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Abstract

In recent years, reinforcement learning has been successfully applied to dialogue systems. However, in the
face of task-oriented dialogue systems where policies are difficult to optimize, states are difficult to track,
and tasks are multiple and compound, task-oriented dialogue systems based on reinforcement learning
have problems such as poor collaboration, non-unique learning goals, and non-stationarity due to the lack
of collaboration among agents. In this paper, we propose a multi-agent cooperative dialogue (MACD)
algorithm for task-oriented dialogue systems, in which, for the information interaction between multi-agent
in task-oriented dialogue systems, a deep neural network approach is used to integrate the observations of
multiple single agents and obtain joint observations to achieve information sharing among single agents,
to solve the non-stationarity caused by the lack of joint information of multi-agent. For multi-agent policy
learning task-oriented dialogue systems, the multi-agent deep deterministic policy gradient (MADDPG)
architecture is applied to the policy selection of task-oriented dialogue systems to solve the problem of lack
of joint policy learning of multi-agent in task-oriented dialogue systems; the observation integration of
single agents and multi-agent policy learning are effectively combined to solve the problem of poor multi-
agent collaboration in task-oriented dialogue systems. By verifying and analyzing reinforcement learning
algorithms such as MACD, REINFORCE, DQN, and QMIX in the MultiWOZ corpus, the experimental results
show that the algorithms effectively improve the success rate of multi-agent working together to complete
dialogue tasks, reduce the number of invalid dialogues in dialogue turns, and outperform common
reinforcement learning algorithms in terms of agents' information interaction and joint policy learning in the
composite task dialogue scenario.

1. Introduction

Dialogue systems, as an important means of human-computer interaction, are receiving increasing
attention from academia and industry. From an application point of view, they can be broadly classified into
open-domain dialogue systems and task-oriented dialogue systems. Currently, most of the open-domain
dialogue systems on the market are in the form of companion robots (Li Q et al. 2022; Zhou L et al. 2020),
and they are not as widely used in life as task-oriented dialogue systems. Commonly seen "Tmall Genie",
"Apple Siri", and service robots in banks and supermarkets are all task-oriented dialogue systems (Sakata W
et al. 2019; Pawet Budzianowski and Ivan Vuli¢ 2019). These applications allow people to complete simple
tasks such as querying, controlling, and operating through simple command language such as "Tmall
Genie, please turn on the TV", but once they encounter a complex task, they are unable to effectively execute
the command and get embarrassing responses such as "Please say it again, | didn't hear you! " These
results are mostly because the dialogue is beyond the scope of the application's pre-made corpus of rules.
The Al customer service such as "intelligent assistants” and "voice assistants" in major business systems
are also representations of task-oriented dialogue systems, which minimize the workload of manual
services and are on call around the clock, greatly reducing the labor costs of business operations. However,
most of these systems can only solve basic problems and are unable to handle the diverse needs of users,
identify their true intentions, or apply flexibly in a variety of business scenarios. These practical problems
are common to current task-oriented dialogue systems.

Page 2/24



To solve these practical problems and make task-oriented dialogue systems more relevant to the real world,
researchers need to optimize the algorithmic architecture of task-oriented dialogue systems to improve the
performance indicators of the systems. To improve the performance of task-oriented dialogue systems,
researchers need to optimize the algorithm architecture of task-oriented dialogue systems. In the face of the
difficulties in handling complex tasks, recognizing user intentions, tracking dialogue state, exceeding the
scope of the corpus, and in the poor concordance of dialogue agents, the task-oriented dialogue system
needs to be improved by using a variety of techniques.

Most of the existing task-oriented dialogue systems use deep learning methods to solve many of the key
problems plaguing the systems by leveraging their powerful feature extraction and learning capabilities,
such as building NBT models for dialogue state tracking using neural networks (Mrksi¢ N et al. 2016) and
using Transformer XL neural network architecture to obtain contextual long-term dependencies as a
solution to contextual fragmentation (Dai Z et al. 2019). However, deep learning, as a supervised machine
learning method, requires a large number of pre-labeled samples for training, but a large library of pre-
labeled samples increases the computation of the deep neural network and increases the training time of
the system while improving the accuracy of the task; and in the task dialogue, pre-labeled samples of text
are instead harder to obtain, and it is impossible to build a large library of pre-labeled samples, which will
directly affect the This will directly affect the accuracy rate of task completion. To address these issues in
the field of human-computer dialogue, the researcher wishes to introduce a new approach. Reinforcement
learning is an unsupervised learning method that learns by interacting with the environment through trial
and error to generate samples, which requires a smaller number of samples than deep learning and reduces
the amount of model computation. Reinforcement learning can also solve some of the problems
associated with deep learning methods in task-oriented dialogue systems, e.g., the use of DQN for dialogue
policy learning, which solves the problem of the inability of an agent to explore learning on its own (Lipton
Z et al. 2018), and the use of artificially set reward functions in the reinforcement learning environment,
which makes dialogue content more informative, coherent and easy to answer (Li J et al. 2016). In task-
oriented dialogue systems, reinforcement learning faces the problem of the irrational state of the agents,
which makes it difficult to maximize the global reward, making it difficult to achieve optimal dialogue policy
learning; the existence of complex game relationships between agents, which will lead to multiple agents
working together to complete a predetermined dialogue task if there is a non-cooperative game relationship
between agents in task-oriented dialogue systems. In task-oriented dialogue systems, the existence of non-
cooperative game relations among agents will lead to a series of new problems, such as the lack of
collaboration among multiple agents working together to complete a predefined dialogue task.

