant associations ($P_{bonferroni} < 2.5 \times 10^{-6}$) with 12
- respiratory conditions. Consistent with the previous finding in IPF, rs35705950-T was associated with
- increased risk of Idiopathic fibrosing alveolitis (phecode = 504.1; OR = 2.85 [2.65 3.05], P = 8.90×10^{-1}
- 186), other alveolar and parietoalveolar pneumonopathy (phecode = 504; OR = 2.64 [2.50 2.78], P = 7.07
- 234 x 10^{-289}), and postinflammatory pulmonary fibrosis (phecode = 502; OR = 2.34 [2.23 2.45], P = 8.90 x 10^{-289}
- 235 ¹⁸⁶). Additionally, we also observed significant associations with respiratory failure (Phecode: 509),
- ventilatory dependence (Phecode 509.8), lung transplant (Phecode: 510.2) and pneumonia (Phecode:
- 480) (Figure 1, Table E3). Notably, we evaluated Phecodes for influenza infection (481) in our PheWAS
- analysis and did not observe an association with MUC5B rs35705950-T (p<0.05; the power to detect a

It is made available under a CC-BY 4.0 International license .

difference was >95% as there were 4728 cases of influenza in EUR).

240

241	We identified, as in EUR, a significant association of this MUC5B variant with an increased risk of three
242	pulmonary conditions in African ancestry participants: idiopathic alveolitis (Phecode: 504.1), other
243	alveolar and parietoalveolar pneumonopathy (Phecode:504), and post-inflammatory fibrosis (Phecode:
244	502) (Figure 1, Table E3). Two of these associations, other alveolar and parietoalveolar pneumonopathy
245	(Phecode:504) and post-inflammatory fibrosis (Phecode: 502), were also seen in HIS ancestry, suggesting
246	shared etiology.

247

248 We performed a Laboratory-wide association study of the MUC5B rs35705950-T with median values of 249 clinical laboratory tests measured prior to the COVID-19 pandemic. We only included quantitative traits 250 with 1000 or more individuals. Among EUR participants, we evaluated 63 lab measurements and 10 had 251 a significant association with the rs35705950-T. Increased level of neutrophils (absolute count) had the most significant association (beta= 0.05, p= 6.24×10^{-23}). This specific association has not been previously 252 253 reported. Other significant associations with increased levels were white blood cell counts, neutrophil 254 fraction, estimated glomerular filtration rate (eGFR), eosinophils (absolute count), monocytes (absolute 255 count), and platelets (Figure 2, Table E4). The variant had an association with reduced levels of albumin, 256 lymphocyte fraction, and creatinine (Figure 2, Table E4). There was no significant association with lab 257 measurements in AFR or HIS, but among HIS monocytes (absolute count) were significant (beta =0.0078, $p 1.66 \times 10^{-04}$) in the same direction as in EUR. 258

259

Association of the *MUC5B* rs35705950-T allele with the COVID-19 infection or hospitalization in the MVP and meta-analysis with HGI

It is made available under a CC-BY 4.0 International license .

263	We tested for association between <i>MUC5B</i> rs35705950-T with three COVID-19 phenotype definitions 1)
264	COVID-19 positive as cases vs all the other participants in the MVP as controls 2) COVID-19 positive that
265	required hospitalization for treatment vs all the other participants in the MVP as controls 3) COVID-19
266	positive that required hospitalization for treatment vs COVID-19 positives that didn't require
267	hospitalization as controls. First, we performed the analysis in three major ancestries separately
268	(European, African, and Hispanic). Then, we meta-analyzed the summary statistics with the COVID-19
269	HGI (Freeze 5) using an inverse-variance weighted method (GWAMA)(25). Among the three COVID-19
270	phenotypes, the most significant association of rs35705950-T allele carriers was with fewer
271	hospitalization events (OR = 0.89 [0.85-0.93], p=1.88 x 10^{-6} , Figure 3 and Table 2).
272	
273	Association of the MUC5B rs35705950-T allele with fewer pneumonia events within 60 days of COVID-
274	19 infection in the MVP
275	In 9,216 COVID-19 infected MVP patients, the adjusted odds ratio for post-index pneumonia was 14.8%
276	less with each additional <i>MUC5B</i> rs35705950-T allele (OR = 0.852 [0.757-0.958], p=0.008). In COVID-19
277	negative patients, the adjusted odds for post-index pneumonia was 7.8% higher with each additional
278	MUC5B rs35705950-T allele (OR=1.078 [1.001-1.162], p=0.048). This differential effect of an additional
279	MUC5B rs35705950-T allele on post-index pneumonia in COVID-19 positive vs. COVID-19 negative
280	patients was statistically significant (p-value for interaction 0.0009) in EUR (Table 3, Table E5).
281	
282	Association of the <i>MUC5B</i> rs35705950-T allele with severe outcomes of COVID-19 infection in the
283	MVP
284	Presence of a MUC5B rs35705950-T allele was not associated with severe outcomes of COVID-19
285	infection in the MVP. The MUC5B rs35705950-T allele was not associated with severe outcomes with
286	mortality (OR = 1.01 [0.58-1.20], p= 0.72) nor mortality alone (OR = 0.91 [0.72-1.16], p=0.25) in EUR

