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Abstract: We present further improvements to a branch-and-bound maximum-clique-finding algorithm MCS
(WALCOM 2010, LNCS 5942, pp.191–203) that was shown to be fast. First, we employ a variant of an efficient
approximation algorithm KLS for finding a maximum clique. Second, we make use of appropriate sorting of vertices
only near the root of the search tree. Third, we employ a lightened approximate coloring mainly near the leaves of
the search tree. A new algorithm obtained from MCS with the above improvements is named k5 MCT. It is shown
that k5 MCT is much faster than MCS by extensive computational experiments. In particular, k5 MCT is shown to be
faster than MCS for gen400 p0.9 75, gen400 p0.9 65 and gen400 p0.9 55 by over 81,000, 39,000 and 19,000 times,
respectively.
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1. Introduction

Given an undirected graph G, a clique is defined to be a com-
plete subgraph of G in which all pairs of vertices are adjacent to
each other. Finding a maximum clique, that is a clique of maxi-
mum cardinality, is a typical NP-hard problem [4]. So, it is very
difficult to obtain the exact solution of this problem in general.
In addition, it is also difficult to obtain even a satisfactory ap-
proximate solution [38]. Finding a maximum independent set in a
graph is also equivalent to finding a maximum clique of its com-
plementary graph. Here, finding a maximum clique in a graph
has many important practical applications. These applications
include coding theory [24], pattern recognition and image pro-
cessing [9], [20], bioinformatics [5], [18], [33], design of wireless
networks [16], and others [4], [36], [37].

Hence, much effort has been devoted to this problem theoreti-
cally and experimentally [4], [21], [37]. In particular, see [37] for
a recent progress of algorithms for this problem. Furthermore,
much faster algorithms are in great demand so that much more
practical problems can be solved. Along this line, Tomita et al.
developed a series of branch-and-bound algorithms MCQ [29],
MCR [31] and MCS [32], [34] among others that run fast in prac-
tice. It was experimentally shown that MCS is relatively fast for
many instances tested.

In this paper, we present improvements to MCS to make it

1 The University of Electro-Communications, Chofu, Tokyo 182–8585,
Japan

2 Seikei University, Musashino, Tokyo 180–8633, Japan
3 CREST, Japan Science and Technology Agency, Chiyoda, Tokyo

102–0076, Japan
a) tomita@ice.uec.ac.jp
b) m1311182@edu.cc.uec.ac.jp
c) a-nagao@st.seikei.ac.jp
d) itohiro@uec.ac.jp
e) wakatsuki.mitsuo@uec.ac.jp

much faster. First, we turn back to our original MCS [25] that em-
ploys an approximation algorithm for the maximum clique prob-
lem at the beginning in order to obtain an initial lower bound on
the size of a maximum clique, as noted at Concluding Remarks
in Ref. [34]. We choose here another approximation algorithm
called k-opt local search (KLS for short) by Katayama et al. [11]
that runs in quite a short time. Second, we sort vertices as in
MCR [31] and MCS [32] only appropriately near the root of the
search tree. This technique is based on our successful earlier re-
sults [12], [19], [23]. Third, we employ lightened approximate
coloring mainly near the leaves of the search tree [12]. A new
algorithm obtained from MCS with the above improvements is
named k5 MCT. It is shown that k5 MCT is much faster than MCS
by extensive computational experiments.

The preliminary versions of this paper appeared in Refs. [8]
and [35]. This paper is an extended version of Ref. [35] with a
slight modification.

2. Definitions and Notation

(1) We are concerned with a simple undirected graph G =

(V, E) with a finite set V of vertices and a finite set E of edges
that comprise unordered pairs (v, w) (= (w, v)) of distinct vertices.
The set V of vertices is considered to be ordered, and the i-th el-
ement in V is denoted by V[i]. A pair of vertices v and w are said
to be adjacent if (v, w) ∈ E.

(2) For a vertex v ∈ V , let Γ(v) be the set of all vertices that
are adjacent to v in G = (V, E), i.e., Γ(v) = {w ∈ V | (v, w) ∈ E}.
We call |Γ(v)|, the number of vertices adjacent to a vertex v, the
degree of v. Here, the number of elements in a set S is denoted by
|S|.

(3) For a subset R ⊆ V of vertices, G(R) = (R, E ∩ (R × R)) is
an induced subgraph. An induced subgraph G(Q) is said to be a
clique if (v, w) ∈ E for all v, w ∈ Q ⊆ V , with v � w. In this case,
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we may simply say that Q is a clique. In particular, a clique which
is not properly contained in any other clique is called maximal. A
maximal clique of the maximum cardinality in a graph is called a
maximum clique, and the number of vertices in a maximum clique
in G(R) is denoted by ω(R).

An independent set is defined to be a subgraph in which any
pair of vertices are not adjacent to each other.

3. Maximum Clique Algorithm MCS

3.1 The Branch-and-Bound Algorithm
One standard approach for finding a maximum clique is based

upon the branch-and-bound depth-first search method. Each of
the preceding algorithm MCQ [29], MCR [31], and MCS [32] is
also a branch-and-bound one that begins with a small clique and
continues by finding larger and larger cliques. To be precise, we
maintain global variables Q and Qmax, where Q = {p1, p2, . . . , pd}
consists of the vertices of the current clique and Qmax consists
of the vertices of the largest clique found so far. Let R =

V ∩Γ(p1)∩Γ(p2)∩ · · · ∩Γ(pd) ⊆ V consist of candidate vertices
that can be added to Q to enlarge Q. We begin the algorithm by
letting Q := ∅, Qmax := ∅, and R := V (the set of all vertices). We
select a certain vertex p from R, add it to Q (Q := Q ∪ {p}), and
then compute Rp := R∩Γ(p) as the new set of candidate vertices.
This procedure is applied recursively while Rp � ∅.

When Rp = ∅ is reached, then Q constitutes a maximal clique.
If Q is maximal and |Q| > |Qmax| holds, then Qmax is replaced
by Q. We then backtrack by removing p from Q and R. We se-
lect a new vertex p from the resulting R and continue the same
procedure until R = ∅.

Such a procedure is represented by a search tree, where the
root is V and, whenever Rp := R ∩ Γ(p) is applied then Rp is a
child of R. The edge between R and Rp := R ∩ Γ(p) is called a
branch.

3.2 Approximate Coloring: Numbering
To make the above branch-and-bound algorithm efficient, it

is most important to prune unnecessary searching with low

overhead. For this purpose, we employed greedy approximate

coloring or Numbering of the vertices in MCQ and MCR, as in-
troduced in Refs. [7], [26], [27]. That is, each p ∈ R is sequen-

tially assigned a minimum possible positive integral value No[p],
called the Number or Color of p, such that No[p] � No[r] if
(p, r) ∈ E. Consequently, we have the following property.
Proposition Let χ(R) be the minimum possible number of colors
to color a subgraph induced by R. Then,

ω(R) ≤ χ(R) ≤ Max{No[p] | p ∈ R}. �

Hence, if |Q| +Max{No[p] | p ∈ R} ≤ |Qmax| holds, we need not
continue the search for R. This is a bounding condition.

