
A MUC5B gene polymorphism, rs35705950-T, confers protective effects in COVID-19 infection.  1 
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Abstract 95 

Rationale:  A common MUC5B gene polymorphism, rs35705950-T, is associated with idiopathic 96 

pulmonary fibrosis, but its role in the SARS-CoV-2 infection and disease severity is unclear.  97 

Objectives: To assess whether rs35705950-T confers differential risk for clinical outcomes associated 98 

with COVID-19 infection among participants in the Million Veteran Program (MVP) and COVID-19 Host 99 

Genetics Initiative (HGI). 100 

Methods: MVP participants were examined for an association between the incidence or severity of 101 

COVID-19 and the presence of a MUC5B rs35705950-T allele. Comorbidities and clinical events were 102 

extracted from the electronic health records (EHR). The analysis was performed within each ancestry 103 

group in the MVP, adjusting for sex, age, age
2,

 and first twenty principal components followed by a 104 

trans-ethnic meta-analysis. We then pursued replication and performed a meta-analysis with the trans-105 

ethnic summary statistics from the HGI. A phenome-wide association study (PheWAS) of the 106 

rs35705950-T was conducted to explore associated pathophysiologic conditions.  107 

Measurements and Main Results: A COVID-19 severity scale was modified from the World Health 108 

Organization criteria, and phenotypes derived from the International Classification of Disease-9/10 were 109 

extracted from EHR.  Presence of rs35705950-T was associated with fewer hospitalizations 110 

(Ncases=25353, Ncontrols=631,024; OR=0.86 [0.80-0.93], p=7.4 x 10
-5

) in trans-ethnic meta-analysis within 111 

MVP and joint meta-analyses with the HGI (N=1641311; OR=0.89 [0.85-0.93], p =1.9 x 10
-6

). Moreover, 112 

individuals of European Ancestry with at least one copy of rs35705950-T had fewer post-COVID-19 113 

pneumonia events (OR=0.85 [0.76-0.96], p =0.008). PheWAS exclusively revealed pulmonary 114 

involvement.  115 

Conclusions:  The MUC5B variant rs35705950-T is protective in COVID-19 infection.  116 

Keywords: coronavirus disease 2019; severe acute respiratory syndrome coronavirus 2; idiopathic 117 

pulmonary fibrosis; electronic health records; genetic association 118 
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Introduction  119 

A respiratory disease caused by a novel coronavirus was first reported towards the end of 2019, now 120 

known as SARS-CoV-2 (COVID-19). Despite massive public health measures and vaccination initiatives, 121 

the COVID-19 pandemic remains a major global health threat. By September 2, 2021, the coronavirus 122 

disease-2019 (COVID-19) pandemic had caused more than 219 million confirmed infections and more 123 

than 4.5 million deaths worldwide(1).  124 

 125 

Parenchymal fibrosis is a late complication of respiratory infections with COVID-19(2–4). Among chronic 126 

lung diseases, idiopathic pulmonary fibrosis (IPF)(5), a disorder characterized by progressive pulmonary 127 

scarring which is associated with a median survival of 2-3 years in the absence of lung 128 

transplantation(6), shares several risk factors with those for severe COVID-19 disease, including 129 

advanced age(7), cardiovascular disease, diabetes, and history of smoking(5). Thus, common 130 

pathological processes may be shared between the fibrotic response towards COVID-19 infection and 131 

those underlying IPF. 132 

  133 

IPF likely develops from a multifaceted interaction between genetic and environmental factors, age-134 

related mechanisms, and epigenetic profibrotic reprogramming(8, 9). One of the most robust genetic 135 

risk factors identified for IPF susceptibility is rs35705950-T, a common G to T transversion located 136 

approximately 3 kb upstream of the mucin 5B, oligomeric mucus/gel-forming MUC5B gene (10, 11). 137 

Laboratory evidence supports that rs35705950-T is: 1) a functional variant located within an enhancer 138 

subject to epigenetic programming and 2) contributes to pathologic mis-expression in IPF (12).  139 