In response to the new problems associated with reinforcement learning methods in task-oriented dialogue
systems, this paper investigates three main aspects: 1) Observation value integration. The initial state of
each part of the environment is obtained through the initial observation of a single agent, and the initial
state is processed by noise reduction using a neural network model to obtain the observed value of each
part. The multilayer neural network model is used to integrate the partial observation values of multiple
single agents to obtain joint observation values, which enables the joint sharing of information among
single agents and solves the problem of non-stationarity among agents; 2) Joint policy learning of multiple
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agents. The MADDPG framework of "centralized training, distributed execution" is used to lay out the policy
learning of multiple agents in the system, and a simple extension of the Actor-Critic policy gradient method
is used for the policy learning of a single agent to achieve the joint policy learning of multiple agents in a
task-oriented dialogue system, solving the problem of single agents learning policies independently; 3)
MACD construction. By effectively combining the observation integration method of a single agent with the
multi-agent policy learning method, the joint observation is used to centralize policy learning of multiple
agents, and the information of other agents enhances the policy learning of a single agent, strengthening
the collaboration between agents and enabling the task-oriented dialogue system to complete the dialogue
task more efficiently. Comparative experiments on the dialogue corpus MultiwOZ show that the MACD can
construct more effective multi-agent collaborative training policies and achieve higher task success rates in
composite dialogue scenarios by interacting with each other and with the baseline policy, effectively
reducing the number of dialogues with invalid dialogue.

The paper is organized as follows: Section 2 discusses the work related to the research methodology of this
paper. Section 3 explores in detail how the multi-agent collaboration algorithm can enhance the
collaborative nature of task-oriented dialogue systems in terms of building dialogue multi-agents,
integration of observations, and MACD design. Section 4 presents the experiments and results analysis.
Section 5 concludes and gives an outlook on the work of this paper.

2 Related Work

With the rapid development of deep learning, advances in dialogue systems have been greatly facilitated. In
recent years, the end-to-end model has become one of the common base models used by researchers to
solve dialogue system problems, which encapsulates the three modules of natural language understanding
(NLU), natural language generation (NLG), and dialogue management (DM) as a way to reduce the
workload of dialogue systems in processing text in multiple steps. With the help of this model (Ham D et al.
2020r et al. 2018), researchers have continuously optimized the performance of dialogue systems in terms
of language comprehension, variety of generated utterances, and accuracy of response utterances. In terms
of response generation, existing dialogue systems ensure a certain level of fluency and coherence, but still
suffer from insufficient information richness. For this reason, Lin X et al. (2020) proposed a knowledge
copy mechanism that uses a knowledge-aware pointer network to copy words from external knowledge
according to knowledge attention distribution. The joint neural conversation model built in this study
integrates recurrent knowledge-interaction and knowledge copy (KIC) and performs well in generating
informative responses. Neural network models have emerged as one of the most important approaches to
generating dialogue responses. However, they always tend to generate the most common and generic
responses in the corpus. To address this issue, Wenchao Du and Alan W Black (2019) proposed a boosting-
based iterative training process and integration method to combine different training and decoding
paradigms to build a base dialogue model, which in turn improves the diversity and relevance of the
responses generated by this model. In task-oriented dialogue systems, Li X et al. (2017) proposed a novel
end-to-end learning framework for such dialogue systems, addressing the drawback of separate training of
modular tasks in task-oriented dialogue systems. In Li Z et al. (2019), a task-oriented dialogue system

Page 4/24



based on document dialogue is constructed and a two-pass decoder (Deliberation Decoder) is designed to
address the problems of poor contextual coherence and low knowledge correctness in generating dialogue
responses when given document content.