At the beginning of MCQ, we sort vertices of V in descending
order with respect to their degrees. In MCR and MCS, vertices of
V are sorted in a similar but more sophisticated way.

After Numbers (Colors) are assigned to all vertices in R, let
Max{No[r] | r ∈ R} = maxno and Ci = {r ∈ R | No[r]= i}, where
i = 1, 2, . . . ,maxno, that is, Ci is an independent set of vertices
whose numbers are i. We sort the vertices in ascending order with

respect to their Numbers so that R = C1 ∪C2 ∪ · · · ∪Cmaxno as an
ordered set of vertices.

Vertices are expanded for searching from the rightmost (with
the largest Number) to the leftmost (with the smallest Number)
on this R.

3.3 New Approximate Coloring
In order to make the above bounding condition work more ef-

ficiently, the algorithm MCS [25] first introduced the following
procedure Re-NUMBER.

Because of the bounding condition mentioned in Section 3.2, if
No[r] ≤ |Qmax|− |Q|, then it is not necessary to search from vertex
r. When we encounter a vertex p with No[p] > |Qmax|−|Q|, we at-
tempt to change its Number to be less than or equal to |Qmax| − |Q|
in the following manner. Let Nop denote the original value of
No[p] and Noth := |Qmax| − |Q| stand for Nothreshold. Attempt to
find a vertex q in Γ(p) such that No[q] = k1 ≤ Noth − 1, with
|Ck1 | = 1. If such q is found, then attempt to find Number k2 such
that no vertex in Γ(q) has Number k2. If such number k2 is found,
then exchange the Number of q so that No[q] = k2. (If no ver-
tex q with Number k2 as above is found, then nothing is done.)
When the Number of vertex q is changed from k1 to k2, No[p]
is changed from Nop to k1 (≤ Noth − 1); thus, it is no longer

necessary to search from p.
The above procedure is named “Re-NUMBER” and is de-

Fig. 1 Procedure Re-NUMBER.

Fig. 2 ReNumbering.
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scribed in Fig. 1. See Fig. 2 for an illustration. Procedure Re-
NUMBER is a central part of MCS and is shown to be quite ef-
fective [25], [32], [34]. Some of its variations are also employed
in this paper.

3.4 EXTENDED INITIAL SORT-NUMBER
At the beginning of MCR and MCS, the given set V of n-

vertices is sorted to V = {V[1],V[2], . . . ,V[n]} so that a subgraph
of G = (V, E) induced by a set of vertices {V[1],V[2], . . . ,V[i]}, it
holds that V[i] aways has the minimum degree in {V[1],V[2], . . . ,
V[i]} for 1 ≤ i ≤ |V | as in Ref. [6]. Here, the degrees of
their adjacent vertices are also taken into consideration. In ad-
dition, vertices are assigned initial Numbers. More precisely, the
steps from {SORT} to just above EXPAND(V,No) in Fig. 4 (Algo-
rithm MCR) in Ref. [31] is named EXTENDED INITIAL SORT-

NUMBER to V . Note that global variable Qmax can be updated
by

then Qmax := Rmin

at line 5 from the bottom of Fig. 4 (Algorithm MCR) in Ref. [31].
Here, MCS introduced another new adjunct ordered set Va of

vertices in order to preserve the order of the vertices sorted by
EXTENDED INITIAL SORT-NUMBER. Approximate coloring
is carried out in the order of Va from the left to the right. (See
Fig. 4 in Ref. [34] for an illustration.)

3.5 Reconstruction of the Adjacency Matrix
Each graph is stored as an adjacency matrix in the computer

memory. Sequential numbering is carried out according to the
initial order of vertices in the adjunct ordered set Va. Taking this
into account, we rename the vertices of the graph and reconstruct

the adjacency matrix so that the vertices are consecutively ordered

in a manner identical to the initial order of vertices obtained at
the beginning. (See Fig. 5 in Ref. [34] for an illustration.) The
above-mentioned reconstruction of the adjacency matrix is to lo-
calize the memory usage, and it results in a more effective use of
the cache memory.

The algorithm obtained by combining all the techniques de-
scribed in this section is named MCS [25], [32], [34].

4. Improved Algorithms

4.1 An Approximate Solution as an Initial Lower Bound
When the algorithm MCS was first proposed in Ref. [25], the

first part of MCS consisted of a procedure for finding an approx-
imately maximum clique of the given graph. Its approximation
algorithm named init-lb [25] is a local search algorithm based on
our previous work [28]. It finds a near-maximum clique in a very
short time, and the result is used as an initial lower bound of the
size of a maximum clique. It demonstrated the effectiveness of
an approximate solution for finding an exactly maximum clique.
More precisely, when a sufficiently large near-maximum clique
Q′max is found, we let

Qmax := Q′max

at the beginning of the original MCS [25]. Then Noth := |Qmax| −

|Q| becomes large and the bounding condition becomes more ef-
fective.

The final version of MCS presented in Refs. [32], [34] excluded
the procedure (init-lb) for finding an approximately maximum
clique. This is because it is important to examine the performance
of the main body of MCS [32] itself independently of an approx-
imation algorithm.

We have many approximation algorithms for finding a maxi-
mum clique [37], while finding a good approximate solution for
the maximum clique problem is considered to be very hard as
shown that the maximum clique problem is not polynomial-time
approximable within |V |1−ε for any ε unless NP = P [38]. The
most important problem is a proper choice of the trade-off be-
tween the quality of the approximate solution and the time re-
quired to obtain it. We now turn back to our original MCS in
Ref. [25] and choose another approximation algorithm called k-

opt local search (KLS) by Katayama et al. [11]. It does not nec-
essarily give the best quality solution, but it runs in quite a short
time and it is easy to control the above trade-off. Note that KLS
uses a random number in it for selecting a vertex. The KLS re-
peats a number of local searches from different vertices of the
given graph. In this repetition, we select a vertex with the largest
degree one by one from the sorted vertices with respect to their
degrees by EXTENDED INITIAL SORT-NUMBER. This is be-
cause a vertex with a large degree tends to be included in a maxi-
mum clique. When the number of repetitions becomes large, the
quality of the solution increases but with increased running time.