 140 

Given the high minor allele frequency (MAF) of rs35705950-T (~20% among individuals of European 141 

ancestry) and possible shared pathophysiological pathways between IPF and severe COVID-19 disease, 142 
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we examined the association between rs35705950-T and the clinical outcomes of COVID-19 infection in 143 

the Million Veteran Program (MVP), a multi-ethnic cohort of over 650,000 U.S. Veterans with detailed 144 

EHR and genotyping data(13).  Following our primary analysis in the MVP, we validated our results with 145 

a comparable analysis conducted in the Host Genetics Initiative (HGI), a global collaboration of over 160 146 

genetic studies assembled to facilitate rapid discovery and dissemination of COVID-19 related science 147 

(14).  148 

 149 

Methods     150 

Data Sources 151 

 Data from the MVP, a multi-ethnic genetic biobank sponsored by the United States Veterans Affairs 152 

(VA), were analyzed (13). All protocols were approved by the VA Central Institutional Review Board and 153 

all participants provided written informed consent. For detailed Materials and Methods, please see 154 

methods in the online data supplement. 155 

  156 

Demographic and pre-existing comorbidity data were collected from questionnaires and the VA EHR; 157 

“pre-COVID” data was from the time of enrollment into the MVP to September 30, 2019. The cohort 158 

demographics and a description of the clinical conditions for all tested patients in the two years 159 

preceding the index dates are presented in a supplemental table (Table E1). 160 

 161 

Genotyping was performed using a custom Thermo Fisher Axiom genotyping platform (MVP 1.0) which 162 

included direct genotyping of rs35705950-T. Ancestry was defined using Harmonized ancestry, race, and 163 

ethnicity (HARE) derived from self-report and genetic ancestry data(15).   164 

 165 

COVID-19 outcome definitions 166 
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 167 

COVID-19 infection status from 02/2020 - 04/2021 was assessed by either self-report (if testing was 168 

performed outside the VA) or by a positive polymerase chain reaction (PCR)-based test(16, 17). For 169 

subgroup analyses of severity, only patients with confirmed PCR-based tests were examined. The index 170 

date was defined as a COVID-19 diagnosis date, i.e., specimen date, or a self-reported date of diagnosis; 171 

and for a hospitalized patient, the admission date up to 15 days prior to the COVID-19 case date.   172 

 173 

Our analyses used harmonized definitions with the HGI to enable us to obtain larger sample sizes and 174 

consistent results.  In accordance with the HGI definitions, the three following analyses were performed: 175 

(1) COVID Susceptibility: COVID-19 positive vs. population controls; (2) COVID Hospitalization-v1: COVID-176 

19 positive and hospitalized vs. population controls; (3) COVID-19 hospitalization-v2: COVID-19 positive 177 

and hospitalized vs. COVID-19 positive but not hospitalized. 178 

 179 

Our other analyses focused on data present in MVP only and addressed the outcome severity and post-180 

index events. For these sets of analyses, we only focused on patients who received their PCR-based 181 

COVID-19 testing within VA systems. COVID-19 severity scale was derived from the WHO COVID-19 182 

Disease Progression Scale(18) as mild, moderate (hospitalization), severe (Intensive Care Unit-level 183 

care), or death within 30 days of PCR-confirmed COVID-19 infection. All data and variables were 184 

assessed centrally by the MVP data core’s Shared Data Repository (SDR). 185 

  186 

Post-index analytic constructs and study design 187 

The ICD codes used to pull the pneumonia events within 60 days post-index (pneumonia60d) are 188 

presented in Table E2. Pre-index conditions were derived using natural language processing (NLP)-189 

boosted unstructured notes, ICD and Current Procedural Terminology (CPT) codes, and medications are 190 
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taken 2 years prior. Post-index conditions, including pneumonia, were derived using ICD and CPT codes, 191 

and medications 60 days after the index date. Association with post-index pneumonia events 192 

