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n a very general sense Distributed Problem Solving (DPS)
assumes that complex and large-scale problems can be
solved by organizing an assembly of cooperating experts
(agents) possessing complementary problem solving skills.

This approach has demonstrated results in medical diagnosis
[1], industrial product design [2], knowledge acquisition of
and fault root cause analysis in networks [3], pattern analysis
and visual shape recognition [4], and natural language under-
standing [5].

As dynamic application domains such as stock trading con-
tinue to grow in scale and complexity, it becomes more diffi-
cult to control the behavior of agents in situations where
unexpected events may occur. In recent years, there has been
considerable growth of interest in the design of intelligent
agent architectures for problem solving in dynamic and unpre-
dictable domains. Most of today’s intelligent agent architec-
tures of distributed problem solving are limited to performing
preprogrammed or human-assisted tasks in relatively static
and predictable domains.

In multi-agent systems the agents should be able to interact
with each other, and with the external environment in an
adaptable manner by adjusting their behavior to the changes
occurring in the environment. Each agent has a local view of
the environment; generally it has been provided by specific
operational goals, and it is known that the agent is unable to
solve the system tasks alone, at least with the quality, efficien-
cy, resources, and other constraints defined by the problem.
The new global characteristics of such multi-agent system
emerge from the behavior of its components (i.e., the cooper-

ating agents). This cooperation, in turn, impinges on the inter-
actions between the agents and subtly modifies the properties
of the overall system [6]. In order to be more useful in com-
plex real world domains, the agents need to be flexible in
terms of their problem solving skills, communication capabili-
ties, and utilization of internal knowledge and data.

It is highly possible that an agent with responsibility in a
dynamic environment will face unexpected events. In order to
be responsive, the agents should have enough knowledge to deal
with these unexpected events. If an agent is not able to deal with
a particular event on its own, it can take the following actions:
• Learn how to solve the problem by experimenting with

alternative problem solving strategies
• Let some other knowledgeable agent solve the problem and

then use the results
• Learn how to solve the particular problem by acquiring the

necessary knowledge from other agents capable of solving
the problem

• Ignore the unexpected event [7]
For real-time application domains such as stock trading,
action 1 may not be suitable because it may take a long time
to obtain the solution. Action 2 is a natural way for cooperat-
ing agents to solve the problem. However, it is not suitable for
scenarios where there are large volumes of data to be pro-
cessed. For action 3, there may be no large network transfer,
but the agents themselves must be quite sophisticated. They
need temporarily (maybe even permanently) to keep the
knowledge acquired from other agents, and then learn how to
use this knowledge to solve the particular problem.
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Abstract
A distributed problem solving system can be characterized as a group of individual coop-
erating agents running to solve common problems. As dynamic application domains con-
tinue to grow in scale and complexity, it becomes more difficult to control the
purposeful behavior of agents, especially when unexpected events may occur. This
article presents an information and knowledge exchange framework to support distributed
problem solving. From the application viewpoint the article concentrates on the stock trad-
ing domain; however, many presented solutions can be extended to other dynamic
domains. It addresses two important issues: how individual agents should be interconnected
so that their resources are efficiently used and their goals accomplished effectively;
and how information and knowledge transfer should take place among the agents to
allow them to respond successfully to user requests and unexpected external situa-
tions. The article introduces an architecture, the MASST system architecture, which
supports dynamic information and knowledge exchange among the cooperating agents.
The architecture uses a dynamic blackboard as an interagent communication
paradigm to facilitate factual data, business rule, and command exchange between coop-
erating MASST agents. The critical components of the MASST architecture have
been implemented and tested in the stock trading domain, and have proven to be a viable
solution for distributed problem solving based on cooperating agents.
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For building a distributed multi-agent system capable of
solving complex and large-scale real-time stock trading tasks,
we have developed the Multi-Agent System for Stock Trading
(MASST) [8]. Although developed for stock trading, the
MASST architecture extends beyond the stock trading
domain. MASST is a closely collaborating agent system in
which every agent has its own specialized capabilities and
knowledge, and no one agent has the whole knowledge about
the world. All the task-specific MASST agents are situated on
the same machine. Hence, we do not need to worry about
huge volume data transfers over a network. Based on the dis-
cussion above, the MASST agents will take actions 2 and 4 to
deal with a particular event. The objective of this article is to
investigate and recommend a framework to support distribut-
ed problem solving for action 2.