Most of these studies focus on the use of deep learning methods to solve a range of problems in dialogue
systems, but deep learning methods are subject to bottlenecks such as excessive computing power and
inefficiency in practical applications. Therefore, the current research attempts to introduce reinforcement
learning methods to optimize dialogue systems by maximizing the training of the agents with the help of
the reward mechanism set in the reinforcement learning environment. Jaques N et al. (2020) proposed the
use of offline reinforcement learning to identify implicit conversational cues and embed them in a variety of
reward functions, addressing the problem that policy training can fail in an offline environment due to a
lack of exploration capabilities, as well as making overly optimistic estimates of future reward rewards.
Takanobu R et al. (2019) proposed a new algorithm based on adversarial inverse reinforcement learning to
guide dialogue policy learning, addressing the problem of joint reward estimation in multi-domain task-
oriented dialogue. Among others, the framework of adversarial inverse reinforcement learning can also be
utilized, and Li Z et al. (2019) proposed a dialogue generation reward model that can provide more accurate
and precise reward signals, resulting in higher-quality responses. The applications of reinforcement learning
in dialogue systems are diverse, and Huang X et al. (2021) proposed a novel reinforcement learning network
that solves the problem of detecting emotion for each utterance by tracking information about the gradual
emotion change of each utterance during the dialogue and using this information. In addition to its direct
application to dialogue systems, reinforcement learning can also improve existing dialogue system models.
Le A C (2021) used an encoder-decoder integrated with an attention mechanism and introduced
reinforcement learning to improve this model, solving the problem of less natural response utterances due
to a weak degree of contextual coherence in dialogue content. In task-oriented dialogue systems, more
researchers have used reinforcement learning as a basis for building multi-agent collaborative dialogue
environments as a way to strengthen the connections between agents. Papangelis A et al. (2019) trained
natural language understanding (NLU) and generation (NLG) networks for each agent and let the agents
interact online, allowing each agent to learn how to operate optimally in an environment with multiple
sources of uncertainty. Das A et al. (2017) used deep reinforcement learning to build an end-to-end model to
train the agents on policy, enabling two agents to communicate using the grounded language in the context
of completing a collaborative visual dialogue task scenario.

While the introduction of reinforcement learning has led to advances in system training efficiency and agent
collaboration in dialogue systems, it has also brought about new problems due to agent policy training. To
address the problem that reinforcement learning focuses on the training of the target agent's policy while
neglecting the training of the relative agent's policy, Zhang Z et al. (2020) proposed an opposite behavior-
aware framework that evaluates the opposite agent's policy based on the opposite agent's behavior and
uses this estimation as part of the target policy to improve the target agent's policy. Wang H et al. (2021)
proposed to decompose the dialogue actions of the centralized agents in a dialogue system, reducing the
size of the operation space of each agent and solving the non-stationary problem of agents' policy
evolution caused by dynamic changes in the environment.
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In addition to these two approaches, some researchers also introduce other methods to solve problems that
arise in dialogue systems. Kim H et al. (2020) proposed to assign different roles to multi-agent in a dialogue
system to improve the consistency of roles and solve the problem of dialogue contradiction. Jia Q et al.
(2020) proposed converting dialogue histories into threads and using dialogue dependencies to achieve
multi-round responses, solving the problem of low dialogue counts. Lin Z et al. (2020) proposed Minimalist
Transfer Learning (MinTL) to simplify the system design process of task-oriented dialogue systems,
effectively alleviating the over-dependency on annotated data.

This paper proposes a multi-agent cooperative dialogue (MACD) algorithm, which combines the MADDPG
"centralized training, distributed execution" multi-agent policy training framework with the simple extended
Actor-Critic single-agent policy gradient method, and uses a deep neural network integration method to
obtain joint observations, to enhance the problem of lack of joint information in centralized policy training
for a single agent. The algorithm improves the task success rate of task-oriented dialogue systems and
reduces the number of invalid dialogues in dialogue turns.

3 Construction Of Multi-agent Collaborative Algorithms

In this paper, a multi-agent cooperative dialogue (MACD) algorithm is proposed for task-oriented dialogue
systems. This section firstly introduces the construction idea and basic framework of the algorithm
secondly details the construction method of dialogue multi-agent and the use of the observation integration
method to solve the dialogue multi-agent non-stationarity problem, and finally describes the design steps of
the MACD in the form of pseudo-code.

3.1 Methodological ideas and basic framework

The analysis of task-oriented dialogue systems to achieve the introduction of reinforcement learning
methods to optimize system performance needs to overcome the following difficulties: 1) The current task-
oriented dialogue systems mainly use deep learning methods, there are difficulties such as difficulty to
obtain dialogue text and difficult to match the common knowledge base; 2) In the dialogue task processing,
reinforcement learning methods to achieve more stringent response constraints, generating more accurate
response responses and other difficulties; (3) The difficulties of non-stationarity and low collaboration
among multi-agent based on reinforcement learning methods. Therefore, this paper introduces a multi-
agent reinforcement learning method into the task-oriented dialogue system and designs a novel algorithm
to solve the above-mentioned difficulties.

Firstly, the approach of establishing dialogue with multiple agents is introduced into the task-oriented
dialogue system. Given that dialogue is an interactive act between two or more people, single agents do not
meet the needs of dialogue tasks well, this paper proposes to set up two dialogue agents with role identities
for dialogue interaction acts.

Secondly, a deep neural network integration method is proposed. Given the non-stationarity problem caused
by the lack of joint information between the dialogue multiple agents, this paper proposes to integrate the
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observations of each dialogue multiple agent for the environment to obtain a shared joint observation, to
strengthen the lack of joint information between the dialogue multiple agents.

Finally, a new multi-agent collaborative algorithm is proposed. Given the low success rate of completing
predefined tasks and the high number of invalid dialogues in task-oriented dialogue systems. In this paper,
we propose to apply the multi-agent policy training architecture in the MADDPG and the single-agent policy
gradient method in the Actor-Critic to effectively combine the two to build a dialogue policy learning
framework for the new algorithm, to improve the dialogue multi-agent synergy and solve the above
problems to a certain extent.

