
A Multi-Agent Infrastructure for DevelopingPersonalized Web-based SystemsLILIANA ARDISSONO, ANNA GOY, GIOVANNA PETRONE and MARINO SEGNANDipartimento di Informatica, Universit�a di TorinoAlthough personalization and ubiquity are key properties for on-line services, they challenge thedevelopment of these systems due to the complexity of the required architectures. In particular,the current infrastructures for the development of personalized, ubiquitous services are not exibleenough to accommodate the con�guration requirements of the various application domains. Toaddress such issues, highly con�gurable infrastructures are needed.In this paper, we describe Seta2000, an infrastructure for the development of recommendersystems that support personalized interactions with their users and are accessible from di�erenttypes of devices (e.g., desktop computers and mobile phones). The Seta2000 infrastructure o�ers abuilt-in recommendation engine, based on a multi-agent architecture. Moreover, the infrastructuresupports the integration of heterogeneous software and the development of agents that can becon�gured to o�er specialized facilities within a recommender system, but also to dynamicallyenable and disable such facilities, depending on the requirements of the application domain. TheSeta2000 infrastructure has been exploited to develop two prototypes: SeTA is an adaptive Webstore personalizing the recommendation and presentation of products in the Web. INTRIGUEis a personalized, ubiquitous information system suggesting attractions to possibly heterogeneoustourist groups.Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: UserInterfacesGeneral Terms: PersonalizationAdditional Key Words and Phrases: Infrastructures for developing personalized recommendersystems, multi-agent architectures1. INTRODUCTIONPersonalization and ubiquity are key properties for Business to Customer services,as well as for other types of applications, such as e-learning and information sys-tems; e.g., see [Resnick and Varian 1997; Riecken 2000; Maybury 2000; Mayburyand Brusilovsky 2002]. However, the development of an ubiquitous, personalizedsystem is complex because the adaptation to the end-user (henceforth, user) and toher device requires the integration of very di�erent methodologies addressing theassessment of the user's preferences and the generation of the customized user inter-face. Although shells for the management of personalized services can be designed,they typically lack exibility in the accommodation of domain-speci�c requirements.Authors' address: L. Ardissono, A. Goy, G. Petrone and M. Segnan, Dipartimento di Informatica,Universit�a di Torino, Corso Svizzera 185, 10149 Torino, Italy.Permission to make digital/hard copy of all or part of this material without fee for personalor classroom use provided that the copies are not made or distributed for pro�t or commercialadvantage, the ACM copyright/server notice, the title of the publication, and its date appear, andnotice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,to post on servers, or to redistribute to lists requires prior speci�c permission and/or a fee.c 2003 ACM 1529-3785/2003/0700-0001 $5.00ACM Transactions on Internet Technology, Vol. V, No. N, August 2003, Pages 1{22.

2 � Ardissono Liliana et al.Therefore, infrastructures for the development of systems, whose architecture canbe suitably extended to o�er new facilities, are needed.In order to address such issues, we have designed Seta2000, an infrastructure forthe development of highly con�gurable, Web-based recommender systems.1 Thisinfrastructure, based on a Multi-Agent System architecture, o�ers an engine thatthe service developer can use to create recommender systems displaying two maintypes of behavior:|the personalized suggestion of items, depending on the user's interests;|the dynamic generation of a user interface whose layout and contents are targetedboth to the user's preferences and to the device she uses.Moreover, the infrastructure provides software libraries implementing basic facili-ties, among which the communication between system components and the inter-action with the user's device. These libraries can also be used to extend the systemarchitecture, if needed.The present paper describes the architecture and the techniques applied to runthe agents of Seta2000. This infrastructure supports the integration of heteroge-neous agents, in order to facilitate the exploitation of specialized modules withinthe recommender system. Moreover, the infrastructure o�ers a set of libraries forthe development of goal-based agents, which are suitable for the implementation ofthe components exhibiting autonomous behavior. We have exploited Seta2000 todevelop two systems.| SeTA (\Servizi Telematici Adattativi") is a Web-based store that personalizesthe recommendation and the presentation of telecommunication products to thecustomer's expertise and preferences [Ardissono et al. 2002].| INTRIGUE (INteractive Tourist Information GUidE) is a prototype touristinformation server that customizes the presentation and the suggestion of attrac-tions to the tourists' preferences. This system can be accessed via Web browserand WAP minibrowser [Ardissono et al. 2003].The rest of this paper is organized as follows: section 2 sketches the architecture ofthe engine provided by the Seta2000 infrastructure. Section 3 describes the agentdevelopment infrastructure we have de�ned. Section 4 sketches how the Seta2000infrastructure can be exploited to set up a recommender system: that section showsthe exibility of our approach, by addressing the creation of an individual recom-mender system and its extension to meet new architectural requirements. Section5 briey presents the SeTA and the INTRIGUE systems. Section 6 compares ourproposal to the related work. Section 7 reports some examples of integration ofexternal software in our systems and section 8 concludes the paper.1This paper extends the work presented in [Ardissono et al. 2001] by providing details about theinfrastructure for the development of specialized agents and its exploitation in the development ofsystems presenting personalized information in e-commerce and tourist information applications.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 3
W
E
B