It is made available under a CC-BY 4.0 International license .

ancestry individuals(Table E6).

- 288
- 289 Discussion
- 290 The data herein establishes that the "T" allele of rs35705950-T in *MUC5B*, which has been associated
- with an *increased* risk for the development of IPF, confers a *decreased* risk of hospitalization and
- 292 pneumonia following COVID-19 infection among MVP participants of European ancestry. The protective
- effect of the rs35705950-T, in addition to being counterintuitive, is in stark contrast to the increased risk
- of severe COVID-19 disease observed for other well-established causal variants or IPF, including variants
- 295 located in the TERC, DEPTOR, and FAM13A(26).
- 296

297 The protein product of *MUC5B* is a major gel-forming mucin in the lung that plays a key role in

298 mucociliary clearance (MCC) and host defense(27). MUC5B protein is secreted from proximal

submucosal glands and distal airway secretory cells(28–30). Mucus traps inhaled particles, including

300 bacteria, and transporting them out of the airways by ciliary and cough-driven forces. Mucin also helps

301 remove endogenous debris including dying epithelial cells and leukocytes. MUC5AC and MUC5B are two

302 major secreted forms of mucins in the lung.

303

The rs35705950-T is located within an enhancer region of *MUC5B*; the "T" allele demonstrates gain-offunction and is associated with enhanced expression of the *MUC5B* transcript in lung tissue from unaffected subjects and patients with IPF(31). In patients with IPF, excess MUC5B protein is especially observed in epithelial cells in the respiratory bronchiole and honeycomb cyst(29, 30, 32), regions of the lung involved in lung fibrosis.

309

310 Mouse models found that *Muc5b* is required for mucociliary clearance, for controlling bacterial

It is made available under a CC-BY 4.0 International license .

311	infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs(33).
312	Muc5b deficiency caused materials to accumulate in the upper and lower airways. This defect led to
313	chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation
314	that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and
315	interleukin-23 (IL-23) production was reduced in <i>Muc5b(-/-)</i> mice. By contrast, in transgenic mice that
316	overexpress <i>Muc5b</i> , macrophage functions improved (33). <i>Muc5B</i> over-expressing transgenic mice have
317	been shown to be more susceptible to the fibroproliferative effects of bleomycin (34), consistent with a
318	role in IPF. Paradoxically, while the "T" allele of rs35705950-T increases susceptibility towards the
319	development of IPF, the same allele has also been associated with <i>decreased</i> mortality among IPF
320	patients(35).
321	
322	Our analyses demonstrating a significant interaction between COVID-19 infection and the prospective
323	development of pneumonia suggest a possible mechanism by which the protective effect of
324	rs35705950-T is mediated. Whether enhanced pulmonary macrophage function or quantitative or
325	qualitative changes in mucous production resulting from the minor allele of rs35705950-T are
326	responsible for the observed protective effect should be explored in future work. Of note, the MUC5B
327	rs35705950-T allele did not decrease the risk of pneumonia in COVID-19 tested negative participants
328	(Table 3), suggesting that the protective effect may be specific to COVID-19 related pneumonia. More
329	studies in the future are needed to further investigate this phenomenon.
330	
331	No extrapulmonary association was noted on PheWAS analysis suggesting a very circumscribed
332	molecular and clinical effect of this promoter variant. This supports the notion that the effect of
333	rs35705950-T on COVID-19 infection is mediated in pulmonary tissues. The <i>Muc5b</i> over-expression in
334	the distal airway may specifically or non-specifically affect the SARS-CoV-2 viral infection in the lung,

It is made available under a CC-BY 4.0 International license .