By describing the above design ideas and basic architecture, the MACD proposed in this paperis
implemented, which effectively improves the main performance indicators of the task-oriented dialogue
system and also achieves good dialogue effects in the interaction with human dialogue. The basic
framework of the approach proposed in this paper is shown in Fig. 1.

3.2 Construction of dialogue multiple agents

Dialogue is a human activity in real life. To build dialogue systems, an artificial agent is used to simulating
human dialogue behavior. In a task-oriented dialogue system, two dialogue agents are constructed to
simulate humans to complete a dialogue task. First of all, the two agents are given specific roles in order to
substitute realistic situations: the Requesterand the Service provider. Dialogue tasks are initiated by ,
andrespond by completing them together. For example, if a requester's objective is to find the address,
postcode, and telephone number of a hospital gastroenterology department, the service provider will query
the database and respond. The target task base (Goal) required by, and the database of response target
tasks (DataBase) required by are provided by the corpus MultiWOZ, as shown in Fig. 2. There are certain
constraints, onlyknows the target task and onlyhas access to the database, and the success of the task is
calculated by using a multi-turn dialogue model from which the percentage of valid information is
calculated, rather than a one-question-one-answer dialogue model of a question-and-answer dialogue
system.

The agent is an important element of reinforcement learning, single agents follow Markov decision
processes (MDPs) in reinforcement learning, and there are game relationships between multiple agents that
are not present in single agents, the MDPs are extended by the corresponding number of agents, and after
the extension both follow a partially observable Markov game together (Littman M L 1994). A framework of
reinforcement learning is used to build two dialogue agents, which follow a Markov game defined by a set
of statesS = (s", s¥), a set of actionsA = (a", a’’)and a set of observationsO = (0", o” )describing
the configuration of the two agents. To select an action, uses the random policyu,, : o xdV — [0,1]
anduses the random policy7g : of x af — [0, 1]. Both use the same state transfer functionto generate
the respective next state:s" x a¥ — sV s x af — s'F . Both dialogue agents should receive a joint
rewardrCfor environmental feedback during training,rGis only counted at the end of a round of dialogs,
Both Policyuand Policymobjectives aim to maximize the accumulation of global rewardsE[> ", v¢(r<)],

whereyis the discount factor andis the time horizon. The two dialogue agents then share joint information
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in a dialogue environment built by reinforcement learning and train their respective dialogue policies by
continuous trial and error in an algorithmic framework.

3.3 Integration of observations

Currently, in multi-agent systems, multiple agents are very vulnerable to non-stationarity problems (Georgios
Papoudakis et al. 2019), where the agents can only obtain local observations and not the overall state of
the environment. This is because every single agent not only faces a changing environment but may also
be affected by the changes and adaptation policies of other agents. If agents could share information (e.g.
observations, intentions, or experiences) from other agents to stabilize learning, by communicating
interactively through the shared information, agents would better understand the environment (or other
agents) to be able to coordinate their behavior with each other.

This method solves the non-stationarity problem of conversational multi-agents by sharing information
about their observationsand establishing a perfect information game-like relationship between them. First,
the respective initial statess" ands? are obtained byandduring their initial observation of the environment.
The initial statess" ands® are pre-processed for data noise using a multilayer neural network Sequential
model, which acts as a container that encapsulates the structure of the neural network with only one set of
inputs and one set of outputs. The initial statess",s* of andare used as inputs to the neural network and
the outputs are the respective observationsO",0F of and , as shown in Egs. (1), (2); Secondly,andshare
information about each other's observations and form a collection of observations{OW, OP}, in a multi-
agent system, policies get better training is based on global awareness, and joint shared information needs
to be considered to enhance the training of jointly policies. The method uses the set of observations

{OW, OP}to enhance the global information that is missing during policy training. In the DQN (Volodymyr
Mnih et al. 2015) a deep neural network model is used to approximate a state value function value, and this
same approach is used to obtain a joint state value function value, with the difference that the global set of
observations {OW, OP}is processed by a multilayer neural network Sequential model to obtain a joint
observation vaIueQG, as shown in Egs. (3), QGis used in section 3.4 for centralized training of policies.

O" = f(z¥ (s))
O = f(ZF(s"))

Q% (s) = Zg([0"; 0"))
3

where Z(-) denotes any neural network unit and f(-) denotes the activation function.

3.4 Multi-agent cooperation dialogue algorithm
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To address the problem of low dialogue multi-agent concordance in task-oriented dialogue systems, this
paper proposes a new multi-agent collaborative algorithm in this setting. The corpus MultiWOZ provides
multi-domain, complex conversational tasks, and the dialogue multiple agents are built in section 3.2 using
a framework of reinforcement learning, where the training of dialogue policies for the agents is almost
impossible to explore and learn from scratch. When moving on to the real dialogue policies training of the
agents, the dialogue policies need to be pre-trained by the corpus and then the pre-trained policies are
improved using the proposed new algorithm. After the above preparatory work is completed, the real
training of the new algorithm of the agents will be entered.