In order to give a proper compromise between the high qual-
ity of the solution and the time required to obtain it for the given
graph G = (V, E) with n = |V |, m = |E|, and dens = 2m/n(n − 1)
(density), we choosed the number rep of repetitions as follows by
preliminary experiments in Ref. [35] with d0 = 1:

rep = min{20n1/2 × (min{dens, d0})3, n} for n ≥ 1.

A procedure for finding an approximate maximum clique of
the given graph G = (V, E) under the above condition was named
KLS(V,Q′max) and its solution was given to Q′max in Ref. [35]. The
new MCS that was composed of a combination of the KLS pro-
cedure and MCS in Ref. [32] as above was named MCS1.

In this paper, we take a slightly different approach from
Ref. [35] by giving more thought to problems requiring more than

1 second to solve by MCS. Based on this intention, we try to
improve the quality of the solution of KLS with a little more
overhead. More exactly, we execute KLS just described above
“5 times” with different random numbers (in parallel, conceptu-
ally) to get 5 (possibly different) solutions, but with d0 = 0.9.
And the final solution is set to be the best (largest) one among
these 5 solutions. The total time required by the slightly extended
KLS as above is about 5 times more than the time required by
single execution of KLS in Ref. [35] but with possibly a better
solution. Such a variant of KLS is named KLS5. We use in this
paper KLS5(V,Q′max) instead of KLS(V,Q′max) in Ref. [35]. The
KLS5(V,Q′max) gives the (best of the 5) solution to Q′max. The new
MCS that is composed of a combination of the KLS5 procedure
and MCS in Ref. [32] as above is named KLS5 MCS1 (k5 MCS1

for short).
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Recently, Batsyn et al. [2] and Maslov et al. [17] also demon-
strated the effectiveness of an approximate solution, indepen-
dently. They used iterated local search (ILS) heuristic developed
by Andrade [1].

4.2 EXTENDED INITIAL SORT-NUMBER near the Root
of the Search Tree

It is shown that both search space and overall running time are
reduced when vertices are sorted in ascending order with respect
to their degrees prior to application of a branch-and-bound depth-
first search for finding a maximum clique [6], [7], [27]. All of the
preceding algorithms MCQ, MCR and MCS employ such sort-
ing of vertices at the root level (depth = 0) of the search trees.
Also clarified here is that if the vertices are sorted as above and
followed by Numbering at every depth of the search tree then
the resulting search space becomes more reduced but with much
more overhead of time [12].

Therefore, it becomes important to choose a good trade-off be-
tween the reduction of the search space and the time to achieve it.
In order to solve this trade-off, we confirmed in Refs. [12], [19]
and [23] that it is effective to adaptively control the search
method. For an earlier algorithm MCLIQ [27] that is a predeces-
sor of MCQ, we proposed a technique to solve the trade-off and
reduced the overall running time successfully as follows [12]:
(i) At the first stage near the root of the search tree, we apply

sorting of vertices followed by Numbering. (Ref. [12])
(ii) In the second stage of the search tree, we apply Numbering

without new sorting of vertices. (Just as in Ref. [27])
(iii) In the third stage of the search tree near the leaves, we ex-

pand vertices by only inheriting the order of vertices and the pre-
vious Numbers. (Just as in Ref. [7])

The above techniques are promising for any algorithm for find-
ing a maximum clique if we control these three stages appro-
priately. We apply the techniques of Ref. [12] to MCS. Here,
we make full use of the adjunct ordered set Va of vertices in
MCS [32] in which vertices are sorted in ascending order with
respect to their degrees from the rightmost (end) to the leftmost
(front) by EXTENDED INITIAL SORT-NUMBER in Ref. [32].
In addition, we avoid the set R of vertices in MCS [32] in which
vertices are sorted with respect to their Numbers. So, we are free
from having to reconstruct such an R. From now on, we rename
Va as R, for simplicity. So, be careful that the set R in this paper
corresponds to Va in MCS [32], and not to R in MCS [32].

Hereafter, the NUMBERing procedure combined with Re-
NUMBER is named NUMBER-R and is shown in Fig. 3. This
is exactly the first half of the procedure Re-NUMBER-SORT in
Fig. 2 of MCS [32].

A slightly stronger procedure Re-NUMBER1 is defined as the
one obtained from procedure Re-NUMBER by replacing

“for k2 := k1 + 1 to Noth do” by

“for k2 := 1 to k1 − 1 and k1 + 1 to Noth do”.

Another slightly modified procedure NUMBER-R+(R,No) is
defined as the one obtained from procedure NUMBER-R(R,No)
by replacing

Fig. 3 Procedure NUMBER-R.

“if (k > Noth) and (k = maxno) then” by

“if (k > Noth) then”

and

“Re-NUMBER-R” by

“Re-NUMBER1”

in NUMBER-R(R,No). Thus, the condition for applying Re-
NUMBER is relaxed in procedure NUMBER-R+(R,No).

At the first stage near and including the root of the search
tree, we sort a set of vertices by EXTENDED INITIAL
SORT-NUMBER to R followed by Numbering by NUMBER-
R+(R,No). The procedure is shown in Fig. 5 with “Th1 = 0.4,
Th2 = 0” instead of “Th1 = 0.4, Th2 = 0.1” at {Switches}. It
is experimentally confirmed that NUMBER-R+(R,No) is better
than NUMBER-R(R,No), since NUMBER-R+(R,No) is applied
only a few times with better results but with more overhead than
NUMBER-R(R,No).

This task of preprocessing (of sorting vertices followed by
NUMBER-R) is time-consuming. So, as stated at the beginning
of Section 4.2, it is important to change this first stage to the sec-
ond stage at an appropriate switching depth that is near the root
of the search tree. First, for a vertex p ∈ R at a certain depth of
the search tree, consider newR := Rp = R ∩ Γ(p) that is a child of
R. If the ratio |{v ∈ newR | No[v] > Noth}|/|newR| becomes large,
then much more preprocessing time may be required. In addition,
when dens (density) of the graph becomes larger it generally re-
quires more time for finding a maximum clique and then much
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Fig. 4 Procedure NUMBER-RL.

larger number of preprocessing steps is needed. As a result, we
consider the following value:

T =
|{v ∈ newR | No[v] > Noth}|

|newR| × dens.

From preliminary experiments, we have chosen that if T ≥ 0.4
then we continue the same procedure described for the first stage.
Otherwise, we switch the stage to the second stage. Thus, we let
Th1 := 0.4 in Fig. 5. The new procedure obtained from Fig. 5 by
replacing “Th1 := 0.4, Th2 := 0.1” by “Th1 := 0.4, Th2 := 0”
at {Switches} is named k5 MCS2. Here, we control the stage = 1
so that it never returns back to stage = 1 after it changed to the
second or the third stage (� 1).

Konc and Janežič [13] also independently improved MCQ [29]
successfully in a similar way.