335	leading to decreased incidence of pneumonia and hospitalization in the infected individuals.
336	
337	The human <i>MUC5B</i> rs35705950-T allele does not appear to be sufficient to cause pulmonary fibrosis.
338	Although ~20% of the non-Hispanic white populations have a copy of the <i>MUC5B</i> rs35705950-T
339	allele $(31, 33)$, IPF is a rare disease with a population prevalence of less than 0.1% (36) . Additional
340	genetic and/or environmental insults are likely needed in the development of IPF in humans. Since the
341	overwhelming number of individuals with the MUC5B rs35705950-T allele will not know their MUC5B
342	status, it is unlikely that the reason for our observation is due to a change in health behaviors of
343	participants that carry this variant.
344	
345	The MUC5B rs35705950-T allele was associated with elevated neutrophil counts. This could be due in
346	part to the association of this allele with an increased incidence of pneumonia. It is worth noting that
347	neutrophils are a major source of alpha-defensin and elevated alpha-defensin levels were seen in the
348	serum of IPF patients; the levels of alpha-defensin in the serum correlated with the lung function decline
349	in the IPF patients(37, 38).
350	

351 Longer follow-up of SARS-CoV-2 infected individuals with the MUC5B rs35705950-T allele is needed. One 352 would need to be cautious regarding the longer-term outcome of COVID-19 in the MUC5B rs35705950-T

353 allele positive individuals as a fibrotic response has been reported in the survivors of severe COVID-19.

354 This is of particular importance if the manipulation of MUC5B expression is considered in the

355 prevention/treatment of COVID-19.

356

357 The MUC5B rs35705950-T allele variant resides within an enhancer subject to lineage- and disease-

358 dependent epigenetic remodeling. It was postulated that this G to T transversion in the MUC5B

It is made available under a CC-BY 4.0 International license .

359	rs35705950-T allele might lead to the removal of a binding site for the GCF transcription repressor(12,
360	39). A potential avenue for chromatin-based therapies in which <i>MUC5B</i> enhancer chromatin
361	architecture serves as a target to block the <i>MUC5B</i> mis-expression was proposed(12, 39). Additional
362	small molecule and signaling inhibitors targeting IPF are being studied as well(40). These strategies are
363	generally aiming at reducing fibrosis or the effects associated with MUC5B over-expression. How these
364	strategies or alternatives can be utilized to treat/prevent COVID-19 remains to be studied.
365	
366	In conclusion, we show in this study a common MUC5B promoter variant leading to MUC5B over-
367	expression is associated with fewer hospitalizations and pneumonia events after SARS-CoV-2 infection.
368	Our study provides a strong rationale to stratify patient populations based on common and disease-
369	related genetic polymorphism in order to better understand the mechanisms and their clinical
370	implications in COVID-19. How the <i>MUC5B</i> rs35705950-T allele association may shed light on the
371	pathogenesis and/or management of COVID-19 remains to be fully examined.
372	
373	Strengths & Limitations
374	
375	MVP is a large genomic medicine database with diverse ethnicity and geography. MVP participants are
376	predominantly males but it represents a large multi-ethnic, prospective cohort available. Successful
377	replication in the HGI and meta-analysis is a strength as well as our ability to investigate specific clinical
378	events post-index. PheWAS was designed as a broad screen to test for potentially clinically relevant
379	associations between genes and phenotypes and helped in the understanding of potential disease
380	mechanisms but has limited power to detect associations among uncommon conditions, especially
381	when further stratified by genetic ancestry.

It is made available under a CC-BY 4.0 International license .

383 Acknowledgments

- 384 This research is based on data from the Million Veteran Program, Office of Research and Development,
- 385 Veterans Health Administration, and was supported by award MVP035. This publication does not
- 386 represent the views of the Department of Veteran Affairs of the United States Government.
- 387
- 388 We are grateful to our Veterans for their contribution to MVP. Full acknowledgments for the VA Million
- 389 Veteran Program COVID-19 Science Initiative can be found in the supplemental methods.
- 390
- 391 Conflict of Interest
- 392 CJO is an employee of Novartis Institute for Biomedical Research. PN reports grant support from Amgen,

393 Apple, AstraZeneca, Boston Scientific, and Novartis, personal fees from Apple, AstraZeneca, Blackstone

394 Life Sciences, Genentech, and Novartis, and spousal employment at Vertex, all unrelated to the present

395 work.