First, a new policy training method is proposed for the dialogue policy training of dialogue multiple agents
in Section 3.2. The method extends the reinforcement learning Actor-Critic policy gradient approach
(Bahdanau D et al. 2016). The difference is that both and are treated as Actors and the Critic in this
algorithm is treated as a Global Critic. The actor's score is based on the change in the state caused by the
action, and the actor modifies the probability of the selected action based on the Critic's score. In the new
algorithm and select actions based on p,and 7, respectively, and Global Critic judges the scores of the
actions based on the changes in the joint observations caused by the actions of and . and modify p,and
g, respectively, according to the Global Critic scores.

Secondly, for the W and P and Global Critic overall policy training frameworks, the MACD draws on the
MADDPG (Lowe R et al. 2017) policy training framework "Centralized Training, Distributed Execution"
(CTDE) (Bernstein D S et al. 2002), with a simple modification of the MADDPG policy training method to
improve collaboration between dialogue multiple agents.

The MADDPG addresses the non-stationarity problem among multiple agents by only using additional
information from other agents' policies to enhance the connection between them when training Critic
centrally, and does not make good use of the joint information to solve the problem effectively. The MACD
uses the shared joint observation information described in Section 3.3 to solve the non-stationarity problem
for dialogue multiple agents and uses the integrated joint observations to better train Global Critic during
centralized training. The centralized training in this method is the training of the Global Critic policy, and the
distributed execution reflects the individualized differences in the selection of actions thatandcontinue to
maintain after training their respective actor policies.

Within the algorithmic framework of CTDE, the Global Critic policy is trained centrally as shown in Egs. (4).

LEO) =[y— Q5 (s))* .y =1% + Q5 (s') (4)

Where LCis the loss function of Global Critic and the training objective is to minimize LC The goal isto
minimize the squared error between the targety = r¢ + ')/Qg(s’)and the estimate Qf(s), using the time-
discrepancy (TD) method of reinforcement learning.QQyis parameterised by6,6'is the weight of the target
network, Q5 (s) = Zg([0F;08), Q5 (s') = Zg([OY'; O%])from Section 3.3. yis the loss factor and
rCis the joint reward obtained from the environmental feedback.
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Distributed execution of the trained versus policy, by using the log-likelihood ratio trick, with gradients
generated as shown in Egs. (5), (6).

Vadu(@) = Vi, log s (a'|s7)[A% (s)]

Vs (8) = Vglog ma(a’|s”)[A% (s)]
6

Where A%(s) = r% + yQ%(s') — Q% (s)is a dominance function calculated via Global Critic that
evaluates the new state s’and the current state to determine whether the dialogue is becoming better or
worse than expected. The policy fiqis parameterised by o and the policy mgis parameterised by 3. In
summary, a short script of the MACD is shown in Algorithm 1.

4 Experiments

This section compares the performance differences between the MACD proposed in this paper and the
REINFORCE, DQN, PPO, QMIX, and IterDPL through simulation experiments as a way to verify the
effectiveness and correctness of the MACD.

4.1 Experimental design and data

The experimental code was written using the Pycharm software platform and the parameters of the task-
oriented dialogue system were set as follows: the policies of the dialogue agents (Requesterand the Service
provider) were implemented using multilayer perceptron networks (MLPs) with action spaces of 100 and
200 respectively; the neural network units used in the Global Critic joint state value network, were
implemented using MLPs. The activation functions were all Relu for MLPs, and the optimization algorithm
used RMSprop with a batch size of 32; reinforcement learning training with learning rates of 1e-4 and 5e-5
for u,and g, respectively, and 3e-5 for the joint critic Global Critic policy, with a discount factoryof 0.9, and
the target network updated every 300 training iteration once; for the reward design, the artificially set
penalty of -4 for empty actions and - 2 for other types of penalties. The sub-goal completion reward is 5, if
triggered, mission success and goal reward are 20, otherwise - 5.

To verify the performance differences of multiple methods in a task-oriented dialogue context, the task-
oriented dialogue corpus MultiwOZ (Pawet Budzianowski et al. 2018) was selected for experimental
evaluation, containing more than 10,000 annotated dialogues across 8 domains, which is at least one order
of magnitude larger than all previous task-oriented dialogue corpora with annotations. To further enhance
the reproducibility of the results, the corpus was randomly divided into a training set, a test set, and a
development set, with a pre-training set of 1000, a training set of 300, a test set, and a development set of
1000. As all the dialogues were coherent, some of them did not follow the task description. Therefore, to
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make the comparisons more accurate, the validation and test sets only contain a fully successful dialogue
corpus.

4.2 Baselines

In the MultiwOZ corpus test environment, experiments were conducted to compare and analyze the
performance differences of different algorithms as follows.

REINFORCE The REINFORCE with two layers of fully connected policy networks (Ronald J Williams 1992).
DQN Traditional DQN (Volodymyr Mnih et al. 2015) with a 2-layer fully connected network for Q-functions.