(pneumonia60d) were performed among patients who received confirmatory COVID-19 PCR testing at 193 

VA sites.   194 

 195 

Statistical analysis 196 

Firth logistic regression(19, 20) as implemented in the R (v3.6.1) package “brglm2” (version 0.7.1)(21) 197 

was used to examine the association between COVID-19 outcomes and rs35705950-T (additive model) 198 

separately by ancestry, with adjustment for age, age
2
, sex, and ethnicity-specific principal components. 199 

Trans-ethnic meta-analyses were performed using random-effects models in “metafor” (version 2.4-200 

0)(22). Interactions between COVID-19 infection status and rs35705950-T on the outcome of post-index 201 

pneumonia at 60 days were assessed using a multiplicative interaction term followed by stratified 202 

analyses by COVID-19 infection status, with additional covariate adjustment of pre-index pneumonia. 203 

   204 

Phenome-wide and Laboratory-wide association studies (PheWAS and LabWAS) 205 

 Associations between rs35705950-T allele and pre-existing comorbid conditions and laboratory values 206 

were examined using preclinical data prior to the COVID-19 era (Sept 2019). Individuals with ≥2 207 

Phecodes(23) were defined as cases. Phecodes with <200 cases within each ancestry group were 208 

excluded, resulting in 1618 (EUR), 1289 (AFR), 994 (HIS) Phecodes. LabWAS was conducted for 69 clinical 209 

tests; for individuals with repeated measures, the median of the individuals’ EHR record was used. 210 

Logistic/Firth regression and linear regression were used for Phecodes and laboratory measurements, 211 

respectively.  Bonferroni-adjusted thresholds for significance (by ancestry) were: EUR = 3.09 x 10
-05

 212 

(0.05/1618), AFR = 3.8 x 10
-05

 (0.05/1289), HIS = 5.03 x 10
-05

(0.05/994). Analyses were performed using 213 

PLINK2(24) (Additional details in supplemental methods). 214 
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Meta-analysis with HGI 215 

Data from Release 5 (01/18/2021) of the COVID-19 Host Genetics Initiative (HGI) were utilized for 216 

replication via an inverse-variance weighted meta-analysis using plink2a(24) and 217 

GWAMA(25)(Additional details in supplemental methods). 218 

 219 

Results 220 

Elucidation of the shared genetics with the MUC5B rs35705950-T by PheWAS and LabWAS 221 

 In order to understand the pathophysiology associated with the MUC5B rs35705950-T allele, and more 222 

specifically how the presence of the MUC5B rs35705950-T allele(s) might impact the susceptibility and 223 

severity of COVID-19, we performed PheWAS and LabWAS to search for the MUC5B rs35705950-T allele 224 

associated conditions prior to COVID-19 infection. The sample sizes for MVP participants used for 225 

PheWAS and COVID-19 association studies, as well as HGI participants examined in this study, are shown 226 

in Table 1 (Figure E1). The results of the PheWAS are shown in Figure 1 and Table E3.  227 

 228 

In the PheWAS analysis between this MUC5B variant and 1605 phenotypes (cases > 200) from 229 

participants of European ancestry, we found significant associations (Pbonferroni < 2.5 x 10
-6

) with 12 230 

respiratory conditions. Consistent with the previous  finding in IPF, rs35705950-T was associated with 231 

increased risk of Idiopathic fibrosing alveolitis (phecode = 504.1; OR = 2.85 [2.65 - 3.05], P = 8.90 x 10
-232 

186
), other alveolar and parietoalveolar pneumonopathy (phecode = 504; OR = 2.64 [2.50 - 2.78], P = 7.07 233 

x 10
-289

), and postinflammatory pulmonary fibrosis (phecode = 502; OR = 2.34 [2.23 - 2.45], P = 8.90 x 10
-234 