4.3 Lightened Numbering Mainly near the Leaves of the
Search Tree

Mainly near the leaves of the search tree, the ratio |{v ∈
newR | No[v] > Noth}|/|newR| tends to be small. In this third
stage, it is preferable to lighten the task of preprocessing before
expansion of vertices. So, we only inherit the order of vertices
from that in their parent depth, as in the second stage. In addi-
tion, we inherit the assigned Numbers from those assigned to their

Fig. 5 Procedure k5 MCT.

Fig. 6 Procedure EXPAND.

parents only if their Numbers are less than or equal to Noth. If we
inherit all the assigned Numbers from those assigned to their par-
ents as in Ref. [7] the resulting bounding condition becomes too
weak. In order to remedy this weakness, if the inherited Numbers

from those assigned to their parents are greater than Noth then we
give them new Numbers. For vertices whose inherited Numbers

c© 2017 Information Processing Society of Japan 671
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Table 1 Comparison of CPU times in MCS, k5 MCS1, k5 MCS2 and k5 MCT.

Graph KLS5 times [sec]
Name n dens ω sol MCS k5 MCS1 k5 MCS2 k5 MCT (MCS/k5 MCT)t

brock400 1 400 0.75 27 25 288 260 182 116 2.49
brock400 2 400 0.75 29 25 124 104 77 47 2.66
brock400 3 400 0.75 31 25 195 132 92 59 3.33
brock400 4 400 0.75 33 25 103 101 73 46 2.23
brock800 1 800 0.65 23 21 4,122 4,080 2,922 1,944 2.12
brock800 2 800 0.65 24 21 3,683 3,484 2,499 1,629 2.26
brock800 3 800 0.65 25 21 2,540 2,372 1,682 1,104 2.30
brock800 4 800 0.65 26 20 1,768 1,758 1,256 819 2.16
C250.9 250 0.90 44 44 1,171 946 779 405 2.89
gen200 p0.9 44 200 0.90 44 44 0.17 0.39 0.39 0.29 0.60
gen200 p0.9 55 200 0.90 55 55 0.46 0.32 0.32 0.32 1.43
gen400 p0.9 55 400 0.90 55 55 22,536 80.8 89.3 1.18 19,098
gen400 p0.9 65 400 0.90 65 65 57,385 6.81 7.04 1.44 39,851
gen400 p0.9 75 400 0.90 75 75 108,298 2.44 2.43 1.33 81,427
p hat300-3 300 0.74 36 36 0.99 0.68 0.68 0.52 1.90
p hat500-3 500 0.75 50 50 57 35 33 18 3.11
p hat700-2 700 0.50 44 44 2.16 1.46 1.44 1.12 1.93
p hat700-3 700 0.75 62 62 900 470 440 217 4.16
p hat1000-2 1000 0.49 46 46 85 49 47 29 2.90
p hat1000-3 1000 0.74 68 68 305,146 111,587 96,207 39,134 7.80
p hat1500-2 1500 0.51 65 65 6,299 3,039 2,833 1,559 4.04
san1000 1000 0.50 15 15 1.02 0.25 0.23 0.24 4.25
san200 0.9 2 200 0.90 60 60 0.16 0.32 0.32 0.32 0.50
san400 0.7 1 400 0.70 40 40 0.26 0.29 0.28 0.28 0.92
san400 0.7 3 400 0.70 22 18 0.67 0.51 0.54 0.41 1.62
sanr200 0.9 200 0.90 42 42 15.3 9.7 9.9 4.9 3.10
sanr400 0.7 400 0.70 21 21 77 77 58 41 1.89
DSJC1000.5 1000 0.50 15 15 141 137 125 94 1.50
keller5 776 0.75 27 27 82,422 81,631 36,548 10,008 8.24
frb30-15-1 450 0.82 30 30 740 434 464 75 9.84
frb30-15-2 450 0.82 30 30 1,048 692 773 122 8.55
frb30-15-3 450 0.82 30 28 670 678 729 124 5.39
frb30-15-4 450 0.82 30 30 2,248 1,086 1,201 223 10.1
frb30-15-5 450 0.82 30 30 972 741 780 105 9.29
r200.8 200 0.80 24-27 24-27 1.64 1.47 1.31 0.90 1.82
r200.9 200 0.90 39-44 39-44 26.5 19.0 19.2 10.7 2.48
r200.95 200 0.95 58-66 58-66 19.4 12.0 12.5 10.9 1.78
r250.8 250 0.80 26-28 26-28 19.6 17.5 13.9 8.8 2.23
r300.8 300 0.80 28-29 28-29 160 133 96 59 2.73
r400.7 400 0.70 21-22 21-22 75 67 50 35 2.15
r400.8 400 0.80 30-31 30-31 6,467 5,527 3,437 1,997 3.24
r500.7 500 0.70 22-23 21-23 733 692 473 326 2.25
r1000.5 1000 0.50 15-16 14-15 134 133 123 92 1.46
r1000.6 1000 0.60 19-20 18-19 6,591 6,569 4,862 3,456 1.91

from their parents are greater than Noth we newly give them Num-

bers by sequential numbering combined with Re-Numbering. For
this Re-Numbering we adopt stronger Re-NUMBER1 instead of
Re-NUMBER since Re-Numbering is required not so many times
in this stage. The resulting procedure in this stage named proce-
dure NUMBER-RL is shown in Fig. 4.

From preliminary experiments, we have chosen to turn to the
new stage = 3 if the previously given value T = (|{v ∈ newR |
No[v] > Noth}|/|newR|) × dens is less than 0.1. Then we let
Th2 := 0.1 in Fig. 5. The procedure NUMBER-RL is weaker
than the previous procedure NUMBER-R for obtaining a strong
bounding condition but requires less overhead than the previous
one. However, if the given graph is too dense then procedure
NUMBER-RL becomes too weak and the number of branches of
the search tree grows quite large. So, we choose to go to new
stage = 3 only if dens ≤ 0.95.

In addition, a simpler algorithm is generally better than sophis-
ticated algorithms for sparse graphs. Thus, if dens ≤ 0.1 we
choose simpler algorithm k5 MCS1 without relying on techniques
introduced after k5 MCS1 in this paper.

The resulting algorithm obtained by taking the total techniques
in Sections 4.1–4.3 to improve MCS [32] is named k5 MCT (The
‘T’ is for ‘Total’.) and is shown in Fig. 5 and Fig. 6.