396

- 397 References
- 398 1. Website. at <(https://coronavirus.jhu.edu/map.html)>.
- 2. Zhao Y-M, Shang Y-M, Song W-B, Li Q-Q, Xie H, Xu Q-F, Jia J-L, Li L-M, Mao H-L, Zhou X-M, Luo H,
- 400 Gao Y-F, Xu A-G. Follow-up study of the pulmonary function and related physiological
- 401 characteristics of COVID-19 survivors three months after recovery. *EClinicalMedicine* 2020;
- 402 3. Yan X, Huang H, Wang C, Jin Z, Zhang Z, He J, Yin S, Fan M, Huang J, Chen F, Zeng Y, Han X, Zhu Y.
- 403 Follow-up study of pulmonary function among COVID-19 survivors 1 year after recovery. *J Infect*

404 2021;doi:10.1016/j.jinf.2021.05.034.

405 4. McGroder CF, Zhang D, Choudhury MA, Salvatore MM, D'Souza BM, Hoffman EA, Wei Y, Baldwin

It is made available under a CC-BY 4.0 International license .

- 406 MR, Garcia CK. Pulmonary fibrosis 4 months after COVID-19 is associated with severity of illness
- 407 and blood leucocyte telomere length. *Thorax* 2021;doi:10.1136/thoraxjnl-2021-217031.
- 408 5. King CS, Nathan SD. Idiopathic pulmonary fibrosis: effects and optimal management of
- 409 comorbidities. *Lancet Respir Med* 2017;5:72–84.
- 410 6. George PM, Patterson CM, Reed AK, Thillai M. Lung transplantation for idiopathic pulmonary
- 411 fibrosis. *Lancet Respir Med* 2019;7:271–282.
- 412 7. Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary
- 413 fibrosis. *Am J Respir Crit Care Med* 2011;183:431–440.
- 414 8. Selman M, Pardo A. Revealing the pathogenic and aging-related mechanisms of the enigmatic
- 415 idiopathic pulmonary fibrosis. an integral model. *Am J Respir Crit Care Med* 2014;189:1161–1172.
- 416 9. Selman M, Pardo A. The leading role of epithelial cells in the pathogenesis of idiopathic
- 417 pulmonary fibrosis. *Cell Signal* 2020;66:109482.
- 418 10.Zhang Y, Noth I, Gibson KF, Ma S-F, Richards TJ, Bon JM, Lindell KO, Branch RA, Nicolae D,
- 419 Sciurba F, Garcia AN, Kaminski N. A Variant In The Promoter Of MUC5B Is Associated With
- 420 Idiopathic Pulmonary Fibrosis And Not Chronic Obstructive Pulmonary Disease. *B102 INTERSTITIAL*
- 421 LUNG DISEASE: NOVEL MANAGEMENT AND OUTCOME STRATEGIES 2011;doi:10.1164/ajrccm-
- 422 conference.2011.183.1_meetingabstracts.a6395.
- 423 11. Moore C, Blumhagen RZ, Yang IV, Walts A, Powers J, Walker T, Bishop M, Russell P, Vestal B,
- 424 Cardwell J, Markin CR, Mathai SK, Schwarz MI, Steele MP, Lee J, Brown KK, Loyd JE, Crapo JD,
- 425 Silverman EK, Cho MH, James JA, Guthridge JM, Cogan JD, Kropski JA, Swigris JJ, Bair C, Kim DS, Ji
- 426 W, Kim H, et al. Resequencing Study Confirms That Host Defense and Cell Senescence Gene
- 427 Variants Contribute to the Risk of Idiopathic Pulmonary Fibrosis. *Am J Respir Crit Care Med*
- **428** 2019;200:199–208.
- 429 12.Gally F, Sasse SK, Kurche JS, Gruca MA, Cardwell JH, Okamoto T, Chu HW, Hou X, Poirion OB,

It is made available under a CC-BY 4.0 International license .