S
E
R
V
E
R

Users DB

Items DB

 Users
DB Manager

User Modeling
 Component

Personalization
 Agent

Session
Manager

Dialog
Manager

Selection
 Manager

 Item
Extractor

Items
DB Manager

 UMC
 Ctx-i

 Dialog
 Ctx-i

Selection
Ctx-i

Extractor
 Ctx-i

Stereotype KB

Concept Taxonomy

Fig. 1. Architecture of the Seta2000 recommender engine.2. AN ENGINE FOR WEB-BASED RECOMMENDER SYSTEMS2.1 Architectural requirementsThe management of personalized recommender systems imposes requirements con-cerning the scalability of the underlying architectures and the integration of het-erogeneous software. Several types of activities have to be carried out in parallelduring the interaction with the user: e.g., the recognition of her preferences andinterests, the personalized selection of the items to be recommended and the gen-eration of the personalized content. Such activities have to be carried out by ap-plying specialized techniques. For instance, probabilistic inference techniques aresuitable for modeling the user's interests, while rule-based techniques are typicallyapplied to customize layout, content and structure of the pages. Moreover, the sametype of activity has to be carried out by applying di�erent techniques, dependingon the requirements of the application domain. For instance, collaborative �lter-ing [O'Connor et al. 2001] eÆciently supports the personalized recommendation ofitems in open environments. However, content-based �ltering [Billsus and Pazzani1999] is more suited to the cases where metalevel information about the items tobe recommended is available, and the two techniques may be combined in otherapplication domains [Cotter and Smyth 2000].Agent-based technologies help managing this complexity because they supportthe seamless integration of heterogeneous components, and the cooperation betweenspecialized and proactive modules [Genesereth and Ketchpel 1994; Sycara et al.1996; Jennings et al. 1998]. Moreover, such technologies favor the parallel executionof the system activities by supporting a rich inter-agent communication based onthe exchange of synchronous, asynchronous and multicast messages [Petrie 1996].2.2 The Seta2000 recommender engineThe Seta2000 recommender engine personalizes the suggestion of items and theirpresentation to the characteristics of the user and of the output device. We havedesigned this engine by following the traditional role-based approach adopted in theMulti-Agent Systems research; see [Sycara et al. 1996] and [Bresciani et al. 2001].As noticed by Sycara et al. [1996] and Wooldridge et al. [1999], the role-based designACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

4 � Ardissono Liliana et al.supports the development of systems that harmonically integrate a set of specializedand possibly heterogeneous agents. In fact, a role isolates the responsibilities of amodule from the rest of the system and favors a clean inter-module communication,based on well de�ned interaction protocols.In the de�nition of the engine architecture, we have identi�ed a minimal set ofroles needed to manage personalized interactions with multiple users in the Web:communication with the user, management of the logical interaction ow, mainte-nance of the user models, generation of the user interface, selection and rankingof the items to suggest, access to user and item databases and management ofthe user's selections. We have associated a specialized agent to each role; Figure1 shows the architecture of our recommender engine. The thick boxes representagents and ovals represent the databases. The dotted rounded squares representthe knowledge bases used by the agents. The arrows between agents show the owof the messages exchanged during a working session. The dotted arrows show theow of the data retrieved and stored by the agents during their activity. Eachagent handles multiple user sessions and the session environments are representedby means of solid rounded squares: e.g., \UMC Ctx-i" maintains state variables,active user models, and other similar information concerning the i-th user sessionof the User Modeling Component (UMC). Although a thorough description of theroles can be found in [Ardissono et al. 1999], we shortly present those that will beused in the rest of this presentation.|Web Communication. This role, �lled by a Servlet (the Session Manager) isdevoted to catching user events and returning the responses to the client.|Management of the interaction ow. The Dialog Manager handles the logicalinteraction with the user, by interpreting the generic events caught by the SessionManager and triggering the generation of the response pages.|Management of the user models. A model of the user interacting with the systemhas to be managed to adapt the interaction accordingly; the UMC �lls this role.The roles identi�ed within the architecture of our recommender engine di�er notonly in the internal behavior expected from their �llers, but also in the externalinteraction with the other components. For instance, some agents, such as theUMC, are proactive and autonomously carry out internal activities, by interleavingthem with the provision of services; others, e.g., the Personalization Agent, onlyrespond to service requests.3. AGENT ARCHITECTURE PROVIDED BY THE SETA2000 INFRASTRUCTUREIn order to support the development and integration of heterogeneous agents, wehave de�ned a general model supporting the inter-agent communication and the ex-ecution of parallel activities, autonomously, or in response to service requests. Wehave exploited this model to develop the agents of our recommender engine (hence-forth, \Role Fillers"), which we have designed as structured entities composed oftwo main parts:| An interface, called \Dispatcher", devoted to the management of the inter-agent communication. This interface is used as a reference by the other role �llerswhen they need to send messages. The Dispatcher also provides the role �ller withACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 5
Dispatcher

- agentReferences
- userSessions
- init()
- addAgentReference()
- addUserSession()
- removeUserSession()
- forwardMessage()

Personalization
Agent
- init()
- addUserSession()

Dialog Manager

- init()
- addUserSession()

UMC

- init()
- addUserSession()

...