In this article we address two important issues:
• How individual agents should be interconnected so that

their capacities are efficiently used, and their goals are
accomplished effectively and efficiently

• How the information and knowledge transfer should take
place among agents to allow them to respond successfully to
users’ requests and unexpected situations in the outside world
The breakdown of the rest of this article is as follows. We

give some background about the applications of agents in the
stock trading domain. We briefly describe the MASST frame-
work. We discuss in detail the information and knowledge
exchange framework used in the MASST agents. We describe
MASST implementation and experiments. We then conclude
this article.

Background
Intelligent agents are software programs that act on behalf of
human users or other systems in order to carry out arduous
information gathering and processing tasks, such as locating
and accessing information from various information sources,
resolving inconsistencies in the retrieved data, filtering away
irrelevant or unwanted data, and integrating information from
heterogeneous information sources. Agents can automate
repetitive tasks, notify users on upcoming events or system
changes, aggregate and summarize complex data, learn from
past behavior, and even make recommendations to the user
on alternative solutions.

The agent technology has proven to be suitable to address
issues concerning portfolio management. Sycara et al. [9]
pointed out that this is the task of providing an integrated
financial picture for managing an investment portfolio over
time, using the information resources already available over
the Internet. The portfolio management domain has many
interesting characteristics, including:
• The enormous amount of continuously changing and gener-

ally weakly organized data
• The variety of kinds of information that can and should be

brought to bear on the task (market data, financial report
data, technical models, analysts’ reports, breaking news, etc.)

• The many sources of uncertainty and dynamic changes in
the environment

The overall task of portfolio management is to provide the
best possible rate of return for a specified level of risk, or con-
versely, to achieve a specified rate of return with the lowest
possible risks. A multi-agent system approach is natural for
portfolio monitoring, because the multiple control threads in
such a computational model are a natural match for the dis-
tributed and ever-changing nature of the underlying sources
of data and news that affect higher-level decision-making pro-
cess. A multi-agent system can more easily manage the detec-
tion and response to important time-critical information that

could appear suddenly at any of a large number of different
information sources. A multi-agent system provides a natural
mapping of the multiple types of expertise to be brought to
bear during any portfolio management decision making.

Rus and Subramanian [10] presented a customizable archi-
tecture for software agents that capture and access informa-
tion in large heterogeneous distributed electronic repositories.
The key idea is to exploit the underlying structure at various
levels of granularity to build high-level indices with task-spe-
cific interpretations. Information agents construct such indices
and are configured as a network of reusable modules called
structure detectors and segmenters. The proposed architec-
ture is illustrated by design and implementation of smart
information filters in two contexts: retrieving stock market
data from Internet newsgroups and retrieving technical
reports from Internet FTP sites.

Delgado et al. [8] investigated a hybrid learning system that
combines different fuzzy modeling techniques. In order to
implement the different methods, they proposed the use of
intelligent agents, which collaborate by means of a multi-agent
architecture. This approach, involving agents that embody the
different problem solving methods, is a potentially useful
strategy for enhancing the power of fuzzy modeling systems.
Working with stock markets requires constant monitoring of
the continuously changing stock information, and the ability
to make decisions instantaneously based on certain rules as
the changes occur. Garcia et al. [12] recently reported a
framework for implementing a deliberative multi-agent system
for this domain. This system can be used as a proactive tool
for expressing and implementing high-level stock trading
strategies. In the framework, agents are able to monitor and
extract the stock market information via the World Wide Web
and, using the domain knowledge provided in the form of
defeasible rules, can reason in order to achieve the estab-
lished goals. The overall system is integrated using Java Infer-
ence Engine and Networked Interactor (JINNI), which
provides a platform for building intelligent autonomous
agents [13], and Defeasible Logic Programming (DeLP),
which provides the agents with the capability of reasoning
using defeasible rules in a dynamic domain.

Even though there are several agent-based approaches
reported in literature that address the issues in the financial
trading domain, most of the current agent-based approaches
focus on how to get the information from a distributed source
(the Internet). The use of intelligent agents to support deci-
sions has not been thoroughly explored and merits serious con-
sideration. In current practice, portfolio management is carried
out by investment houses that employ teams of specialists for
finding, filtering, and evaluating relevant information. Based on
their evaluation and on predictions of the economic future, the
specialists make suggestions about buying or selling various
financial instruments. The current practice, as well as software
engineering considerations, motivates our research in multiple-
agent systems for stock management. A multiple-agent system
approach is natural for portfolio management because of the
multiplicity of information sources and the different expertise
that must be brought to bear to produce a good recommenda-
tion for a stock buy or sell decision.