- 430 Buchanan J, Preissl S, Ren B, Colgan SP, Dowell RD, Yang IV, Schwartz DA, Gerber AN. The MUC5B-
- 431 associated variant rs35705950 resides within an enhancer subject to lineage- and disease-
- 432 dependent epigenetic remodeling. JCI Insight 2021;6.:
- 433 13.Gaziano JM, Concato J, Brophy M, Fiore L, Pyarajan S, Breeling J, Whitbourne S, Deen J, Shannon
- 434 C, Humphries D, Guarino P, Aslan M, Anderson D, LaFleur R, Hammond T, Schaa K, Moser J, Huang
- 435 G, Muralidhar S, Przygodzki R, O'Leary TJ. Million Veteran Program: A mega-biobank to study
- 436 genetic influences on health and disease. *Journal of Clinical Epidemiology* 2016;
- 437 14.COVID-19 Host Genetics Initiative. Mapping the human genetic architecture of COVID-19.
- 438 *Nature* 2021;doi:10.1038/s41586-021-03767-x.
- 439 15. Fang H, Hui Q, Lynch J, Honerlaw J, Assimes TL, Huang J, Vujkovic M, Damrauer SM, Pyarajan S,
- 440 Gaziano JM, DuVall SL, O'Donnell CJ, Cho K, Chang K-M, Wilson PWF, Tsao PS, VA Million Veteran
- 441 Program, Sun YV, Tang H. Harmonizing Genetic Ancestry and Self-identified Race/Ethnicity in
- 442 Genome-wide Association Studies. *Am J Hum Genet* 2019;105:763–772.
- 443 16. Ioannou GN, Locke E, Green P, Berry K, O'Hare AM, Shah JA, Crothers K, Eastment MC, Dominitz
- 444 JA, Fan VS. Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US
- 445 Veterans With SARS-CoV-2 Infection. *JAMA Netw Open* 2020;3:e2022310.
- 446 17. Obeidat M, Frank AR, Icardi MS, Klutts JS. VA-Wide, Multicenter Verification Study of the
- 447 Cepheid Xpert SARS-CoV-2 Assay. *Acad Pathol* 2021;8:23742895211011911.

448 18. WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A

- 449 minimal common outcome measure set for COVID-19 clinical research. *Lancet Infect Dis*
- 450 2020;20:e192–e197.
- 451 19.Firth D. Bias reduction of maximum likelihood estimates. *Biometrika* 1993;
- 452 20.Kosmidis I, Firth D. Jeffreys-prior penalty, finiteness and shrinkage in binomial-response
- 453 generalized linear models. *Biometrika* 2021;

It is made available under a CC-BY 4.0 International license .

- 454 21.Kosmidis I. brglm2: Bias reduction in generalized linear models. *R package version 0 1* 2017;5.:
- 455 22. Viechtbauer W. Conducting Meta-Analyses inRwith themetaforPackage. *Journal of Statistical*
- 456 *Software* 2010;
- 457 23. Denny JC, Ritchie MD, Basford MA, Pulley JM, Bastarache L, Brown-Gentry K, Wang D, Masys DR,
- 458 Roden DM, Crawford DC. PheWAS: demonstrating the feasibility of a phenome-wide scan to
- discover gene-disease associations. *Bioinformatics* 2010;26:1205–1210.
- 460 24.Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to
- 461 the challenge of larger and richer datasets. *GigaScience* 2015;
- 462 25.Mägi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. BMC
- 463 *Bioinformatics* 2010;11:288.
- 464 26.Fadista J, Kraven LM, Karjalainen J, Andrews SJ, Geller F, COVID-19 Host Genetics Initiative,
- 465 Baillie JK, Wain LV, Jenkins RG, Feenstra B. Shared genetic etiology between idiopathic pulmonary
- 466 fibrosis and COVID-19 severity. *EBioMedicine* 2021;65:103277.
- 467 27. Evans CM, Fingerlin TE, Schwarz MI, Lynch D, Kurche J, Warg L, Yang IV, Schwartz DA. Idiopathic
- 468 Pulmonary Fibrosis: A Genetic Disease That Involves Mucociliary Dysfunction of the Peripheral
- 469 Airways. *Physiol Rev* 2016;96:1567–1591.
- 470 28.Rose MC, Voynow JA. Respiratory tract mucin genes and mucin glycoproteins in health and
- 471 disease. *Physiol Rev* 2006;86:245–278.
- 472 29.Seibold MA, Smith RW, Urbanek C, Groshong SD, Cosgrove GP, Brown KK, Schwarz MI, Schwartz
- 473 DA, Reynolds SD. The idiopathic pulmonary fibrosis honeycomb cyst contains a mucocilary
- 474 pseudostratified epithelium. *PLoS One* 2013;8:e58658.
- 475 30.Nakano Y, Yang IV, Walts AD, Watson AM, Helling BA, Fletcher AA, Lara AR, Schwarz MI, Evans
- 476 CM, Schwartz DA. MUC5BPromoter Variant rs35705950 Affects MUC5B Expression in the Distal
- 477 Airways in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care

It is made available under a CC-BY 4.0 International license .