- ...
- ...Fig. 2. Class hierarchy de�ning a role �ller.the communication capabilities needed to deliver messages belonging to the lan-guage supported by Seta2000 infrastructure. This language, described in [Ardis-sono et al. 1999], includes a subset of the speech acts speci�ed in KQML [Fininet al. 1993]. For instance, the \tell" speech act is exploited to let the recipientknow about a fact (e.g., a user datum acquired from the user interface). Moreover,the \ask-one" speech act is exploited to retrieve the value of a fact and to retrievethe pages of the user interface.| The core of the role �ller is composed of one or more instances, called \RoleFiller Core", each one devoted to the management of a user session. The role �llercore provides the capabilities concerning the service provision and the execution ofinternal activities to be carried out. These activities are performed concurrently,thanks to the execution of parallel threads.A role �ller that has to display reactive behavior in the provision of services mayhave its own core designed as a traditional object. In contrast, a proactive role�ller may need a core designed as an autonomous agent, which can take the ini-tiative to perform speci�c activities. The Dispatcher hides this heterogeneity bywrapping the core and by translating the incoming requests to its internal format.In the following, we specify the design of the Dispatchers provided by the Seta2000infrastructure. Later on, in section 3.2, we present the design of a speci�c type ofcore provided by our infrastructure: the \Action-based agent".3.1 Architecture of a role �llerThe structure of a role �ller, the information needed to manage the parallel usersessions and its communication capabilities are de�ned by a library class. Figure 2shows the class hierarchy de�ning the role �llers: the \Dispatcher" class speci�esthat a role �ller has a list of references to the role �llers it may send messagesto (\agentReferences"). Moreover, it has a set of core instances (\userSessions"),devoted to the management of the activities related to the active user sessions. Theclass also o�ers the methods for initializing a role �ller (\init()") and setting refer-ences of other role �llers (\addAgentReference()"). The class also o�ers methodsfor creating and removing a core instance (\add/removeUserSession()"), in orderto handle the opening and closure of user sessions. Finally, the class o�ers the fa-ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

6 � Ardissono Liliana et al.
Voyager
Object1

Voyager
Object2

Voyager
messages

Seta2000
role filler1

Seta2000
role filler2Service

Requests

Communication
Layer

Agent
Layer

Fig. 3. Layered architecture of a Role Filler.
Dispatcher

Core-i Core-j Core-k

Actions

State-i State-j State-k

Actions Actions

Interpreter Interpreter Interpreter

messages
from/to
other
agents

Fig. 4. Parallel sessions within a role �ller.cilities for forwarding the messages concerning a certain user session to the relatedcore instance, in order to process a session-dependent request corresponding to aservice possibly requested by another role �ller (\forwardMessage()"). As shownin Figure 3, a Dispatcher is designed according to two layers.| The upper layer describes the o�ered services and takes care of their execution.The facilities o�ered by the ObjectSpace Voyager infrastructure [ObjectSpace 2000]are applied to wrap the role �llers and enable them to run in parallel and to com-municate by means of synchronous and asynchronous messages. Each Dispatcher isa Voyager Object and inherits the communication and distribution facilities o�eredby the Voyager Object class. The Dispatcher handles the incoming messages inparallel threads of execution, invoking the appropriate core instance to handle therequests. Moreover, Voyager takes care of load balancing issues by spawning theDispatchers, when there is an overload in their activities.| The communication between role �llers is implemented by relying on the mes-sage passing facilities o�ered by the lower layer of the architecture. The speech actsde�ned at the agent layer are implemented as messages between Voyager objects.The architecture of the role �llers supports a simple management of parallel usersessions. The asynchronous communication enables the role �ller to handle servicerequests and internal activities in parallel, with the only requirement that sharedresources are accessed in mutual exclusion. Figure 4 shows a role �ller, with threecore instances, \Core-i,j,k". The Dispatcher forwards each incoming message to theappropriate core instance, which handles the request. Then, the Dispatcher sendsthe results back to the role �ller that delivered the initial message.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 7
Agent

DialCore UMCCore

- state
- actionList
- pendingList

- init()
- interpreter()
- addToPendingList()
- removeFromPendingList()