5. Computational Experiments

In order to demonstrate the effectiveness of the techniques
given in the previous section, we carried out computational ex-
periments. All the algorithms were implemented in C language,
where the underlining programs were slightly revised from those
in Ref. [35]. The computer had an Intel core i7-4790 CPU of
3.6 GHz clock with 8 GB of RAM and 8 MB of cache memory.
It worked on a Linux operating system with a compiler gcc -O3.
The dfmax running time for DIMACS benchmark instances [10]
for r300.5, r400.5 and r500.5 are 0.141, 0.900 and 3.442 sec-
onds, respectively. All the results of the experiments are summa-
rized in Tables 1–4. Each first column lists the benchmark graphs
brock - keller5 in DIMACS [10], the frb family in BHOSLIB [3],
and/or random graphs rn.p with the number of vertices=n and
the edge probability=p. As for the CPU time, the averages are
taken over 10 random graphs rn.p where p < 0.9. For random
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Table 2 Comparison of branches in MCS, k5 MCS1, k5 MCS2 and k5 MCT.

Graph KLS5 branches [×10−6]
Name n dens ω sol MCS k5 MCS1 k5 MCS2 k5 MCT (MCS/k5 MCT)b

brock400 1 400 0.75 27 25 89 77 52 55 1.62
brock400 2 400 0.75 29 25 34 24 18 18 1.82
brock400 3 400 0.75 31 25 65 38 25 27 2.41
brock400 4 400 0.75 33 25 31 30 20 22 1.42
brock800 1 800 0.65 23 21 1,092 1,081 748 786 1.39
brock800 2 800 0.65 24 21 953 867 599 627 1.52
brock800 3 800 0.65 25 21 630 557 378 396 1.59
brock800 4 800 0.65 26 20 381 380 258 270 1.41
C250.9 250 0.90 44 44 255 197 154 188 1.35
gen200 p0.9 44 200 0.90 44 44 0.0355 0.0170 0.0167 0.0024 14.5
gen200 p0.9 55 200 0.90 55 55 0.11248 0.00073 0.00065 0.00060 188
gen400 p0.9 55 400 0.90 55 55 2,895 7.4348 8.1264 0.0002 11,626,243
gen400 p0.9 65 400 0.90 65 65 7,628 0.330 0.341 0.058 131,671
gen400 p0.9 75 400 0.90 75 75 17,153 0.054 0.052 0.002 8,354,874
p hat300-3 300 0.74 36 36 0.23 0.07 0.07 0.09 2.63
p hat500-3 500 0.75 50 50 7.9 4.3 4.1 5.6 1.41
p hat700-2 700 0.50 44 44 0.339 0.126 0.121 0.197 1.72
p hat700-3 700 0.75 62 62 88 43 40 54 1.64
p hat1000-2 1000 0.49 46 46 12.6 6.6 6.3 10.0 1.26
p hat1000-3 1000 0.74 68 68 27,212 9,026 7,822 9,027 3.01
p hat1500-2 1500 0.51 65 65 560 253 234 400 1.40
san1000 1000 0.50 15 15 0.085 0.0005 0 0
san200 0.9 2 200 0.90 60 60 0.042 0.0001 0 0
san400 0.7 1 400 0.70 40 40 0.023 0.0002 0 0
san400 0.7 3 400 0.70 22 18 0.124 0.041 0.050 0.054 2.32
sanr200 0.9 200 0.90 42 42 3.5 2.0 1.9 2.1 1.63
sanr400 0.7 400 0.70 21 21 30 29 21 23 1.31
DSJC1000.5 1000 0.50 15 15 52 49 43 45 1.14
keller5 776 0.75 27 27 13,148 13,152 5,519 4,495 2.93
frb30-15-1 450 0.82 30 30 157 82 85 38 4.12
frb30-15-2 450 0.82 30 30 229 135 148 65 3.55
frb30-15-3 450 0.82 30 28 147 146 153 73 2.01
frb30-15-4 450 0.82 30 30 509 214 232 121 4.22
frb30-15-5 450 0.82 30 30 203 143 146 57 3.58
r200.8 200 0.80 24-27 24-27 0.66 0.51 0.42 0.47 1.40
r200.9 200 0.90 39-44 39-44 6.5 4.4 4.1 5.2 1.25
r200.95 200 0.95 58-66 58-66 2.7 1.5 1.5 2.5 1.09
r250.8 250 0.80 26-28 26-28 7.0 6.0 4.5 4.9 1.42
r300.8 300 0.80 28-29 28-29 53 42 29 31 1.69
r400.7 400 0.70 21-22 21-22 28 24 17 18 1.54
r400.8 400 0.80 30-31 30-31 1,921 1,588 933 999 1.92
r500.7 500 0.70 22-23 21-23 261 241 159 170 1.54
r1000.5 1000 0.50 15-16 14-15 50 49 43 45 1.11
r1000.6 1000 0.60 19-20 18-19 2,137 2,111 1,513 1,594 1.34

graphs rn.p where p ≥ 0.9, the averages are taken over 100 ran-
dom graphs. The random graphs in this paper are not exactly the
same as those in Ref. [35]. In the Tables, n and ω stands for the
number of vertices and the size of the maximum clique, respec-
tively. In addition, dens stand for density of a benchmark graph
and p for a random graph rn.p. The columns sol and time be-
low KLS5 show the solution and the computing time of KLS5,
respectively.

5.1 Stepwise Improvement
Tables 1 and 2 show stepwise improvement from MCS to

k5 MCT for selected graphs chosen from the following Tables 3
and 4. In Table 1, (MCS/k5 MCT)t is the ratio of the CPU time
required by MCS to that of k5 MCT. In Table 2, (MCS/k5 MCT)b

is the ratio of the number of branches required by MCS to that of
k5 MCT.
(1) Improvement from MCS to k5 MCS1 by an approximate so-
lution given by KLS5 in Section 4.1: The improvement is
particularly quite effective for the gen graph family. k5 MCS1

is faster than MCS for gen400 p0.9 75, gen400 p0.9 65, and

gen400 p0.9 55 by more than 44,000, 8,000, and 270 times, re-
spectively. This technique is effective for almost all graphs but
with few exceptions such as the MANN graph family.
(2) Improvement from k5 MCS1 to k5 MCS2 by EXTENDED INI-
TIAL SORT-NUMBER in Section 4.2: This technique is effec-
tive mainly for the brock graph family by around 1.4 times. For
some graphs such as the gen and frb graph families, the effect is
negative.
(3) Improvement from k5 MCS2 to k5 MCT by Lightened Num-
bering in Section 4.3: This technique is effective for almost all
graphs in reducing computing time in spite of increased num-
bers of branches in general. The k5 MCT is faster than k5 MCS2 for
gen400 p0.9 55, frb30-15-5, frb30-15-2, and frb30-15-1 by more
than 76, 7, 6, and 6 times, respectively, where their numbers of
branches are also reduced.

5.2 Overall Improvement
Table 3 shows the result of the overall improvement from MCS

to k5 MCT in computing time for the benchmark graphs. The col-
umn time below KLS5 shows the computing time for KLS5 that
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Table 3 CPU time [sec] for benchmark graphs.