MASST Framework
MASST is a middle-layer agent system between the demand
side of information (i.e., investors in the stock market) and
the supply side of information (i.e., the Internet). Figure 1
shows the MASST scope and its context.

The major functions of MASST include:
• Stock information retrieval — a basic required data provi-
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sioning function and a must for every commercial stock
analysis software. MASST provides four categories of infor-
mation retrieval:
–Trading history and current quotations, such as the infor-
mation of opening price, highest price, lowest price, current
price, abd trading volume for the selected stock on a given
trading date
–Browsing stock technical analysis charts, such as a price
movement chart (e.g., Candlestick Chart), trading volume
chart, and various technical indicators chart
–Listed company’s fundamental data and financial health
information retrieval, such as total amount of stock trading
volume, after-tax profits, earnings per share, annual earn-
ings increases, number of common shares, new products or
services, new management, and market news
–Market statistics information retrieval, such as the list of
top 10 shares of maximum trading volume in the given trad-
ing day(s), the list of top 10  shares of maximum price
upward (or downward), and the list of top 10 of the lowest
price-earning ratios

• Stock status monitoring and risk
management — MASST will
automatically monitor the market
status of the shares the user holds
and is interested in. The share’s
market status includes the listed
company’s fundamental financial
status and the status of the
share’s technical indicators.
Based on the share’s market sta-
tus, MASST will automatically
and promptly report any abnor-
mal status to users. Indicators of
abnormal status include:
–Abnormal price fluctuation
–Abnormal trading volume
–Abnormal technical indicator’s
status
–Abnormal price chart pattern
–Some breaking news relating to
the given shares

Furthermore, MASST will provide
the profit and risk management,
including calculation of profits/risk
ratio based on shares’ market status
and user’s investment, and
reminders of stop-loss level for
holding shares according to the
user’s profile.
• Buying and selling shares deci-

sion support — From the

investors’ perspective, the most important and concerning
issues for investment in the stock market are buying share
issue and selling share issue. Which share is the best one to
buy? What time is the right time to buy the share? What
time is the right time to sell your holding shares? It is very
often difficult (maybe impossible) to find simple and accu-
rate answers to these kinds of questions. Every investor has
his/her own buying and selling share strategies and rules.
MASST will provide buying and selling decision support
based on business rules defined by the investors them-
selves. Through a combination of human and machine
knowledge, using agent technologies, MASST aims to
reduce investors’ work overload in the process of stock
analysis and investment decision making.
MASST provides a unified environment (Fig. 2) in which

several agents are integrated. These intelligent agents inter-
operate to collect, filter, and fuse information from distribut-
ed network-based information sources, and to make buying
and selling decision suggestions for investors in their daily
stock trading.

One of the key components in this framework is the User
Profile Database (UPDB), which is dynamic, changing, and
shared among agents within the system. Each user has his/her
own personalized interface agent, an individual user profile,
and a trading strategy database (TSDB) that is the user’s pri-
vate trading strategies, while other agents in the system are
shared by all users. The UPDB includes information such as
username, password, the stock list the user possesses, the
stock list in which the user is interested, monitoring instruc-
tions, planned tasks, preferences, and privacy settings. These
agents are assigned to an individual user and must be able to
learn a user’s interests and behavior autonomously and adapt
to the changing needs of the user over time. The profile is
centrally available to all user agents.

The history trading database (HTDB), real-time trading
database (RTDB), and fundamental information database

■ Figure 1. MASST scoped organizational context.
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(FIDB) are the internal data
resources, continuously updated with
relevant external information by the
technical analysis agent (TAA) and
fundamental analysis agent (FAA).
The functions and relationships among
the agents in MASST are as follows:
• The interface agent (IA) interacts

with the user, receiving user tasks
and specifications and delivering
results. The IA passes the user’s
tasks to and gets returns from the
coordinator agent.

• The coordinator agent (CA) is
responsible for task decomposition
and planning. The CA maintains a
set of beliefs about the capabilities
of all agents in MASST. It can
decompose a given task into a num-
ber of subtasks and dispatch the
subtasks to relevant agents to exe-
cution, in order to achieve its goals.

• The profiler agent provides the
mechanism by which a user’s pro-
file and TSDB are generated and
maintained. The profiler agent
interacts with the CA to receive
information from the user and the
environment to determine the
interests of the user.