- state
- actionList
- init()

- state
- actionList
- init()

Action
- parameters
- goal
- preconditions
- type

- body ()
- checkPrecond ()

Fig. 5. Class hierarchy de�ning action-based role �ller cores.3.2 Design of an Action-based Role Filler Core: the \Agent" classThe Seta2000 infrastructure supports the development of a special type of core,which follows the Belief Desire Intention (BDI) model of agent behavior [Rao andGeorge� 1991]. The instances of this type of core (henceforth, agents) displayreactive and proactive behavior. In the following, we describe the software librariesfor the development of an action-based agent. We have developed the core of theUser Modeling Component and Dialogue Manager of the Seta2000 recommenderengine by extending such libraries.The \Agent" class provides the basic data structures and methods for specifyingthe behavior of an action-based role �ller core, including the selection of activitiesand their execution. An action-based formalism is used to describe the activitiesin a modular and declarative way and an interpreter is employed for their selectionand execution. In order to create a concrete role �ller core, the system developerhas to extend the \Agent" class with speci�c information about the state of theagent, the initialization tasks and the actions it can perform, in response to servicerequests, or to carry out the agent's internal activities. Figure 5 shows a portion ofthe class hierarchy de�ned for the Seta2000 recommender engine. In the following,we describe our framework by referring to the User Modeling Component (UMC).3.2.1 The agent's \State". The state of an action-based role �ller core describesthe environment of its own role �ller, within a speci�c user session, and evolves whilethe role �ller sends or receives messages, or it performs actions.Within a concrete agent representing the core of a role �ller, the state extends the\State" class and speci�es the actual instance variables of the agent. For instance,in the UMC, the state of the core instances contains the reference to the model ofthe current user, the information about whether the user's personal data has beenset, and so forth.3.2.2 The agent's \Actions". The actions describe the tasks that the agent isable to perform. These actions represent generic behavior: speci�c action instancesare created by the agent's interpreter, by binding their parameters to concrete data.An action-based role �ller core has an action list (\actionList" in Figure 5), storingACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

8 � Ardissono Liliana et al.getUserDatum:parameters: datum;goal: [knowref(datum), temporary goal];preconditions: exists(directUser);body: directUser.get(datum);type: service provision;Fig. 6. An example action de�ned in the UMC action-based core.the whole list of actions de�ned for the agent.We have designed an \Action" class de�ning the structure of an action ando�ering basic methods inherited by all the actions of a concrete agent. An actionhas the following slots:| The parameters denote the arguments of the action.| The goal is the information used to select the actions to be performed when aservice is requested. There are temporary and permanent goals: the �rst ones canbe satis�ed by performing a suitable action, while the others persist in time andhave to be satis�ed by the agent during the whole interaction. Typically, servicerequests are associated to temporary goals. In contrast, internal activities can betriggered by temporary goals (e.g., initialization activities), as well as by permanentgoals (e.g., the user model revision).| The preconditions are applicability conditions that the state of the agent mustsatisfy for the action to be executable. For instance, the data used by an actionmust be available before performing it.| The body represents the sequence of steps to be performed for completing theaction. As a result of the execution of an action, the agent state changes; therefore,no postconditions are explicitly represented.| The type distinguishes actions associated to services (invoked by role �llers)from internal activities, which the agent proactively performs during the user ses-sion. For instance, the initialization and the revision of the user model are internalactivities of the UMC core.The \Action" class o�ers a \checkPreconditions" method for checking the actionpreconditions and the \waitOnPreconditions" method to suspend the action ex-ecution until the preconditions are satis�ed, if they are false when the action isexamined for execution. Moreover, the class o�ers a \run" method, which invokesthe sequence of steps (methods) in the action body.The actions executable by a speci�c agent have to be de�ned by the developerby specifying, for each one, the parameters, preconditions, goal, body and type.For instance, the internal activities of the UMC include creating the model ofthe current user, initializing it with stereotypical information and updating it byapplying dynamic user modeling techniques.Figure 6 shows the \getUserDatum" action, which the UMC core instances exe-cute to provide information about the user data. This action is a service provisionand has only one parameter, \datum", representing the requested piece of infor-mation (e.g., the user's age). The \knowref(datum)" goal describes the fact thatthe role �ller invoking the service wants to know the value of the requested datum.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 9Object processMessage(Message message) fsendAsynchMessage(thisAgent, \pendingTasks()"); /* activate pending tasks */Action action = �ndAction(message); /* identify requested action */if (null(action)) /* unde�ned requested action */return null;else f if (!action.checkPreconditions()) f /* action preconditions false */pendingList.add(action); /* put action into pending list */action.waitOnPreconditions(); /* suspend */ggreturn action.run(); g /* perform action body, return result */Fig. 7. The interpreter of the \Agent" class.The action precondition speci�es that it can only be executed if the user model(\directUser") has already been created. The action body consists of checking thecurrent value of the datum in the user model (\directUser.get(datum)").2The preconditions of actions enable the developer to specify synchronization con-straints on the execution of the agent activities; e.g., partial order relations betweenthe execution of actions, applicability conditions, and so forth.3.2.3 The agent's \Pending list". The pending list stores the action instances,which the agent has to perform in response to service requests, or to carry out itsown internal activities, at each step of the interaction. The agent adds and removesaction instances from the pending list by executing the \addToPendingList()" and\removeFromPendingList()" methods o�ered by the \Agent" class.As described in section 3.2.4, the agent manages the pending list in order to sat-isfy the agent's temporary and permanent goals. At the beginning of a user session,this list is initialized with action instances that satisfy the agent's permanent andinitialization goals. Then, this list is updated depending on the service requeststhat the agent receives. All the action instances are removed from the list as soonas they are selected for execution. However, those associated to permanent goalsare reintroduced after their execution, in order to be considered again.3.2.4 The agent's \Interpreter". The interpreter selects the actions to be per-formed, on the basis of the agent state and of the requests to be satis�ed, and createsthe action instances needed to perform the requested tasks. In the following we onlydeal with action instances; thus, for simplicity, we refer to them as \actions". Theinterpreter is de�ned as the \processMessage" method of the \Agent" class (Figure7 reports a Java-like representation of its code);3 \processMessage" is invoked bythe Dispatcher each time it receives a message. On the basis of the goal speci�edin the message, the interpreter selects the action to be executed and checks itspreconditions.| If the preconditions are true, then the interpreter performs the action bodyand possibly returns the result to the caller, i.e., its own Dispatcher that, in turn,2The �gure shows an abstract representation of the action, which is a Java class and extends the\Action" class.3The second line of the code, \sendAsynchMessage(thisAgent, pendingTasks())" refers to themanagement of the internal activities of the agent and is described in section 3.2.5.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