478 *Medicine* 2016;

- 479 31.Seibold MA, Wise AL, Speer MC, Steele MP, Brown KK, Loyd JE, Fingerlin TE, Zhang W,
- 480 Gudmundsson G, Groshong SD, Evans CM, Garantziotis S, Adler KB, Dickey BF, du Bois RM, Yang IV,
- 481 Herron A, Kervitsky D, Talbert JL, Markin C, Park J, Crews AL, Slifer SH, Auerbach S, Roy MG, Lin J,
- 482 Hennessy CE, Schwarz MI, Schwartz DA. A common MUC5B promoter polymorphism and
- 483 pulmonary fibrosis. *N Engl J Med* 2011;364:1503–1512.
- 484 32.Conti C, Montero-Fernandez A, Borg E, Osadolor T, Viola P, De Lauretis A, Stock CJ, Bonifazi M,
- 485 Bonini M, Caramori G, Lindahl G, Blasi FB, Nicholson AG, Wells AU, Sestini P, Renzoni E. Mucins
- 486 MUC5B and MUC5AC in Distal Airways and Honeycomb Spaces: Comparison among Idiopathic
- 487 Pulmonary Fibrosis/Usual Interstitial Pneumonia, Fibrotic Nonspecific Interstitial Pneumonitis, and

488 Control Lungs. *Am J Respir Crit Care Med* 2016;193:462–464.

- 489 33.Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, Alexander SN,
- 490 Bellinghausen LK, Song AS, Petrova YM, Tuvim MJ, Adachi R, Romo I, Bordt AS, Bowden MG, Sisson
- 491 JH, Woodruff PG, Thornton DJ, Rousseau K, De la Garza MM, Moghaddam SJ, Karmouty-Quintana
- 492 H, Blackburn MR, Drouin SM, Davis CW, Terrell KA, Grubb BR, O'Neal WK, Flores SC, *et al.* Muc5b is
- 493 required for airway defence. *Nature* 2014;505:412–416.
- 494 34. Hancock LA, Hennessy CE, Solomon GM, Dobrinskikh E, Estrella A, Hara N, Hill DB, Kissner WJ,
- 495 Markovetz MR, Grove Villalon DE, Voss ME, Tearney GJ, Carroll KS, Shi Y, Schwarz MI, Thelin WR,
- 496 Rowe SM, Yang IV, Evans CM, Schwartz DA. Muc5b overexpression causes mucociliary dysfunction
- 497 and enhances lung fibrosis in mice. *Nat Commun* 2018;9:5363.
- 498 35.Peljto AL, Zhang Y, Fingerlin TE, Ma S-F, Garcia JGN, Richards TJ, Silveira LJ, Lindell KO, Steele
- 499 MP, Loyd JE, Gibson KF, Seibold MA, Brown KK, Talbert JL, Markin C, Kossen K, Seiwert SD, Murphy
- 500 E, Noth I, Schwarz MI, Kaminski N, Schwartz DA. Association between the MUC5B promoter
- 501 polymorphism and survival in patients with idiopathic pulmonary fibrosis. JAMA 2013;309:2232–

It is made available under a CC-BY 4.0 International license .

502 2239.

- 503 36.Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff
- 504 SK, Morell F, Flaherty KR, Wells A, Martinez FJ, Azuma A, Bice TJ, Bouros D, Brown KK, Collard HR,
- 505 Duggal A, Galvin L, Inoue Y, Jenkins RG, Johkoh T, Kazerooni EA, Kitaichi M, Knight SL, Mansour G,
- 506 Nicholson AG, Pipavath SNJ, et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official
- 507 ATS/ERS/JRS/ALAT Clinical Practice Guideline. *Am J Respir Crit Care Med* 2018;198:e44–e68.
- 508 37. Mukae H, liboshi H, Nakazato M, Hiratsuka T, Tokojima M, Abe K, Ashitani J, Kadota J, Matsukura
- 509 S, Kohno S. Raised plasma concentrations of alpha-defensins in patients with idiopathic pulmonary
- 510 fibrosis. *Thorax* 2002;57:623–628.
- 511 38.Konishi K, Gibson KF, Lindell KO, Richards TJ, Zhang Y, Dhir R, Bisceglia M, Gilbert S, Yousem SA,
- 512 Song JW, Kim DS, Kaminski N. Gene expression profiles of acute exacerbations of idiopathic
- 513 pulmonary fibrosis. *Am J Respir Crit Care Med* 2009;180:167–175.
- 514 39.Korfei M, Stelmaszek D, MacKenzie B, Skwarna S, Chillappagari S, Bach AC, Ruppert C, Saito S,
- 515 Mahavadi P, Klepetko W, Fink L, Seeger W, Lasky JA, Pullamsetti SS, Krämer OH, Guenther A.
- 516 Comparison of the antifibrotic effects of the pan-histone deacetylase-inhibitor panobinostat versus
- 517 the IPF-drug pirfenidone in fibroblasts from patients with idiopathic pulmonary fibrosis. *PLoS One*
- **518** 2018;13:e0207915.
- 519 40.Montesi SB, Fisher JH, Martinez FJ, Selman M, Pardo A, Johannson KA. Update in Interstitial Lung
- 520 Disease 2019. *Am J Respir Crit Care Med* 2020;202:500–507.
- 521
- 522
- 523
- 524
- 525