186
). Additionally, we also observed significant associations with respiratory failure (Phecode: 509), 235 

ventilatory dependence (Phecode 509.8), lung transplant (Phecode: 510.2) and pneumonia (Phecode: 236 

480) (Figure 1, Table E3). Notably, we evaluated Phecodes for influenza infection (481) in our PheWAS 237 

analysis and did not observe an association with MUC5B rs35705950-T (p<0.05; the power to detect a 238 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.28.21263911doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21263911
http://creativecommons.org/licenses/by/4.0/


difference was >95% as there were 4728 cases of influenza in EUR). 239 

 240 

We identified, as in EUR, a significant association of this MUC5B variant with an increased risk of three 241 

pulmonary conditions in African ancestry participants: idiopathic alveolitis (Phecode: 504.1), other 242 

alveolar and parietoalveolar pneumonopathy (Phecode:504), and post-inflammatory fibrosis (Phecode: 243 

502) (Figure 1, Table E3). Two of these associations, other alveolar and parietoalveolar pneumonopathy 244 

(Phecode:504) and post-inflammatory fibrosis (Phecode: 502), were also seen in HIS ancestry, suggesting 245 

shared etiology. 246 

 247 

We performed a Laboratory-wide association study of the MUC5B rs35705950-T with median values of 248 

clinical laboratory tests measured prior to the COVID-19 pandemic. We only included quantitative traits 249 

with 1000 or more individuals. Among EUR participants, we evaluated 63 lab measurements and 10 had 250 

a significant association with the rs35705950-T. Increased level of neutrophils (absolute count) had the 251 

most significant association (beta= 0.05, p=6.24 x 10
-23

). This specific association has not been previously 252 

reported. Other significant associations with increased levels were white blood cell counts, neutrophil 253 

fraction, estimated glomerular filtration rate (eGFR), eosinophils (absolute count), monocytes (absolute 254 

count), and platelets (Figure 2, Table E4). The variant had an association with reduced levels of albumin, 255 

lymphocyte fraction, and creatinine (Figure 2, Table E4). There was no significant association with lab 256 

measurements in AFR or HIS, but among HIS monocytes (absolute count) were significant (beta =0.0078, 257 

p 1.66 x 10
-04

) in the same direction as in EUR.  258 

 259 

Association of the MUC5B rs35705950-T allele with the COVID-19 infection or hospitalization in the 260 

MVP and meta-analysis with HGI 261 

 262 
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We tested for association between MUC5B rs35705950-T with three COVID-19 phenotype definitions 1) 263 

COVID-19 positive as cases vs all the other participants in the MVP as controls 2) COVID-19 positive that 264 

required hospitalization for treatment vs all the other participants in the MVP as controls 3) COVID-19 265 

positive that required hospitalization for treatment vs COVID-19 positives that didn’t require 266 

hospitalization as controls. First, we performed the analysis in three major ancestries separately 267 

(European, African, and Hispanic). Then, we meta-analyzed the summary statistics with the COVID-19 268 

HGI (Freeze 5) using an inverse-variance weighted method (GWAMA)(25).  Among the three COVID-19 269 

phenotypes, the most significant association of rs35705950-T allele carriers was with fewer 270 

hospitalization events (OR = 0.89 [0.85-0.93], p=1.88 x 10
-6

, Figure 3 and Table 2).  271 

 272 

Association of the MUC5B rs35705950-T allele with fewer pneumonia events within 60 days of COVID-273 

19 infection in the MVP 274 

In 9,216 COVID-19 infected MVP patients, the adjusted odds ratio for post-index pneumonia was 14.8% 275 

less with each additional MUC5B rs35705950-T allele (OR = 0.852 [0.757-0.958], p=0.008). In COVID-19 276 

negative patients, the adjusted odds for post-index pneumonia was 7.8% higher with each additional 277 

MUC5B rs35705950-T allele (OR=1.078 [1.001-1.162], p=0.048). This differential effect of an additional 278 