PPO Proximity Policy Optimisation (John Schulman et al. 2017), a policy-based RL using a constant-limit
mechanism.

IterDPL Iterative Dialog Policy Learning (Bing Liu and lan Lane 2017) uses a single RL training iteration to
update two agents to reduce the risk of non-stationarity when training two agents jointly.

QMIX Estimates the joint values as a complex non-linear combination of each agent's value conditional on
local observations only, via a network (Rashid T et al. 2018).

4.3 Metrics

Y,NY3 Y,NY3

| i ‘Recall = - 7 |
selected in this paper: the number of dialogues (Turn), the F1 score (Inform F1), the match rate (Match
Rate), and the task success rate (Success). The Requester discourse and the subsequent Service provider
discourse are considered as several dialogues and Turn is the average number of dialogues in a round. In a
task-oriented towards a collaborative goal, completing the task with lower-cost conversational rounds
increases requester satisfaction. Two other metrics, Inform F1 and Match Rate, are also utilized to estimate
Success. Inform F1 is used to assess whether the requester has been successfully notified of all slots in the
requested entity, and is used because it considers both Precision and Recall, as detailed in Egs. (7). Match
Rate is used to assess whether the booked entity matches the target in all domains, with a score of 1 for the
domain when and only when its entity is successfully booked.

For the measurement of the experimental results, four measures are Re call =

.. |Y4NY5]| .. |Y4NY5]|
Precision = Precision =
|Yal Va4l
(7)
o Re call xPrecision o Re call xPrecision
Fl =2 Re call+Precision Fl =2 Re call+Precision

Where: Y jandYgrefer to the set of non-stop words in the generated session and background knowledge.

4.4 Analysis of collaborative dialogue

The experiments used reinforcement learning methods to build a framework for a task-oriented dialogue

system, in which the Requester, the Service providerand the Global Critic were used as the base network to
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interact with the Environment for training.

First, the MACD was trained separately with various comparison algorithms such as REINFORCE, DQN, PPO,
QMIX, and IterDPL in a task-oriented dialogue system environment to obtain Turn, Inform F1, Match Rate
and Success of the Requester-Service provider interaction, and the experimental results are shown in

Table 1.

Table 1

Performance of the interaction between the Requester and the
Service provider

to #Turn  Inform F1  Match Rate  Success
REINFORCE 9.470 82.12 66.13 57.20
DQN 10.110 76.21 62.34 52.40
PPO 9.250 82.23 70.02 59.96
lterDPL 11.560 74.10 70.25 63.60
QMIX 8.720 73.55 80.20 68.40
MACD 8286  75.80 81.20 73.60

As can be seen from Table 1, the difference between the lterDPL and MACD is the largest in terms of the
"Turn" metric, with the MACD decreasing by 3.274 compared to the IterDPL, while the MACD is the least
different from the QMIX, with the MACD decreasing by only 0.434 compared to the QMIX. In comparison
with other algorithms, the MACD has the lowest Turn metric. The MACD and QMIX performed better than
the other four algorithms in this metric, mainly since the IterDPL, REINFORCE, DQN, and PPO are all single-
agent RL algorithms. In a multi-agent environment, they do not create information connections between
each other and have poorer synergy than the QMIX and MACD, which have this advantage because these
two algorithms have consciously used information between agents to enhance synergy.

Under the "Inform F1" and "Match Rate" metrics, the Inform F1 of the PPO (82.23%) was slightly higher than
most of the comparison algorithms, but the Match Rate was only 70.02%, while the Match Rate of the
MACD (81.20%) was much higher than most of the comparison algorithms, but the Inform F1 (75.80%)
decreased less. The Match Rate for the MACD (81.20%) was much higher than most of the comparison
algorithms, but the Inform F1 (75.80%) decreased to a lesser extent, while the Inform F1 and the Match Rate
were used together to estimate the Success. The MACD showed a 13.64% increase compared to the PPO
for the Success metric, where it was found that the Match Rate had a greater impact on the Success
compared to the Inform F1. By comparing the values of the other algorithms for these two metrics, it can be
seen that the MACD outperforms the other algorithms in terms of task completion performance due to the
significant improvement in Inform F1 and Match Rate.

Secondly, to further analyze the variety of different algorithms in the Success metrics, a training set of 300
was selected to compare the Success of MACD with five algorithms, including REINFORCE, DQN, PPO,
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QMIX, and IterDPL, and the specific experimental results are shown in Fig. 3.

As can be seen in Fig. 3, there is little difference in task completion performance between the REINFORCE
and the MACD for the first 100 sets of iterations. At 150 training sets, the MACD achieves the highest
Success compared to the other comparison algorithms at 53.3%, which is 1.3%, 2.8%, 5.1%, 7%, and 7.9%
higher than the lterDPL, REINFORCE, DQN, QMIX and PPO respectively. As the number of iteration sets
increases, the MACD has the advantage of being more collaborative between agents in completing dialogue
tasks and improving Success compared to other comparison algorithms. The MACD achieved the highest
Success (73.60%) when the number of training sets was 300, with the greatest variability compared to the
other comparison algorithms. At the highest Success, the Turn was the lowest among the compared
algorithms (8.286). The MACD shares joint information to enhance the synergy between dialogue agents,
avoiding some lengthy interactions to complete the dialogue task more efficiently. Therefore, the MACD
proposed in this paper is more helpful for dialogue multiple agents to complete the dialogue task
collaboratively.