It is made available under a CC-BY 4.0 International license .

526 Figures and Tables

Table 1. Demographics for COVID-19 tested positive and all MVP participants examined in this study.

Characteristics	Million Veteran Program	COVID-19 Positive
	Number (%)	Number (%)
Total Patients	658,582	13,841
Male	592516 (90)	12,320 (89)
Genetic Ancestry		
European	464961 (70)	8011 (58)
African	123120 (19)	3749 (27)
Hispanic	52183 (8)	1903 (14)
Asian	8329 (1)	178 (1)
Other	9989 (2)	0
Muc5B rs35705950		
0 сору	10604 (1.6)	353 (25)
1 сору	2161 (0.03)	75 (0.05)
2 copies		
Comorbidities		
Obesity (phecode = 278)	283197 (43)	8905 (64)
Hypertension (phecode = 401.1)	451998 (69)	10617 (77)
Type 2 Diabetes (phecode = 250.2)	227575 (34)	10491 (76)
Coronary Artery Disease (phecode = 411.4)	152136 (23)	4182 (30)
Chronic Kidney Disease (phecode = 585.2)	10046 (15)	533 (38)
Outcomes		
Hospitalized	-	4491 (32)
Severe	-	657 (47)
Deceased	-	644 (46)

It is made available under a CC-BY 4.0 International license .

535

Table 2. Association of rs35705950 in *MUC5B* with (i) COVID-19 Positive vs Population Controls, (ii)

537 COVID-19 Positive, Hospitalized vs Population Controls, and (iii) COVID-19 Positive, Hospitalized vs

538 COVID-19 Positive, not Hospitalized. Odds ratio (OR) and 95% confidence interval (95% Cl) is reported

539 for the minor (T) allele, and results are shown for VA Million Veteran Program (MVP) African Americans

540 (AFR), European Americans (EUR), Hispanic/Latino Americans (HIS), and trans-ethnic meta-analysis (ALL),

541 the COVID-19 Host Genetics Initiative (HGI) trans-ethnic release 5 meta-analysis excluding MVP and

542 23&Me, and the meta-analysis of MVP and HGI (META).

Analysis	Population	N Case	N Control	Total N	EAF	OR (95% CI)	Р
Positive vs Population Control	MVP (AFR)	6,411	114,781	121,192	0.02	0.99 [0.87, 1.12]	0.826
	MVP (EUR)	15,814	443,428	459,242	0.11	0.96 [0.92, 0.99]	0.019
	MVP (HIS)	3,128	47,462	50,590	0.07	0.95 [0.85, 1.05]	0.275
	MVP (ALL)	25,353	605,671	631,024	0.09	0.96 [0.93, 1.00]	0.060
	HGI (ALL)	25,652	1,282,972	1,308,624	0.11	0.98 [0.95, 1.01]	0.134
	META	51,005	1,888,643	1,939,648	0.10	0.97 [0.95, 0.99]	4.57E-03
Hospitalized vs Population Control	MVP (AFR)	1,739	119,453	121,192	0.02	0.83 [0.64, 1.07]	0.147
	MVP (EUR)	3,325	455,917	459,242	0.11	0.87 [0.80, 0.94]	5.43E-04
	MVP (HIS)	657	49,933	50,590	0.07	0.86 [0.68, 1.07]	0.182
	MVP (ALL)	5,721	625,303	631,024	0.09	0.86 [0.80, 0.93]	7.35E-05
	HGI (ALL)	9,086	1,001,201	1,010,287	0.11	0.91 [0.85, 0.97]	4.12E-03
	ΜΕΤΑ	14,807	1,626,504	1,641,311	0.10	0.89 [0.85, 0.93]	1.88E-06
Hospitalized vs Not Hospitalized	MVP (AFR)	1,739	4,672	6,411	0.02	0.80 [0.59, 1.08]	0.141
	MVP (EUR)	3,325	12,489	15,814	0.11	0.89 [0.81, 0.97]	0.012
	MVP (HIS)	657	2,471	3,128	0.07	0.88 [0.68, 1.14]	0.319
	MVP (ALL)	5,721	19,632	25 <i>,</i> 353	0.08	0.88 [0.81, 0.96]	2.64E-03
	HGI (ALL)	4,420	11,093	15,513	0.16	0.97 [0.88, 1.08]	0.575
	ΜΕΤΑ	10,141	30,725	40,866	0.11	0.91 [0.86, 0.98]	7.20E-03