• The monitoring agent monitors the
status of the given stocks on behalf
of users according to their profiles.
This agent reports on the technical
indicators status of the given stocks and notifies any abnor-
mal changes in trading volume and price.

• The communication agent allows the framework to interact or
communicate with other agents or programs developed by
other developers. This is a reserved interface to other systems.

• The risk management agent (RMA), on the basis of the
user profile, interacts with the monitoring agent and deci-
sion-making agent to analyze the risk levels of the user’s
share holdings, reports the profit status, and suggests a
stop-loss level for the holding shares.

• The decision making agent (DMA) combines the outcomes
of the TAA and FAA, according to the investment strate-
gies selected through the user’s TSDB. DMA will have two
main functions:
–To give a list of stocks advised for the next trading day to
buy
–To give suggestions for users holding shares to hold or sell

• The technical analysis agent (TAA) retrieves and processes
the raw stock trading data from the Internet, stores the raw
data to a relevant database (HTDB, RTDB), calculates var-
ious technical indicators, identifies various price and trading
volume patterns, and gives the output to the DMA.

• The fundamental analysis agent (FAA) gathers the macro-
economics data, fundamental financial status of the listed
companies, opinions of market commentators or experts,
and some relative news, and puts this information into the
FIDB. The fundamental analysis agent integrates the infor-
mation and makes recommendations to the DMA.

Information and Knowledge Exchange in
MASST
An Overview of the MASST Intercommunication
Architecture
Agent-based approaches to decision-making applications are
becoming more attractive in the business and commercial
domain [14]. An intelligent agent operating in a dynamic envi-
ronment will find its reasoning and other actions constrained
by limitations of time, information, and other critical
resources. These agents have to interact with dynamically
changing and partially unknown environments, so they must
be able to respond to unanticipated changes and events occur-
ring in their operational environment. In such situations,
agents must know what actions need to be taken. If the agents
are not able to deal with the unexpected situation, they should
seek help from other agents in the system to resolve the prob-
lem, as discussed in the first section.

Figure 3 shows the intercommunication architecture among
MASST agents. As we stated earlier, the CA must have access
to knowledge that models the functions and task capabilities
of the other agents. Information relevant to the system’s cur-
rent task is held by the CA, which exchanges it with all the
other agents. The CA is also responsible for ensuring that the
data used within the framework is reliable and available as
integrated information held in the decision enabling ware-
house (DEW). From the perspectives offered by blackboard
system design [15–17], the DEW together with the CA acts as
a dynamic blackboard. The blackboard is a data structure that
can be shared by all the intelligent agents simultaneously, and
the coordinator agent is similar to the control in traditional
blackboard systems. The blackboard is organized by the CA.

■ Figure 3. Intercommunication architecture among MASST agents.
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The DEW has three different sections:
• Blackboard status, which holds the processing status of the

current task.
• Blackboard private message area, used by the CA to send

task-related messages to other MASST agents, and used by
other MASST agents to control their conversation session;
when a task or a conversation is complete, the relevant
messages in this area are deleted.

• Blackboard knowledge area, which holds rules, facts, and raw
data to be used by the MASST agents. The knowledge area
comprises the HTDB, RTDB, TSDB, FIDB, and UPDB.
There are four communication channels in the MASST

framework:
• Internal agent–internal database
• Internal agent–internal Agent
• Internal agent–external data
• Internal agent–external agent
The communication protocol depends on the type of agents
involved, and the information and knowledge being
exchanged. The purpose of the internal agent–external agent
category is to make the MASST an open system, whereby it
can extend its functions. The technical issues involved here
include ontology, agent communication language, security,
and so on. The purpose of internal agent–external data is to
collect and filter the necessary information from distributed
data resources (e.g., the Internet). Much research has been
done in this area [18–22] and is not repeated here. The focus
of this work is on how to use the information for decision
making rather than how to collect it. Thus, we only discuss the
first two communication channels in this article.

Agent-to-database communication is based on ODBC using
SQL requests and commands. This protocol is relatively
straightforward. An agent connects to an active database via
ODBC, and phrases information requests using SQL. In the
MASST framework, the internal agents use this to obtain and
place information on the DEW. Internal agents communicate
with each other using the MASST Agent Communication
Language (MASST-ACL), which is a combination of FIPA
ACL [23] and XML [24]. The details about MASST-ACL are
beyond the scope of this article. According to the description
earlier, the major functions of MASST include:
• Stock information retrieval
• Stock status monitoring and risk management
• Buying and selling shares decision support
In the following subsections, the agent interactions will be dis-
cussed in detail for these processes.