Graph KLS5 MCS k5 MCT BBMCX MaxCLQ ILS&MCS BG14
Name n dens ω sol time [32] [22] [15] [17] [2]

brock200 1 200 0.75 21 21 0.09 0.36 0.30 0.18 0.34 4.42 2.51
brock400 1 400 0.75 27 25 0.41 288 116 150 205 188 302
brock400 2 400 0.75 29 25 0.41 124 47 68 96 94 132
brock400 3 400 0.75 31 25 0.41 195 59 120 160 145 211
brock400 4 400 0.75 33 25 0.41 103 46 68 100 72 87
brock800 1 800 0.65 23 21 1.07 4,122 1,944 2,690 4,562 3,998 4,216
brock800 2 800 0.65 24 21 1.09 3,683 1,629 2,415 4,002 3,462 3,778
brock800 3 800 0.65 25 21 1.07 2,540 1,104 1,587 2,510 2,361 2,649
brock800 4 800 0.65 26 20 1.08 1,768 819 1,100 1,853 1,685 1,868
C250.9 250 0.90 44 44 0.43 1,171 405 713 268
C2000.5 2000 0.50 16 16 2.74 33,899 21,030
gen200 p0.9 44 200 0.90 44 44 0.29 0.17 0.29 0.16 0.11 1.68
gen200 p0.9 55 200 0.90 55 55 0.32 0.46 0.32 0.31 0.14 2.43 0.92
gen400 p0.9 55 400 0.90 55 55 1.18 22,536 1.18 19,362 46,504 2,965
gen400 p0.9 65 400 0.90 65 65 1.23 57,385 1.44 66,135 36,684 2,130 18
gen400 p0.9 75 400 0.90 75 75 1.32 108,298 1.33 47,176 9,984 84 7.8
MANN a27 378 0.99 126 126 2.60 0.26 2.88 0.17 0.16 1.30
MANN a45 1035 0.99 345 344 79 53 128 32 23 17 55
p hat300-3 300 0.74 36 36 0.31 0.99 0.52 0.66 1.16 6.72 3.62
p hat500-3 500 0.75 50 50 1.11 57.1 18.4 33.3 39.6 50 60
p hat700-2 700 0.50 44 44 0.57 2.16 1.12 1.53 3.61 59 29
p hat700-3 700 0.75 62 62 2.28 900 217 680 879 552 767
p hat1000-1 1000 0.25 10 10 0.02 0.23 0.22 0.19 1.60 218
p hat1000-2 1000 0.49 46 46 1.13 85 29 73 101 204 113
p hat1000-3 1000 0.74 68 68 4.94 305,146 39,134
p hat1500-1 1500 0.25 12 11 0.08 1.82 1.46 1.95 10 478 422
p hat1500-2 1500 0.51 65 65 4.77 6,299 1,559 3,852 8,027 5,346 5,434
san1000 1000 0.50 15 15 0.23 1.02 0.24 0.68 0.72 449 158
san200 0.9 2 200 0.90 60 60 0.32 0.16 0.32 0.07 0.10 12
san400 0.7 1 400 0.70 40 40 0.28 0.26 0.28 0.14 0.13 16 7
san400 0.7 2 400 0.70 30 30 0.25 0.059 0.256 0.092 0.064 19
san400 0.7 3 400 0.70 22 18 0.25 0.67 0.41 0.39 0.43 27 12
sanr200 0.7 200 0.70 18 18 0.07 0.15 0.16 0.08 0.17 5.05 1.03
sanr200 0.9 200 0.90 42 42 0.30 15.33 4.94 7.38 4.21 4.62 10.2
sanr400 0.5 400 0.50 13 13 0.07 0.35 0.31 0.19 0.69 35 18
sanr400 0.7 400 0.70 21 21 0.31 77 41 44 81 86 81
DSJC500.5 500 0.50 13 13 0.12 1.5 1.3 0.8 2.8
DSJC1000.5 1000 0.50 15 15 0.57 141 94 102 265
keller5 776 0.75 27 27 1.65 82,422 10,008 30,299 4,982 5,777 82,508
frb30-15-1 450 0.82 30 30 0.76 740 75 1,029 560
frb30-15-2 450 0.82 30 30 0.75 1,048 122 672 758
frb30-15-3 450 0.82 30 28 0.75 670 124 350 477
frb30-15-4 450 0.82 30 30 0.75 2,248 223 1,157 955
frb30-15-5 450 0.82 30 30 0.75 972 105 801 705

is a part of the total CPU time. In Table 2 of Ref. [35], the time

included the computing time from “Apply EXTENDED INITIAL

SORT-NUMBER to V;” to “Reconstruct the adjacency matrix as
described in Ref. [32],” since sorting of vertices is necessary be-
fore KLS5(V,Q′max). But, the time in this paper excludes the
above preceding time so that KLS5 itself is clearer. Table 4 shows
the same result for random graphs.

Tables 3–4 include the state-of-the-art result of BBMCX [22]
by Segundo et al. that makes good use of a limited MaxSAT
bound. Here, its computing time is calibrated in the established
way in the Second DIMACS Implementation Challenge [10],
where our computer is calculated to be 1.30 times faster than that
in Ref. [22]. (See Table 5 in Appendix for the detail, and that
1.30 > 1.298.) From Ref. [22], Tables 3–4 also include the cal-
ibrated computing time of MaxCLQ [14], [15] by Li and Quan
that is based on MaxSAT. The calibrated computing time by
ILS&MCS [17] and BG14 [2] are added on the assumption that
the performance of each MCS is the same as that in this paper,
for reference, too. The boldface entries indicate the fastest time
in the row.

The result shows that the k5 MCT is faster than MCS for
gen400 p0.9 75, gen400 p0.9 65 and gen400 p0.9 55 by over
81,000, 39,000 and 19,000 times, respectively. The k5 MCT is
faster than MCS for frb30-15-4 by over 10 times. The k5 MCT is
faster than MCS for frb30-15-1, frb30-15-5, frb30-15-2, keller5,
p hat1000-3, frb30-15-3 by over 5 times. The k5 MCT is faster
than MCS for san1000, p hat700-3, p hat1500-2, brock400 3,
r400.8, p hat500-3, sanr200 0.9 by over 3 times. In Table 1,
k5 MCT is faster than MCS by more than 2 times for the other
14 graphs including r300.8, r200.9, r500.7, r250.8 and r400.7.

Except for few special graphs such as in the MANN family and
for easy graphs that can be solved in less than 1 second by MCS,
k5 MCT is faster than or equal to MCS for all graphs in Tables 3
and 4.