10 � Ardissono Liliana et al.returns the result to the sender of the original message.| Otherwise the interpreter suspends, waiting to be activated (by another in-terpreter thread), when the preconditions become true. Before suspending, theinterpreter stores the action into the pending list. When the interpreter resumes,it performs the suspended action and returns the result to the caller.After the execution of an action and the production of its return value, the inter-preter thread ends; another one will be generated by the Dispatcher to handle thenext incoming message. The Dispatcher handles messages in parallel threads andremains idle when no requests (or pending activities) have to be satis�ed.3.2.5 Management of pending tasks. As both the internal activities and theservice provision ones are represented as actions, they can be uniformly selectedand performed by the interpreter. The crucial issue is how to trigger the internalactivities, which have to be autonomously carried out, whenever their preconditionsare true. The internal activities may be assimilated to suspended service requests:although, initially, the services are explicitly requested, in both cases the agenthas to perform the related actions when their preconditions become true. Foruniformity, the execution of internal activities and of that of suspended services aretriggered by means of request messages, sent by each core to its own Dispatcherduring the execution of the other services. Each time the agent processes a servicerequest, it also launches its own pending tasks, which will be performed by anotherinterpreter thread, if they are executable. Thus, an agent can:(a) receive service requests as messages from other role �llers;(b) send messages to its own Dispatcher for triggering the internal activities andsuspended services.The \pending tasks" message is sent by the \processMessage" interpreter as anasynchronous message, before handling the action speci�ed in the message to beprocessed. See the second line of the interpreter code in Figure 7: \sendAsynchMes-sage(thisAgent, \pendingTasks()")".When the Dispatcher receives the \pendingTasks" message, it generates a threadthat selects and performs the \pendingTasks" action of the \Agent" class. Theexecution of this action requires that the interpreter thread selects an executableaction from the pending list and processes it. If the action is an internal activity,the interpreter performs it.4 If the action is a service provision ones, the interpreternoti�es the suspended thread.The execution of the \pendingTasks" action also requires that the thread gen-erates another \pendingTasks" message, to guarantee that the pending list will beinspected again. In this way, the agent can spawn a thread to handle the pendingtasks every time it receives a message and every time an action is selected fromthe pending list. Moreover, no messages are sent when the list is empty, or it onlycontain actions whose preconditions are false, therefore limiting the attempts toperform such activities before the agent state changes.Figure 8 shows a complete example, pictorially representing the management ofsuspended services and internal activities. The �gure shows the situation of a role4If the action has a permanent goal, the interpreter puts it into the \pending list" again.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 11

Dispatcher1

executable

RUN

T
WAIT

RUN

Msg1PendingTasks

put

get

PendingTasks

return value

get

put

CoreAgent1 pending list

NOTIFY

Msg1PendingTasksPendingTasks

......