MUC5B rs35705950-T allele on post-index pneumonia in COVID-19 positive vs. COVID-19 negative 279 

patients was statistically significant (p-value for interaction 0.0009) in EUR (Table 3, Table E5).  280 

 281 

Association of the MUC5B rs35705950-T allele with severe outcomes of COVID-19 infection in the 282 

MVP 283 

Presence of a MUC5B rs35705950-T allele was not associated with severe outcomes of COVID-19 284 

infection in the MVP. The MUC5B rs35705950-T allele was not associated with severe outcomes with 285 

mortality (OR = 1.01 [0.58-1.20], p= 0.72) nor mortality alone (OR = 0.91 [ 0.72-1.16], p=0.25) in EUR 286 
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ancestry individuals(Table E6).   287 

 288 

Discussion 289 

The data herein establishes that the “T” allele of rs35705950-T in MUC5B, which has been associated 290 

with an increased risk for the development of IPF, confers a decreased risk of hospitalization and 291 

pneumonia following COVID-19 infection among MVP participants of European ancestry. The protective 292 

effect of the rs35705950-T, in addition to being counterintuitive, is in stark contrast to the increased risk 293 

of severe COVID-19 disease observed for other well-established causal variants or IPF, including variants 294 

located in the TERC, DEPTOR, and FAM13A(26).  295 

 296 

The protein product of MUC5B is a major gel-forming mucin in the lung that plays a key role in 297 

mucociliary clearance (MCC) and host defense(27). MUC5B protein is secreted from proximal 298 

submucosal glands and distal airway secretory cells(28–30).  Mucus traps inhaled particles, including 299 

bacteria, and transporting them out of the airways by ciliary and cough-driven forces. Mucin also helps 300 

remove endogenous debris including dying epithelial cells and leukocytes. MUC5AC and MUC5B are two 301 

major secreted forms of mucins in the lung.  302 

 303 

The rs35705950-T is located within an enhancer region of  MUC5B; the “T” allele demonstrates gain-of-304 

function and is associated with enhanced expression of the MUC5B transcript in lung tissue from 305 

unaffected subjects and patients with IPF(31). In patients with IPF, excess MUC5B protein is especially 306 

observed in epithelial cells in the respiratory bronchiole and honeycomb cyst(29, 30, 32), regions of the 307 

lung involved in lung fibrosis.  308 

 309 

Mouse models found that Muc5b is required for mucociliary clearance, for controlling bacterial 310 
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infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs(33). 311 

Muc5b deficiency caused materials to accumulate in the upper and lower airways. This defect led to 312 

chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation 313 

that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and 314 

interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in transgenic mice that 315 

overexpress Muc5b, macrophage functions improved (33).  Muc5B over-expressing transgenic mice have 316 

been shown to be more susceptible to the fibroproliferative effects of bleomycin (34), consistent with a 317 

role in IPF. Paradoxically, while the “T” allele of rs35705950-T increases susceptibility towards the 318 

development of IPF, the same allele has also been associated with decreased mortality among IPF 319 

patients(35).  320 

 321 

Our analyses demonstrating a significant interaction between COVID-19 infection and the prospective 322 

development of pneumonia suggest a possible mechanism by which the protective effect of 323 

rs35705950-T is mediated. Whether enhanced pulmonary macrophage function or quantitative or 324 

qualitative changes in mucous production resulting from the minor allele of rs35705950-T are 325 

responsible for the observed protective effect should be explored in future work.  Of note, the MUC5B 326 

rs35705950-T allele did not decrease the risk of pneumonia in COVID-19 tested negative participants 327 