To further validate the performance of the MACD in a multi-domain dialogue environment, the Requester
and the Service provider are confronted with a composite dialogue task. The MultiWOZ corpus was divided
into three different domains (2, 4, and 6) and the five comparison algorithms mentioned above were still
used to obtain the Turn, Success Reward of the Requester, and the Service provider interaction, and the
experimental results are shown in Table 2.

Performance of the Requester and the Serv:;:aebrl)erozvider interacting between different domains
domains domains domains
=2 =4 =6
Method Turn Reward Succ. Tumn Reward Succ. Tumn Reward Succ.
REINFORCE 6.62 52.30 0.73 8.20 35.40 0.70 10.14 31.20 0.52
DQN 13.03 -3.46 0.69 16.40 -15.20 0.32 18.74 -31.23 0.12
PPO 7.42 49.54 0.75 10.23 37.12 0.69 14.52 2345 0.49
lterDPL 9.65 52.13 0.86 9.56 35.62 0.81 13.55 25.12 0.79
QMIX 7.32 48.26 0.87 1012 4220 0.83 11.20 20.14 0.82
MACD 6.30 68.20 0.90 8.45 54.12 0.89 10.56 40.98 0.85
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Table 3
Chi-squared tests for different algorithms

Index Levene Statistics  Significance
Turn 0.901 0.511
Reward 0.062 0.997
Succ. 4.231 0.019

To test the significance of the effect of different algorithms on the dialogue multiple agents collaborating to
complete the dialogue task, this paper conducted ANOVA analysis on the data in Table 2. The results of the
chi-square test for the different algorithms are shown in Table 3, and the results of the ANOVA test for the
different algorithms are shown in Table 4.

Table 4
ANOVA analysis of different
algorithms
Index F value Significance

Turn 4166 0.021
Reward 10.015 0.001
Succ. 5.400 0.008

As can be seen from Table 3, the significance of all the indicators except Succ. was greater than 0.05,
0.511, and 0.997 respectively, indicating that the variance of the analyzed data was chi-square, and
therefore, a one-way ANOVA analysis could be applied to the data in Table 2. As can be seen from Table 4,
the significance of Turn, Reward, and Succ. are all less than 0.05, 0.021, 0.001, and 0.008 respectively,
indicating that there are significant differences between the six different algorithms used in this experiment,
i.e. the different algorithms have an impact on the dialogue multiple agents working together to complete
the dialogue task in a task-oriented dialogue system.

Table 5
Chi-squared tests for different domains
Index Levene Statistics  Significance
Turn 0.179 0.838
Reward 0.004 0.996
Succ. 2.376 0.127

Again, to test the significance of the effect of different domains on the dialogue multiple agents working
together to complete the dialogue task, ANOVA analysis was conducted on the data in Table 2. The results
of the chi-square test for different domains are shown in Table 5, and the results of the ANOVA test for
different domains are shown in Table 6.
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Table 6

ANOVA analysis for different
domains

Index F value Significance

Turn 3.385 0.061
Reward 1.699 0.216
Succ. 1.425 0.271

As can be seen from Table 5, the significance of the Turn, Reward, and Succ. rubrics were 0.838, 0.996, and
0.127 respectively all greater than 0.05, indicating that the variance of the analyzed data was chi-square
and could be analyzed using a one-way ANOVA. Table 6 shows the significance of Turn, Reward, and Succ.
were 0.061, 0.216, and 0.271 respectively, all of which were greater than 0.05. This indicates that the
division of the corpus into domains 2, 4, and 6 did not have a significant effect on the rubrics in this
experiment, but that different algorithms in the same domain had some effect on the generated dialogue
rubrics.

Combining the data from Tables 2—6 shows that the MACD has the highest average task success rate
(88%), which is 23%, 50.4%, 23.7%, 4%, and 6% higher than the REINFORCE, DQN, PPO, QMIX, and IterDPL
respectively, thus showing that the MACD is the most different from the DQN, with the MACD being 50.4%
greater compared to the DQN. This indicates that the DQN is most impacted by the multi-domain dialogue
environment, and performance continues to weaken as the number of domains increases, while the DQN
model is built by a neural network, and the growth in space reduces the learning speed of the agents when
faced with a multi-domain dialogue environment. The MACD is the least different from the QMIX, with the
MACD increasing by only 4% compared to the QMIX. It fully illustrates that the QMIX and MACD use the
idea of joint information to optimize dialogue policy training, which effectively alleviates the inevitable non-
stationarity problem in multi-agent reinforcement learning, while the independent experience playback
buffer reduces the gradient dependence. Both algorithms use the CTDE multi-agent policy training
framework to achieve better learning performance for dialogue, multiple agents.