Disp2Fig. 8. Interpreter threads within an agent.�ller, \Dispatcher1", with one core instance, \CoreAgent1", and three interpreterthreads, shown in the grey squares. \Msg1" has been generated to process a servicerequest coming from another role �ller, \Disp2"; the other two (\pendingTasks")have been generated to handle the pending tasks.To process \Msg1", the interpreter selects a suitable action to be performed(either a service provision action, or the \pendingTasks" action). Then, it checksits preconditions. If they are true (\executable"), the action is performed (\RUN")and the thread ends; otherwise, the thread stores the action into the pending listand suspends (\WAIT"). The thread sleeps until the state of the agent evolves toa situation where the preconditions of the action are true and some other threadwakes it up by means of a \NOTIFY" signal. As shown, the \notify" signals aregenerated by the interpreter threads invoked to perform the pending tasks.4. USING THE SETA2000 INFRASTRUCTUREIn order to instantiate the Seta2000 recommender engine on a speci�c domain,the developer has to introduce a certain amount of domain-dependent information.This information is stored in declarative knowledge bases; for example, the Item Ex-tractor retrieves the description of the categories of items to be recommended froma knowledge base called \Concept Taxonomy"; see Figure 1. This separation hasthe advantage that the engine can be instantiated on several domains by exploitinggraphical acquisition tools that assist the speci�cation of the domain-dependentinformation and hide the technical details related to the knowledge representationlanguage adopted within the engine. Such tools also perform some simple consis-tency checks on the knowledge bases.The Seta2000 recommender engine can also be con�gured to o�er reduced per-sonalization functionalities, or to support new facilities. Section 4.1 shows how the(optional) functionalities o�ered by the engine can be selected during the instanti-ation of the recommender engine. Section 4.2 addresses the revision of the defaultACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

12 � Ardissono Liliana et al.functionalities to modify the behavior of a role �ller. Section 4.3 sketches the ex-tension of the engine to add a role �ller performing activities that are missing inthe current architecture.4.1 Selection of the functionalities o�ered by the engineThe Seta2000 recommender engine o�ers a set of optional functionalities, which canbe switched o� at the engine instantiation time. This exibility is useful becausenot all the systems need to exploit the full personalization capabilities o�ered byour engine. In the simplest cases, the engine should support the development oflighter systems, which reduce the overhead during the interaction with the user.In particular, the developer may choose the user modeling techniques best suitingthe requirements of the sales domain. For instance, stereotypical information isuseful for immediate personalization, but it only works if the user population can beclearly segmented in classes with similar preferences and requirements. In contrast,dynamic user modeling enables the system to maintain precise user models, butit only makes sense if the typical interaction is long enough to acquire meaningfulinformation about the user.To provide this exibility, we have developed the core of the User Modeling Com-ponent by using the Seta2000 libraries for the development of action-based agents.We represented the user model initialization and revision activities as actions thatthe core agent can perform. Moreover, we exploited the action preconditions to sub-ordinate these actions to contextual conditions related to the con�guration settingsof the role �ller. In this way, actions can be enabled or disabled, depending on themodality selected for the revision of the user model in each speci�c recommendersystem. This approach supports the de�nition of classes of role �llers o�ering thesame services in di�erent ways. For instance, the management of the user modelscan be �lled by a hierarchy of alternative User Modeling Components.(a) The �rst and simplest one supports the construction of a generic user model,the same for every user.(b) The second role �ller exploits stereotypical information about customer classesto predict the user's preferences. This is the con�guration we selected for theINTRIGUE tourist information server.(c) The third one tracks the user behavior to dynamically update the user modelduring the interaction.(d) More complex role �llers can be obtained by merging these functionalities; forexample, options (b) and (c) can be combined, as in our SeTA Web store.4.2 Revision of the functionalities provided by a role �llerIn some cases, the functionalities o�ered by the recommender engine cannot fullysatisfy the domain requirements, and the problem may be solved by revising theindividual role �llers. For instance, the Dialog Manager provides a default man-agement of the logical ow of the interaction with the user, which can be directlyapplied within a new system. However, if the developer wishes, she can modifythe interaction ow by revising the role �ller core. In the following, we present thedefault implementation of the Dialog Manager core and then we sketch possiblechanges aimed at supporting di�erent types of interaction with the user.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 13
Init Ident