The k5 MCT is faster than the other algorithms in Tables 3 and 4
for many instances. Note that MaxCLQ is fast for dense graphs.
ILS&MCS [17] and BG14 [2] require more time than k5 MCT for
most of the instances tested. One reason for this difference comes
from the fact that our approximation algorithm, KLS, takes up
only small portion of the total algorithm’s computing time with
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Table 4 CPU time [sec] for random graphs.

Graph KLS5 MCS k5 MCT BBMCX MaxCLQ
Name n dens ω sol time [32] [22] [15]

r150.9 150 0.90 35-39 35-39 0.14 0.40 0.30 0.26 0.13
r150.95 150 0.95 52-57 52-57 0.24 0.13 0.28 0.11 0.02
r200.7 200 0.70 17-19 17-19 0.07 0.17 0.17 0.09 0.18
r200.8 200 0.80 24-27 24-27 0.13 1.64 0.90 0.95 1.08
r200.9 200 0.90 39-44 39-44 0.29 26.5 10.7 14.8 6.2
r200.95 200 0.95 58-66 58-66 0.49 19.4 10.9 30.2 2.5
r250.7 250 0.70 18-19 18-19 0.11 1.07 0.75
r250.8 250 0.80 26-28 26-28 0.20 19.6 8.8
r300.6 300 0.60 15-16 15-16 0.09 0.47 0.41 0.21 0.58
r300.7 300 0.70 20-20 19-20 0.16 5.3 2.9 2.6 4.7
r300.8 300 0.80 28-29 28-29 0.30 160 59 89 87
r400.5 400 0.50 13-13 12-13 0.07 0.32 0.30
r400.6 400 0.60 16-17 16-17 0.16 3.59 2.41
r400.7 400 0.70 21-22 21-22 0.31 75 35
r400.8 400 0.80 30-31 30-31 0.55 6,467 1,997
r500.5 500 0.50 13-14 13-13 0.11 1.31 1.17 0.64 2.09
r500.6 500 0.60 17-18 16-17 0.26 18.0 11.3 10.1 22.1
r500.7 500 0.70 22-23 21-23 0.49 733 326 423 564
r600.4 600 0.40 11-11 10-11 0.05 0.36 0.35
r600.5 600 0.50 14-14 13-14 0.17 4.21 3.29
r600.6 600 0.60 17-18 17-18 0.40 85 48
r1000.3 1000 0.30 9-10 8-9 0.03 0.46 0.46 0.38 2.03
r1000.4 1000 0.40 12-12 11-11 0.17 5.9 5.3 4.5 14.5
r1000.5 1000 0.50 15-16 14-15 0.54 134 92 103 231
r1000.6 1000 0.60 19-20 18-19 1.25 6,591 3,456
r2000.2 2000 0.20 8-8 7-8 0.02 0.67 0.69
r2000.3 2000 0.30 10-11 9-10 0.17 15.0 13.5
r2000.4 2000 0.40 13-14 12-13 0.83 452 362
r3000.1 3000 0.10 6-7 5-6 0.00 0.21 0.21 0.19 15
r3000.2 3000 0.20 9-9 7-8 0.05 3.62 3.48 4.34 34
r3000.3 3000 0.30 11-11 10-10 0.44 121 108
r3000.4 3000 0.400 14-14 12-13 2.28 6,411 5,176
r4000.1 4000 0.10 7-7 5-7 0.00 0.53 0.53
r4000.2 4000 0.20 9-9 8-9 0.10 14.8 13.4
r4000.3 4000 0.30 11-12 10-11 0.88 633 547
r5000.1 5000 0.10 7-7 5-6 0.01 1.13 1.13 1.19 68
r5000.2 5000 0.20 9-10 8-8 0.20 44 39 68 578
r5000.3 5000 0.30 12-12 10-11 1.55 2,269 1,873
r10000.05 10000 0.05 6-6 4-5 0.01 1.883 1.886
r10000.1 10000 0.10 7-7 6-7 0.04 13.7 13.1 20 684
r10000.2 10000 0.20 10-10 8-9 0.87 1,331 1,136
r15000.05 15000 0.05 6-6 5-5 0.02 6.96 6.96
r15000.1 15000 0.10 8-8 6-6 0.10 65.3 61.3 115 2,749
r15000.2 15000 0.20 10-11 9-9 2.18 10,565 9,488
r20000.05 20000 0.05 6-7 5-5 0.05 18.3 18.3
r20000.1 20000 0.10 8-8 6-7 0.17 251 235

few exceptions, whereas their approximation algorithm, ILS [1]
in ILS&MCS and BG14, consumes a considerable part of the to-
tal computing time. To be more precise, they run the ILS heuris-
tic with 100,000 scans for all the considered instances except
gen400 p0.9 55 and p hat1000-3 for which they use 60 million
scans because these two instances are computationally difficult.
Their resulting approximate solution for gen400 p0.9 55 is 54,
whereas our corresponding solution is 55 that is optimal.

In k5 MCT, even if we change the value of d0 from 0.9 to 1 in
rep we have no change of sol in Tables 1–4. So, reducing d0 = 1
in MCT [35] to d0 = 0.9 in k5 MCT is reasonable.

6. Concluding Remarks

In conclusion, k5 MCT has achieved significant improvement
over MCS, that is, k5 MCT is much faster than MCS for graphs
which require more than around 1 second to solve by MCS [32].

For comparison, the number of graphs for which k5 MCT is
faster than MCS by more than 1000, 100, 10, and 5 times is 3, 3,

4, and 10, respectively, in Table 1, whereas the number of graphs
for which MCT is faster than MCS by more than 1000, 100, 10,
and 5 times is 2, 3, 3, and 9, respectively, among the same group
of graphs [35]. This is an example to show that k5 MCT is slightly
faster than MCT for graphs which require more than around 1
second to solve by MCS, but with few exceptions as in MANN
family graphs. See Ref. [35] for the details of MCT.

Another improved MCT could be obtained by replacing simply

rep = min{20n1/2 × dens3, n} for n ≥ 1

in Ref. [35] by

rep = 5 ×min{20n1/2 × dens3, n} for n ≥ 1,

and we call it r5 MCT, where the modified KLS in this way is
named KLSr5. This KLSr5 takes almost the same time as KLS5
for the same instance. As one example for gen400 p0.9 55,
r5 MCT gets an approximately maximum clique of size 53 and
requires the total of 135.9 seconds to obtain the final exact result
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of 55, whereas k5 MCT gets an approximately maximum clique of
size 55 (= exact solution) and requires a total of 1.18 seconds to
obtain the final result as shown in Table 1. If we let rep := 23,852
in this r5 MCT then it just manages to get an approximately max-
imum clique of size 55 and requires the total of 19.16 seconds to
obtain the final exact result. This shows another example of the
advantage of k5 MCT over MCT, hence also over MCS.