(Table 3), suggesting that the protective effect may be specific to COVID-19 related pneumonia. More 328 

studies in the future are needed to further investigate this phenomenon. 329 

 330 

No extrapulmonary association was noted on PheWAS analysis suggesting a very circumscribed 331 

molecular and clinical effect of this promoter variant. This supports the notion that the effect of 332 

rs35705950-T on COVID-19 infection is mediated in pulmonary tissues. The Muc5b over-expression in 333 

the distal airway may specifically or non-specifically affect the SARS-CoV-2 viral infection in the lung, 334 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 29, 2021. ; https://doi.org/10.1101/2021.09.28.21263911doi: medRxiv preprint 

https://doi.org/10.1101/2021.09.28.21263911
http://creativecommons.org/licenses/by/4.0/


leading to decreased incidence of pneumonia and hospitalization in the infected individuals.   335 

 336 

The human MUC5B rs35705950-T allele does not appear to be sufficient to cause pulmonary fibrosis. 337 

Although ~20% of the non-Hispanic white populations have a copy of the MUC5B rs35705950-T 338 

allele(31, 33), IPF is a rare disease with a population prevalence of less than 0.1% (36).  Additional 339 

genetic and/or environmental insults are likely needed in the development of IPF in humans. Since the 340 

overwhelming number of individuals with the MUC5B rs35705950-T allele will not know their MUC5B 341 

status, it is unlikely that the reason for our observation is due to a change in health behaviors of 342 

participants that carry this variant.  343 

 344 

The MUC5B rs35705950-T allele was associated with elevated neutrophil counts. This could be due in 345 

part to the association of this allele with an increased incidence of pneumonia. It is worth noting that 346 

neutrophils are a major source of alpha-defensin and elevated alpha-defensin levels were seen in the 347 

serum of IPF patients; the levels of alpha-defensin in the serum correlated with the lung function decline 348 

in the IPF patients(37, 38).  349 

 350 

Longer follow-up of SARS-CoV-2 infected individuals with the MUC5B rs35705950-T allele is needed. One 351 

would need to be cautious regarding the longer-term outcome of COVID-19 in the MUC5B rs35705950-T 352 

allele positive individuals as a fibrotic response has been reported in the survivors of severe COVID-19. 353 

This is of particular importance if the manipulation of MUC5B expression is considered in the 354 

prevention/treatment of COVID-19.  355 

 356 

The MUC5B rs35705950-T allele variant resides within an enhancer subject to lineage- and disease-357 

dependent epigenetic remodeling. It was postulated that this G to T transversion in the MUC5B 358 
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rs35705950-T allele might lead to the removal of a binding site for the GCF transcription repressor(12, 359 

39). A potential avenue for chromatin-based therapies in which MUC5B enhancer chromatin 360 

architecture serves as a target to block the MUC5B mis-expression was proposed(12, 39). Additional 361 

small molecule and signaling inhibitors targeting IPF are being studied as well(40). These strategies are 362 

generally aiming at reducing fibrosis or the effects associated with MUC5B over-expression. How these 363 

strategies or alternatives can be utilized to treat/prevent COVID-19 remains to be studied.  364 

 365 

In conclusion, we show in this study a common MUC5B promoter variant leading to MUC5B over-366 

expression is associated with fewer hospitalizations and pneumonia events after SARS-CoV-2 infection. 367 

Our study provides a strong rationale to stratify patient populations based on common and disease-368 

related genetic polymorphism in order to better understand the mechanisms and their clinical 369 

implications in COVID-19. How the MUC5B rs35705950-T allele association may shed light on the 370 

pathogenesis and/or management of COVID-19 remains to be fully examined. 371 

 372 

Strengths & Limitations 373 

 374 

MVP is a large genomic medicine database with diverse ethnicity and geography. MVP participants are 375 

predominantly males but it represents a large multi-ethnic, prospective cohort available. Successful 376 

replication in the HGI and meta-analysis is a strength as well as our ability to investigate specific clinical 377 

events post-index. PheWAS was designed as a broad screen to test for potentially clinically relevant 378 

associations between genes and phenotypes and helped in the understanding of potential disease 379 

mechanisms but has limited power to detect associations among uncommon conditions, especially 380 

when further stratified by genetic ancestry.  381 

 382 
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Figures and Tables  526 

Table 1. Demographics for COVID-19 tested positive and all MVP participants examined in this study. 527 