Exit

Category
 Select

Registr Category Item

 Show
Selections

Tech
Detail

 Category
 Suggest

 UM
Updated

enter newUser

regUser

exit
exit

moreInfo
changeCF

showItem

changeCF

nextItem

VTD
select

sugg

changeCF

showS

closeS

exit

enter

exit

umMessage

umMessageDone

Fig. 9. Portion of the state diagram specifying the ow of the interaction with the user.The management of the logical interaction can be represented as a sequence ofturns in a dialogue between the user and the system. Each action performed bythe user and page produced by the system represent turns and the admissible turnsequences can be described by means of �nite state automata [Stein and Maier1994]. As the Dialog Manager is responsible for managing the dialogue ow, itneeds knowledge about the admissible turn sequences, which can be declarativelyrepresented by means of State Diagrams [Fowler and Scott 2000]. Figure 9 showsa portion of the diagram designed for our recommender engine. The interaction isdivided in three main phases:(1) The user identi�cation: in this phase, information about the user is requestedby means of a registration form.(2) The browsing of the catalog: the user enters the catalog specifying which cat-egories of items she would like to consider. Then, she may follow links to getmore information about items, and so forth.(3) The closure of the interaction, triggered when the user clicks on the \EXIT"button.While the �rst and third phases are controlled by the system, both the system andthe user can take the control during the middle phase. Normally, the system directlysatis�es the user's request by performing the requested action and showing theresults; however, it may sometimes take the initiative and ask the user a question,or provide her with suggestions.The state transitions are triggered by messages received by the Dialog Manager(shown in italics in Figure 9); such messages can origin from the actions performedby the user. For instance, from the \Ident" state, corresponding to the user iden-ti�cation, the Dialog Manager may:|Move to state \Registr", where a registration form is generated to let the userspecify information about herself. This transition occurs if the user interactswith the system for the �rst-time (\newUser").|Move to state \Category Selection", corresponding to the initial catalog page,where the user can specify which types of items she wants to inspect. Thishappens if the user has registered in a previous session (\regUser").|Go to the \Exit" state, if the user clicks on the \EXIT" button (\exit").ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

14 � Ardissono Liliana et al.Some transitions may be triggered by messages coming from the other role �llersand may not be related to the user's behavior.5The core of the Dialog Manager has been created by exploiting the Seta2000libraries for the development of an action-based agent, in order to make the revisionsof the interaction ow as easy as possible. The state of the Dialog Manager coreincludes the speci�cation of the current state of the diagram; moreover, the statetransitions are implemented as actions. The preconditions of each action includethe speci�cation of the state of the diagram from which the action can be performedand the event triggering the transition associated to the action. For instance, whenthe agent is in state \Ident" and the \exit" event occurs, i.e., the user has clickedon the \EXIT" button, the agent can move to state \Exit", determining the closureof the interaction.This diagram can be easily extended. For example, a new transition \T" fromstate \S1" to state \S2" can be added by de�ning a new action, whose preconditionsrequire that the current state is \S1" and specify the event causing the transition.The action body will contain the activities to be performed in the new state (e.g.,which type of page has to be displayed next) and the transition to state \S2". Noticethat we have exploited this exibility to develop di�erent dialog strategies in thetwo recommender systems we have developed. In particular, the state diagramshown in Figure 9 is a subset of the diagram de�ning the interaction ow for theSeTA Web store. Instead, the Dialog Manager core running within the INTRIGUEsystem is based on a di�erent state diagram.4.3 Create a new role �llerIf the developer needs to add functionalities to the recommender system, she maywant to extend the engine by de�ning new roles. The following steps have to beperformed to create a new role �ller:(1) Creation of the Dispatcher.The developer creates a wrapping class for the component. This is done byextending the \Dispatcher" class (see Figure 2) and implementing methods toadd the references to the \user-session" objects.(2) Creation of a role �ller core. This step can be performed in two ways:(a) If the new role �ller o�ers services associated to possibly complex, butdeterministic activities and is not proactive (legacy software, such as acomponent accessing a database, might fall into this category), it can behandled by role �ller cores developed as objects and responding to tradi-tional method invocations. The \Role Filler Core" object corresponds tothe component itself. The wrapping class contains references to it and willmanage user-sessions.(b) Other types of role �llers might include the autonomous management ofinternal activities. To satisfy this requirement, a role �ller based on an5For instance, when the Dialog Manager is in state \Item" (which corresponds to displaying thepresentation page of a set of items) it may move to the \Category Suggest" state if it receivesa \sugg" message from the UMC. During a transition, messages may also be sent to other role�llers. For example, from state \Item", the Dialog Manager may go to state \UM Updated" bysending a message (\umMessage") to the UMC, to specify the actions performed by the user.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 15

Fig. 10. Page generated by SeTA for the presentation of a telecommunication product.explicit representation of the agent state and of the activities to be per-formed, declaratively represented as actions with preconditions and bodies,is needed. The developer creates a role �ller core by extending the Agentclass and by de�ning its preconditions and actions.5. EXPLOITATION OF SETA20005.1 First exploitation: SeTASeTA (Servizi Telematici Adattativi) is an adaptive Web-based store that managesa personalized catalog of telecommunication products, such as phones and faxes[Ardissono et al. 2002].6 During the interaction with the customer, the Web storemonitors her behavior and dynamically revises the user model to achieve a preciseview of her expertise and preferences concerning the telecommunication products.Moreover, the system applies personalization techniques to dynamically generatethe catalog pages, whose appearance and content depend on the user model. Forinstance, the amount of information displayed in each page is selected on the basis ofthe customer's receptivity. The description of the items is personalized, by selectingthe features to be described on the basis of her interests. Furthermore, the (more6Although this prototype is not available on the Web any more, a frozen demo of the system isavailable at the URL: http://www.di.unito.it/~ seta.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

16 � Ardissono Liliana et al.