Agent Interactions in the
Stock Information Retrieval
Process
MASST can provide seven func-
tions of stock information
retrieval based on the search
actions (SAs) the user delegated.
These include:
• SA1 — Query all share’s quota-

tion on the current day
• SA2 — Query a given share’s

quotation on the current day
• SA3 — Query a given share’s

real-time trading chart
• SA4 — Query a given share’s

history price chart over a period
• SA5 — Query a given share’s price and technical indicator

chart over a period
• SA6 — Query a given share’s fundamental analysis data
• SA7 – Query the market statistic information over a period

Figure 4 shows how the agents interact and communicate in
response to a request of SA1. A user delegates the task to the
IA, which then passes the request to the CA using a MASST-
ACL message by packaging the function ID (e.g., SA1) and the
relevant parameters (e.g., Market-Code and Current-Date).
The CA will distribute the task to the relevant task-specific
agent based on the function ID. In this example it is the TAA.
The TAA then interacts with the DEW through ODBC-SQL to
obtain the database records. Then the TAA sends a MASST-
ACL message containing database records to the CA. The CA
then passes the message to the IA; in the meantime, the CA
will update the blackboard status and delete the relative mes-
sages associated with this conversation session in the private
message area of the blackboard, since this conversation (or
task) is complete. Finally, the interface agent presents the
results in a readily understandable format to the user.

For the other stock information retrieval functions (i.e.,
SA2–SA7), similar agent interaction scenarios exist. Only the
task-specific agents and the information formats presented to
the user by the interface agent differ.

Agent Interactions in the Stock Status Monitoring and
Risk Management Process
For the stock status monitoring and risk management process,
the scenario of agent interactions is much more sophisticated
than that shown in Fig. 4. MASST will automatically monitor
the market status of the given shares. Based on the share’s
market status and monitoring actions (MAs) given by the
users, MASST will also automatically report any abnormal
status to the users. The MAs include:
• MA1 — Monitoring abnormal price fluctuation
• MA2 — Monitoring abnormal trading volume
• MA3 — Monitoring abnormal technical indicator’s status
• MA4 — Monitoring abnormal price chart pattern
* MA5 — Monitoring breaking news relating to the given shares
Furthermore, MASST will provide profits and risks manage-
ment, which includes calculation of profits/risk ratio based on
shares’ market status and user’s investment, and reminders of
the stop-loss level for a user’s holding shares according to the
user’s profile.

As we discussed earlier, the DEW together with the CA
acts as a dynamic blackboard in the system. Every MASST
agent can watch the information change (or an event) on the
blackboard, and an agent will react to or ignore the event
according to the agent’s responsibility. Figure 5 shows the

■ Figure 4. Agent interaction through ODBC-SQL and MASST-ACL communication in
response to the SA1 request.
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MASST agent interactions for monitoring the abnormal tech-
nical indicator. The MA requests the user profile database in
the DEW to get the share codes needed for monitoring and
the user’s monitoring instruction (i.e., MA3). According to the
monitoring instruction, the MA will ask the TAA for help in
finding out the current value of the given shares’ technical
indicator by sending a MASST-ACL message with function
ID (e.g., MA3) and parameters (e.g., share codes, technical
indicators). Based on the function ID, the TAA interacts with
the HTDB through ODBC-SQL and calculates the value of
the technical indicators on behalf of a monitoring agent, then
returns the results to the monitoring agent. The MA com-
pares the value obtained from the TAA with the predefined
appraisal thresholds of abnormal technical indicators that are
obtained from the user profile database. If an abnormal event
occurs, the ma will immediately send a MASST-ACL message
to the IA to notify the user of abnormal indicators.

Agent Interactions in Buying and Selling Share
Decision Support Process
For the buying and selling share decision support process, the
scenario of agent interaction is variable in the MASST. It large-

ly depends on the buying and sell-
ing rules that were defined by the
users themselves. MASST provides
the user with an interface to set up
the TSDB, which holds the user’s
buying and selling rules (strate-
gies). Users can change these at
will by modifying the TSDB.