Characteristics 
Million Veteran Program COVID-19 Positive 

Number (%) Number (%) 

Total Patients 658,582 13,841 

Male 592516 (90) 12,320 (89) 

Genetic Ancestry   

European 464961 (70) 8011 (58) 

African 123120 (19) 3749 (27) 

Hispanic 52183 (8) 1903 (14) 

Asian 8329 (1) 178 (1) 

Other 9989 (2) 0 

Muc5B rs35705950   

0 copy 10604 (1.6) 353 (25) 

1 copy 2161 (0.03) 75 (0.05) 

2 copies   

Comorbidities   

Obesity 

(phecode = 278) 
283197 (43) 8905 (64) 

Hypertension 

(phecode = 401.1) 
451998 (69) 10617 (77) 

Type 2 Diabetes 

(phecode = 250.2) 
227575 (34) 10491 (76) 

Coronary Artery Disease 

(phecode = 411.4) 
152136 (23) 4182 (30) 

Chronic Kidney Disease 

(phecode = 585.2) 
10046 (15) 533 (38) 

Outcomes   

Hospitalized - 4491 (32) 

Severe - 657 (47) 

Deceased - 644 (46) 

 528 

 529 

 530 

 531 

 532 

 533 
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 535 

Table 2.  Association of rs35705950 in MUC5B with (i) COVID-19 Positive vs Population Controls, (ii) 536 

COVID-19 Positive, Hospitalized vs Population Controls, and (iii) COVID-19 Positive, Hospitalized vs 537 

COVID-19 Positive, not Hospitalized. Odds ratio (OR) and 95% confidence interval (95% CI) is reported 538 

for the minor (T) allele, and results are shown for VA Million Veteran Program (MVP) African Americans 539 

(AFR), European Americans (EUR), Hispanic/Latino Americans (HIS), and trans-ethnic meta-analysis (ALL), 540 

the COVID-19 Host Genetics Initiative (HGI) trans-ethnic release 5 meta-analysis excluding MVP and 541 

23&Me, and the meta-analysis of MVP and HGI (META). 542 

Analysis Population N Case N Control Total N EAF OR (95% CI) P 

Positive 

vs  

Population 

Control 

MVP (AFR) 6,411 114,781 121,192 0.02 0.99 [0.87, 1.12] 0.826 

MVP (EUR) 15,814 443,428 459,242 0.11 0.96 [0.92, 0.99] 0.019 

MVP (HIS) 3,128 47,462 50,590 0.07 0.95 [0.85, 1.05] 0.275 

MVP (ALL) 25,353 605,671 631,024 0.09 0.96 [0.93, 1.00] 0.060 

HGI (ALL) 25,652 1,282,972 1,308,624 0.11 0.98 [0.95, 1.01] 0.134 

META 51,005 1,888,643 1,939,648 0.10 0.97 [0.95, 0.99] 4.57E-03 

Hospitalized 

vs 

 Population 

Control 

MVP (AFR) 1,739 119,453 121,192 0.02 0.83 [0.64, 1.07] 0.147 

MVP (EUR) 3,325 455,917 459,242 0.11 0.87 [0.80, 0.94] 5.43E-04 

MVP (HIS) 657 49,933 50,590 0.07 0.86 [0.68, 1.07] 0.182 

MVP (ALL) 5,721 625,303 631,024 0.09 0.86 [0.80, 0.93] 7.35E-05 

HGI (ALL) 9,086 1,001,201 1,010,287 0.11 0.91 [0.85, 0.97] 4.12E-03 

META 14,807 1,626,504 1,641,311 0.10 0.89 [0.85, 0.93] 1.88E-06 

Hospitalized 

vs 

 Not 

Hospitalized 

MVP (AFR) 1,739 4,672 6,411 0.02 0.80 [0.59, 1.08] 0.141 

MVP (EUR) 3,325 12,489 15,814 0.11 0.89 [0.81, 0.97] 0.012 

MVP (HIS) 657 2,471 3,128 0.07 0.88 [0.68, 1.14] 0.319 

MVP (ALL) 5,721 19,632 25,353 0.08 0.88 [0.81, 0.96] 2.64E-03 

HGI (ALL) 4,420 11,093 15,513 0.16 0.97 [0.88, 1.08] 0.575 

META 10,141 30,725 40,866 0.11 0.91 [0.86, 0.98] 7.20E-03 

 543 
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Table 3. Fewer pneumonia events developed within 60 days post COVID-19 infection for MVP EUR 545 