It is made available under a CC-BY 4.0 International license .

- 545 **Table 3**. Fewer pneumonia events developed within 60 days post COVID-19 infection for MVP EUR
- 546 individuals with the presence of a *MUC5B* rs35705950 allele. Odds ratios are estimated from Firth
- 547 logistic regression adjusting for pre-index pneumonia, age, age², and PC1-20, including an interaction
- 548 between additive MUC5B rs35705950 allele and COVID-19 infection.
- 549
- 550

	COVID-19 negative	COVID-19 positive	COVID-19 & <i>MUC5B</i> p-value for interaction
	OR (95% CI) of a A	p=0.0009	
	1.08 (1.00, 1.16)	0.89 (0.76, 0.96)	
	p=0.048	p=0.008	
<i>MUC5B</i> =0	<i>MUC5B</i> =1	MUC5B=2	
OR (
10.00 (9.35, 10.70)	7.91 (6.97, 8.97)	6.26 (4.83, 8.08)	
p<0.0001	p<0.0001	p<0.0001	

551

552

553

554 Figure 1. Phenome-Wide Association Study (PheWAS) of *MUC5B* rs35705950 allele in the Million

555 Veteran Program. A PheWAS plot shows associations of rs35705950 and phenotypes derived from the 556 electronic health records data prior to COVID-19 in MVP participants from A) European ancestry B) 557 African ancestry and C) Hispanic ancestry. The phenotypes are shown on the x-axis and organized by 558 disease categories. The p-value (-log10) of each association is shown on the y-axis the direction of the 559 triangle represents the direction of effect of the associations - with the upward triangle as increased risk 560 and the downward triangle as reduced risk. The red line indicates the significance threshold based on 561 the Bonferroni correction. The forest plot of Bonferroni significant associations are shown within the 562 right top corner of each PheWAS plot. The Bonferroni threshold for each ancestry group is shown in the 563 forest plot.

564

565 Figure 2. Laboratory-Wide Association Study (PheWAS) of *MUC5B* rs35705950 allele in the Million

566 Veteran Program. A LabWAS plot shows associations of rs35705950 and median values of laboratory

567 measures extracted from electronic health records data prior to COVID-19 in MVP participants. The

- 568 bottom panel shows the -log10 (p-value) on the y-axis and laboratory test descriptions on the x-axis.
- 569 Triangles points up have increasing effects and points down have decreasing effects. The colors
- 570 represent the different ancestry groups. The top panel shows beta from the regression model for each
- 571 laboratory measure. The significant results are highlighted in the color corresponding to ancestry groups
- 572 and other results are plotted in grey.
- 573
- 574 **Figure 3.** Forest plot association of rs35705950 in *MUC5B* with (i) COVID-19 Positive vs Population 575 Controls, (ii) COVID-19 Positive, Hospitalized vs Population Controls, and (iii) COVID-19 Positive,

It is made available under a CC-BY 4.0 International license .

- 576 Hospitalized vs COVID-19 Positive, not Hospitalized. Odds ratio (OR) and 95% confidence interval (95%
- 577 CI) is reported for the minor (T) allele, and results are shown for VA Million Veteran Program (MVP)
- 578 African Americans (AFR), European Americans (EUR), Hispanic/Latino Americans (HIS), and trans-ethnic
- 579 meta-analysis (ALL), the COVID-19 Host Genetics Initiative (HGI) trans-ethnic release 5 meta-analysis
- 580 excluding MVP and 23&Me, and the meta-analysis of MVP and HGI (META).

581