Figure 6 shows an example sce-
nario of MASST agent interactions
for this process. Suppose a user del-
egates a task to the MASST, such
as “tell me the best share(s) to buy
for the next trading day.” The user

delegates the task to the IA through key and mouse interaction.
The IA passes the task to the CA with a function ID (e.g.,, Buy-
Decision-1) together with parameters (e.g., Market-Code and
Current-Date). According to the function ID, CA decides to
assign the task to the DMA. The DMA needs to request the
TSDB to get the buying rules through ODBC-SQL. The records
in the TSDB are not only the buying and selling strategies but
also the commands to be executed by the MASST agents.
Therefore, the DEW together with the CA, acting as a dynamic
blackboard, plus direct communication between the MASST
agents make the dynamic exchange of facts, knowledge, and
commands flexible and transparent in our framework.

Suppose the buying rules in the TSDB lead the DMA to
walk along the following steps:
• Step 1: The DMA asks the RMA to carry out risk evalua-

tion for all shares. The RMA evaluates the trade-off
between risk and return based on the portfolio theory [25]
or solely on the SAR algorithm [26]. The DMA throws out
the relatively high-risk shares in order to keep the profit/risk
ratio under control.

• Step 2: The DMA asks the TAA to assess the correlation
between the individual share and the market trend. The
TAA takes into account the relative stock trend compared

■ Figure 5. Agent interactions for monitoring technical indicator abnormality.
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to the weighted stock price index. The DMA rejects those
shares whose price moves against the weighted stock price
index in a given trading period as shares of this kind have
probably been dominated by institutional investors.

• Step 3: The DMA asks the TAA to assess the share price
trend and assumes the trend will continue. The TAA evalu-
ates the share price trend through the slope of a moving
average line and the relationship between short-term mov-
ing average and long-term moving average. The DMA fur-
ther throws out those shares whose price trend is downward.

• Step 4: The DMA asks the TAA to assess the share’s trad-
ing volume trend. The TAA assesses the share’s trading vol-
ume trend by measuring the OBV indicator [1]. The DMA
further throws out those shares whose trading volume trend
is downward while the price trend is upward.

• Step 5: The DMA asks the FAA to evaluate the value of
the share. The FAA evaluates the value of the share by tak-
ing into consideration the following factors:
–Net profit margin, which indicates how much profit the
company is able to make for each dollar of sales
–Price/earning ratio (P/E ratio); the lower the P/E ratio, the
better value the share
–Book value per share; the share’s current price far below
its book value is possibly an indication that the share is
underpriced

The FAA can obtain fundamental analysis data from the com-
pany’s financial reports or statements that have already been
collected in the DEW. After evaluating the condition of the
company, the FAA can determine if the compa-
ny’s share is overvalued, undervalued, or correct-
ly valued. According to those results, the DMA
further rejects the overvalued shares to get the
final list of shares for the next trading to buy.

The DMA sends the final list of shares to the
CA, which passes the message to the IA through
a MASST-ACL message; finally, the result is
delivered to the user.

Implementation and
Experimentation
This research work is still ongoing. At the time of
writing, the framework has been partially imple-
mented using the following experiment plat-
forms, as shown in Fig. 7.

Users delegate their tasks through the Web
browser. The servlets running on the Web server,

accept users’ requests and pass them to the MASST. Accord-
ing to the tasks, MASST task-specific agents will complete the
tasks on behalf of the users. Our agent resources (e.g., the
raw trading data) are put into a Microsoft Access database.
MASST agents interact with the database through a JDBC-
ODBC connection. Servlets produce HTML pages in response
to user requests. These experimental MASST agents are con-
structed using the Zeus Agent Builder Toolkit [28].

In our implementation, the blackboard status is a database
table called TaskList with fields TaskID, Parameters, Status,
and DMDate. TaskID and Parameters are based on our ontol-
ogy definition, Status is the representation of current status of
the task, and DMDate is the decision making date. The CA dis-
patches the task to the task-specific agents based on the Task-
ID; the task-specific agents can then change the value of the
Status field in table TaskList to waiting, processing, dispatched,
monitoring, finish, or delivered. Every agent can watch the sta-
tus changes in the blackboard status area by starting a Java
thread to monitor the status. The blackboard private message
area is a Java Vector object in our implementation; each agent
has a Vector object that holds the interaction message for a
given task. When the task is completed, the messages will be
removed from the Vector. The blackboard knowledge area
holds the raw data, user profile settings, and trading strategies,
which all are stored as database tables. MASST agents can
access these tables through the JDBC-ODBC connection.