individuals with the presence of a MUC5B rs35705950 allele. Odds ratios are estimated from Firth 546 

logistic regression adjusting for pre-index pneumonia, age, age
2
, and PC1-20, including an interaction 547 

between additive MUC5B rs35705950 allele and COVID-19 infection. 548 

 549 

 550 

 

 

COVID-19 negative COVID-19 positive COVID-19 & MUC5B 

p-value for interaction 

OR (95% CI) of a MUC5B allele p=0.0009 

1.08 (1.00, 1.16)  

p=0.048 

0.89 (0.76, 0.96)  

p=0.008 

MUC5B=0 MUC5B=1 MUC5B=2 

OR (95% CI) of COVID-19 positive status 

10.00 (9.35, 10.70)  

p<0.0001 

7.91 (6.97, 8.97)  

p<0.0001 

6.26 (4.83, 8.08)  

p<0.0001 

 551 

 552 

 553 

Figure 1. Phenome-Wide Association Study (PheWAS) of MUC5B rs35705950 allele in the Million 554 

Veteran Program. A PheWAS plot shows associations of rs35705950 and phenotypes derived from the 555 

electronic health records data prior to COVID-19 in MVP participants from A) European ancestry B) 556 

African ancestry and C) Hispanic ancestry. The phenotypes are shown on the x-axis and organized by 557 

disease categories. The p-value (-log10) of each association is shown on the y-axis the direction of the 558 

triangle represents the direction of effect of the associations - with the upward triangle as increased risk 559 

and the downward triangle as reduced risk. The red line indicates the significance threshold based on 560 

the Bonferroni correction. The forest plot of Bonferroni significant associations are shown within the 561 

right top corner of each PheWAS plot. The Bonferroni threshold for each ancestry group is shown in the 562 

forest plot. 563 

 564 

Figure 2. Laboratory-Wide Association Study (PheWAS) of MUC5B rs35705950 allele in the Million 565 

Veteran Program. A LabWAS plot shows associations of rs35705950 and median values of laboratory 566 

measures extracted from electronic health records data prior to COVID-19 in MVP participants. The 567 

bottom panel shows the -log10 (p-value) on the y-axis and laboratory test descriptions on the x-axis. 568 

Triangles points up have increasing effects and points down have decreasing effects. The colors 569 

represent the different ancestry groups. The top panel shows beta from the regression model for each 570 

laboratory measure. The significant results are highlighted in the color corresponding to ancestry groups 571 

and other results are plotted in grey.  572 

 573 

Figure 3. Forest plot association of rs35705950 in MUC5B with (i) COVID-19 Positive vs Population 574 

Controls, (ii) COVID-19 Positive, Hospitalized vs Population Controls, and (iii) COVID-19 Positive, 575 
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Hospitalized vs COVID-19 Positive, not Hospitalized. Odds ratio (OR) and 95% confidence interval (95% 576 

CI) is reported for the minor (T) allele, and results are shown for VA Million Veteran Program (MVP) 577 

African Americans (AFR), European Americans (EUR), Hispanic/Latino Americans (HIS),  and trans-ethnic 578 

meta-analysis (ALL), the COVID-19 Host Genetics Initiative (HGI) trans-ethnic release 5 meta-analysis 579 

excluding MVP and 23&Me, and the meta-analysis of MVP and HGI (META). 580 

 581 

 582 
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