Finally, to compare the variability of the Success metrics between the different algorithms in a multi-domain
dialogue environment. The MACD was used to generate the approximate direction of the Success with five
comparison algorithms at domains 2, 4, and 6 with the number of training sets at 300, and the experimental
results are shown in Fig. 4, 5, and 6.

As can be seen in Fig. 4, there is a significant difference in the "Success" metrics of the various algorithms
as the system iterates through 200 sets. The MACD achieves the highest Success (74.5%), which is 11.7%,
33.2%, 24.4%, 23.3%, and 12.4% higher than the REINFORCE, DQN, PPO, QMIX, and IterDPL respectively.
33.2%, 24.4%, 23.3%, and 12.4%, respectively. As the number of iteration sets increases, the MACD
maintains a higher Success compared to the other comparison algorithms. As can be seen in Fig. 5, at 50
training iterations, the MACD is already higher than the other comparison algorithms, by 16.7%, 22.3%,
19.8%, 16.9%, and 1.2% compared to REINFORCE, DQN, PPO, QMIX, and IterDPL, respectively, and has been
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in the lead ever since. As can be seen in Fig. 6, the performance of all the comparison algorithms weakened
at a domain of 6, except for QMIX as well as the MACD, which increased by 2.4% compared to the QMIX
when training iterations of 250 sets.

Combining the data from Fig. 4 - Fig. 6 it can be found that in the dialogue environment of different
domains, the dialogue multiple agents differed in the synergy of completing the composite tasks provided
in different domains after being trained by different algorithms for dialogue policies. From an overall
perspective, each algorithm was impacted by the multi-domain dialogue environment and the composite
dialogue task, and as a result, the Success tended to decrease. When compared from an individual
algorithm perspective, the MACD proposed in this paper learns faster and performs better with statistically
significant advantages. As the size of the domain continues to increase, the MACD shows less fluctuation
in the Success measures compared to the other comparison algorithms, with a significant decrease of only
1% from domain 2 to domain 4 and 4% from domain 4 to domain 6. Thus, the MACD proposed in this paper
is robust against a multi-domain environment and has even shows to be more effective in a multi-domain
environment than a single-domain environment.

4.5 Human Evaluation

The MACD proposed in this paper requires a model conversion with real users to better verify the
effectiveness of the algorithm through manual evaluation. In the evaluation process, the user interacts with
the agents, and Turn and Success are used as evaluation metrics. The algorithm was tested with 1000
dialogues in a single domain environment of the MultiWOZ corpus. The experimental results are shown in
Table 7.

Table 7

Evaluation metrics for different algorithms
vs. human users

Method #Tum Success

DQN 8.21vs11.10 51.56vs 51.3
lterDPL  6.10 vs 9.02 63.6 vs 54.7
QMIX 8.23vs10.23 60.6 vs 55.3
MACD 6.26 vs 9.12 69.46 vs 52.6

As can be seen from Table 7, under the "Turn" metric, the different algorithms outperform human users, with
DQN, IterDPL, QMIX, and MACD decreasing by 2.89, 2.92, 2, and 2.86 compared to human users. In the
"Success" metric, the DQN, IterDPL, QMIX, and MACD increased by 0.26%, 8.9%, 5.3%, and 16.86%
compared to human users, and it can be seen that the MACD performed better than the other comparison
algorithms when interacting with humans. From an overall perspective, all algorithms had a lower Success
than the scores in Table 1 when interacting with humans in dialogue, and all results differed significantly
from the original results. In particular, the MACD has a 4.14% lower Success when interacting with a human
compared to interacting with an agent. This is mainly because real human users need to bond over time to
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have a sense of cooperation and team spirit, and they want to complete the task by getting as much
information as possible without making compromises. For this reason, the Turn of human users is larger
compared to even the comparison algorithm, and as the sessions become quite long, the Success
decreases to some extent.

5 Conclusion

In this paper, we propose a reinforcement learning based multi-agent dialogue policy training algorithm—
MACD, to solve the problem of lack of collaboration between agents in a multi-domain dialogue
environment in a task-oriented dialogue system. The MACD firstly adopts a reinforcement learning
framework to build dialogue multiple agents as a way to address the cost consumption of human-computer
dialogue interaction, and secondly adopts the CTDE multi-agent policy training framework, combined with
the simple extended Actor-Critic single-agent policy gradient method to train dialogue multiple agents
policies, as a way to address the lack of joints in multi-agent policy training. The experimental results show
that the MACD can effectively improve the success rate of multi-agent jointly completing dialogue tasks
and reduce the number of invalid dialogues in dialogue turns in a composite task dialogue scenario. Future
work will explore the confidence assignment problem caused by identical returns when dialogue multiple
agents interact with the environment after dialogue policy training.
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Figure 3

Success (%) for interactions between the Requester and the Service provider
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Figure 4

Success (%) for interactions between domains=2 the Requester and the Service provider
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Success (%) for interactions between domains=6 the Requester and the Service provider
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