For the purpose of validating our framework prototype, we
use real trading data collected from the China Stock Market
(Shengzhen Stock Exchange) to test the functions of our sys-
tem. The data used in our prototype is from June 14, 2000 to
February 14, 2001. A number of experiments have been made;
however, because of limited space, we only show an experi-
ment in decision support for buying/selling shares.

For the task of decision support for buying/selling a given
share, the user must provide two parameters: stock code and
the date of decision making. Before submitting the task to the
MASST agents, the user should go to the page User Profile
Settings to define the strategies for buying/selling a given
share. Then the MASST agents can automatically give the
user a suggestion to buy or sell the given share on the given
date. In this experiment, the share’s code is 0020. Let the date
of decision making go through from 14/06/2000 to 14/02/2001,
recording each day’s recommendation (i.e., buy or sell signals)
given by MASST. The results are shown in Table 1.

In order to make the effectiveness of this experiment clear-
er, we put those Buy and Sell signals on the price chart of the
share 0020, which is shown in Fig. 8. From Fig. 8 we can

■ Figure 7. One experimental platform of the MASST.

HTTP

Dynamic HTML pages

Using Zeus agent
tools to construct
our MASST agents

Client browser

Microsoft Access

MASST task-
specific agents
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(Servlets)

JDBC-ODBC connection

■ Table 1. The results of decision support for buying/selling share 0020.

19/06/2000, 26/06/2000 Sell

11/07/2000, 13/07/2000, 20/07/2000, 21/07/2000, 27/07/2000 Buy

21/08/2000, 22/08/2000, 24/08/2000 Sell

28/08/2000 Buy

13/09/2000, 14/09/2000, 19/09/2000, 26/09/2000 Sell

27/10/2000, 30/10/2000, 31/10/2000 Buy

24/11/2000, 27/11/2000, 28/11/2000, 05/12/2000 Sell

22/12/2000 Buy

04/01/2001 Sell

Date (dd/mm/yyyy) Buy/sell signals
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clearly see that the MASST can give the Buy signals around
the lowest point or relatively lower points and the Sell signals
around the highest point or relatively high points.

It is necessary to point out that the MASST framework
cannot guarantee the users will make easy money from the
stock market; it aims to help investors make the buying or
selling decisions in their daily investment activities and reduce
the workload of investors to analyze investment-related infor-
mation. Whether or not they profit from the stock market
depends largely on the users’ trading strategies.

Discussion and Conclusion
In this article we have proposed a communication architecture
for the dynamic exchange of information and knowledge. The
coordinator agent plays a vital role in maintaining the appropri-
ate communication protocol. It decomposes system-level tasks
to subtasks and distributes the subtasks to related task-specific
agents, which are relatively simple. We recognize that a limita-
tion to our MASST framework is the availability of the coordi-
nator agent. The coordinator agent is the control locus of this
framework. If it fails on its task, the whole system cannot work
properly. Some generalized control heuristics will allow the sys-
tem to recover, but remain unable to perform the precipitating
task. An alternative is to change the design to that of distribut-
ed control. This can be done by making the task-specific agents
hold onto beliefs about the address and abilities of other
agents, and by giving them the ability to decompose the system-
level tasks to subtasks. This approach can improve the reliabili-
ty of a system but at the expense of increased complexity of
design for each task-specific agent. Future computational
experiments will determine whether this is necessary.

The focus of this article is dynamic knowledge exchange
among MASST agents. We have introduced a framework in
which MASST agents can exchange knowledge in a dynamic
environment. The coordinator agent together with the deci-
sion enabling warehouse acting as a dynamic blackboard; plus
direct intercommunication among the agents enables the
transfer of facts, commands, and rules among MASST agents.
Knowledge can be exchanged among the agents by using a
combination of facts, rules, and command transfers. We
believe that dynamic knowledge exchange is an important fea-
ture for any application in which unanticipated conditions or
events occur. Using the proposed dynamic knowledge
exchange capability, cooperative problem solving sessions can

be initiated where each agent can
share its problem-relevant knowl-
edge with other agents to solve the
problem. An obvious advantage of
this capability is elimination of
redundant knowledge and hence
improved utilization of the system
memory capacity.

We have partially implemented
our proposed framework. It has
proven that our multi-agent frame-
work (MASST), as a generic solu-
tion, is a viable implementation for
multi-agent approaches to decision
support in stock trading.
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