It is left as an important problem to choose other better approx-
imation algorithms for the maximum clique problem. The present
algorithm can be easily extended for enumerating all maximal
cliques of the maximum and near-maximum size with the tech-
nique of Ref. [30].
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[13] Konc, J. and Janežič, D.: An improved branch and bound algorithm
for the maximum clique problem, MATCH Commun. Math. Comput.
Chem., Vol.58, pp.569–590 (2007).

[14] Li, C.M. and Quan, Z.: An efficient branch-and-bound algorithm
based on MaxSAT for the maximum clique problem, AAAI Conf. AI,
pp.128–133 (2010).

[15] Li, C.M. and Quan, Z.: Combining graph structure exploitation and
propositional reasoning for the maximum clique problem, Proc. IEEE
ICTAI, pp.344–351 (2010).

[16] Liu, E., Zhang, Q. and Leung, K.K.: Clique-based utility maxi-
mization in wireless mesh networks, IEEE Trans. Wireless Commun.,
Vol.10, pp.948–957 (2011).

[17] Maslov, E., Batsyn, M. and Pardalos, P.M.: Speeding up branch and
bound algorithms for solving the maximum clique problem, J. Global
Optim., Vol.59, pp.1–21 (2014).

[18] Mori, T., Tamura, T., Fukagawa, D., Takasu, A., Tomita, E. and
Akutsu, T.: A clique-based method using dynamic programming for
computing edit distance between unordered trees, Journal of Compu-
tational Biology, Vol.19, pp.1089–1104 (2012).

[19] Nagai, M., Tabuchi, T., Tomita, E. and Takahashi, H.: An experimen-
tal evaluation of some algorithms for finding a maximum clique, Conf.
Records of the National Convention of IEICE 1988, D-348 (1988).

[20] Ogawa, H.: Labeled point pattern matching by Delaunay triangulation
and maximal cliques, Pattern Recognition, Vol.19, pp.35–40 (1986).

[21] Pardalos, P.M. and Xue, J.: The maximum clique problem, J. Global
Optim., Vol.4, pp.301–328 (1994).

[22] Segundo, P.S., Nikolaev, A. and Batsyn, M.: Infra-chromatic bound
for exact maximum clique search, Computers and Operations Re-
search, Vol.64, pp.293–303 (2015).

[23] Shindo, M., Tomita, E. and Maruyama, Y.: An efficient algorithm
for finding a maximum clique, Technical Report of IECE, CAS86-5,
pp.33–40 (1986).

[24] Sloan, N.J.A.: Challenge Problems: Independent Sets in Graphs,
available from 〈https://oeis.org/A265032/a265032.html〉.

[25] Sutani, Y., Higashi, T., Tomita, E., Takahashi, S. and Nakatani, H.:
A faster branch-and-bound algorithm for finding a maximum clique,
Technical Report of IPSJ, 2006-AL-108, pp.79–86 (2006).

[26] Tomita, E. and Yamada, M.: An algorithm for finding a maximum
complete subgraph, Conf. Records of the National Convention of IECE
1978, p.8 (1978).

[27] Tomita, E., Kohata, Y. and Takahashi, H.: A simple algorithm
for finding a maximum clique, Technical Report of the Univer-
sity of Electro-Communications, UEC-TR-C5(1) (1988). (Reference
[239] in Ref. [21] and Reference [308] in Ref. [4]), available from
〈http://id.nii.ac.jp/1438/00001899/〉.

[28] Tomita, E., Mitsuma, S. and Takahashi, H.: Two algorithms for
finding a near-maximum clique, Technical Report of the Univer-
sity of Electro-Communications, UEC-TR-C1 (1988). (Reference
[240] in Ref. [21] and Reference [309] in Ref. [4]), available from
〈http://id.nii.ac.jp/1438/00001900/〉.

[29] Tomita, E. and Seki, T.: An efficient branch-and-bound algorithm for
finding a maximum clique, DMTCS 2003, LNCS 2731, pp.278–289
(2003).

[30] Tomita, E., Tanaka, A. and Takahashi, H. : The worst-case time com-
plexity for generating all maximal cliques and computational exper-
iments, Theoret. Comput. Sci., Vol.363 (Special Issue on COCOON
2004), pp.28–42 (2006).

[31] Tomita, E. and Kameda, T.: An efficient branch-and-bound algorithm
for finding a maximum clique with computational experiments, J.
Global Optim., Vol.37, pp.95–111 (2007), J. Global Optim., Vol.44,
p.311 (2009).

[32] Tomita, E., Sutani, Y., Higashi, T., Takahashi, S. and Wakatsuki, M.:
A simple and faster branch-and-bound algorithm for finding a maxi-
mum clique, WALCOM 2010, LNCS 5942, pp.191–203 (2010).

[33] Tomita, E., Akutsu, T. and Matsunaga, T.: Efficient algorithms for
finding maximum and maximal cliques: Effective tools for bioin-
formatics, Laskovski, A.N. (Ed.): Biomedical Engineering, Trends
in Electronics, Communications and Software, pp.625–640, InTech
(2011).

[34] Tomita, E., Sutani, Y., Higashi, T. and Wakatsuki, M.: A sim-
ple and faster branch-and-bound algorithm for finding a maximum
clique with computational experiments, IEICE Trans. Inf. Syst.,
Vol.E96-D, pp.1286–1298 (2013), available from 〈http://id.nii.ac.jp/
1438/00000287/〉.

[35] Tomita, E., Yoshida, K., Hatta, T., Nagao, A., Ito, H. and Wakatsuki,
M.: A much faster branch-and-bound algorithm for finding a maxi-
mum clique, FAW 2016, LNCS 9711, pp.215–226 (2016).

[36] Tomita, E.: Efficient algorithms for finding maximum and maximal
cliques and their applications, Keynote at WALCOM 2017, LNCS
10167, pp.3–15 (2017).

[37] Wu, Q. and Hao, J.K.: A review on algorithms for maximum
clique problems – Invited Review, European J. Operational Research,
Vol.242, pp.693–709 (2015).

[38] Zuckerman, D.: Linear degree extractors and the inapproximability
of max clique and chromatic number, Proc. STOC 2006, pp.681–690
(2006).

c© 2017 Information Processing Society of Japan 676



Journal of Information Processing Vol.25 667–677 (Aug. 2017)

Appendix: Clique benchmark result

Table 5 Each dfmax running time for instances [sec].

k5 MCT BBMCX
This paper Segundo et al. [22]

Graph T1 T2 T2/T1

r300.5 0.141 0.189 1.340
r400.5 0.900 1.155 1.283
r500.5 3.442 4.369 1.269

Average: 1.298
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