Fig. 11. Recommendation of tourist attractions generated by INTRIGUE for desktop and handsetdevicesor less technical) linguistic style of the descriptions is tailored to her expertise.As the user model evolves during the interaction, the system supports a reactivepersonalization of the interaction. Figure 10 shows a typical product presentationpage generated the system.The architecture of SeTA has been designed and developed by adapting theSeta2000 recommender engine to the requirements of Business-to-Customere-commerce. For instance, some role �llers (e.g., the Selection Manager) have beenspecialized to handle an interactive shopping cart, which enables the customer userto add, remove or inspect the goods she has selected for purchase.5.2 Second exploitation: INTRIGUEINTRIGUE (INteractive TouRist Information GUidE) provides information abouttourist attractions and services, such as accommodation and food, in a restrictedgeographical area. The system helps the user to schedule a tour and can be ac-cessed by using a standard Web browser, or a WAP minibrowser. An on-linedemo of a prototype supporting the Web-based interaction is available at the URL:http://silk.di.unito.it:8083/ishtar/intrigue.html.INTRIGUE manages a multilingual tourist catalog, dynamically generated byACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 17employing eÆcient template-based NL generation techniques. Our current proto-type presents information about the city of Torino and the surrounding Piedmontarea, in Italian and in English. The system provides the user with personalizedrecommendations, by taking into account the possibly conicting preferences of agroup of people traveling together; e.g., a family with elderly and children. More-over, the system o�ers an interactive agenda that enables the user to select theattractions she is interested in and helps her to de�ne a tour schedule complyingwith her visiting preferences and other constraints, e.g., the opening times of thevarious attractions [Ardissono et al. 2003]. Figure 11 shows a recommendationpage generated by INTRIGUE for desktop and handset devices. The suggestionsare displayed as lists of items, sorted from the best to the worst. In the desktop UserInterface, the recommended items are coupled with an explanation of the reasonsfor the suggestion.6. RELATED WORKOur model of agent behavior exploits the traditional action-based representationof agent activities adopted for Belief Desire Intention agents [George� and Ingrand1989], but di�ers in the internal management of activities. The behavior of tra-ditional BDI agents is ruled by a cyclic interpreter that works in \busy waitingmodality" and chooses the actions to be performed in a sequential way, depend-ing on the agent state, at each cycle. In contrast, our agents perform actions inparallel, thanks to the thread-based interpreter we designed. Our agents handle au-tonomous actions posting goals to themselves, in a homogeneous way with respectto the service request messages they can receive from the other agents. Therefore,our agents uniformly carry out reactive and proactive behavior, balancing the twotypes of activities. Moreover, concurrent interpreters are created depending on theincoming requests, and the role �llers are idle when no requests have to be satis�ed.More recently, the parallel execution of BDI agents has been introduced in toolssuch as JACK [AOS 2002], which supports posting parallel goals to the agents;however, JACK is focused on the development of homogeneous agents, while it isnot so exible as far as the integration of heterogeneous software is concerned.The JADE environment for the development of MAS systems [Bellifemine et al.2001], developed at the same time as Seta2000, o�ers a Java-based infrastructurefor the speci�cation of FIPA-compliant agent behavior [FIPA 2000] and commu-nication; moreover, it provides a platform for managing and running the agents.The main di�erence between this infrastructure and the Seta2000 one concerns theabstraction level at which the agents have to be de�ned. In JADE, the activities tobe performed by an agent are de�ned by \behaviors" supporting a rather low-levelspeci�cation of the agent synchronization.Other tools for the design and development of MAS systems o�er high-levellanguages for the representation of the agent capabilities; e.g., DESIRE [Alberset al. 1999]. However, as discussed in [Shehory and Sturm 2001], they have problemsin the generation of eÆcient code, which is essential in the development of a scalablesystem. For this reason, we did not exploit them to develop our recommenderengine. In the development of the Seta2000 infrastructure, we decided to o�er anaction-based formalism for the declarative representation of actions, but, to increaseACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

18 � Ardissono Liliana et al.eÆciency, we support a speci�cation of the body of actions as Java code.Several infrastructures for the development of multi-agent systems, e.g., DECAF[Graham and Decker 2000], seem to exceed our needs. In fact, they support complexactivities such as the real time exibility in the execution of tasks. In Seta2000,each role �ller is an agent providing a speci�c set of services; due to this staticassociation, we do not need to exploit schedulers for the distribution of activitiesamong role �llers. Both Seta2000 and DECAF support a thread-based executionof parallel agent activities, but our approach assumes that the interpreter of anagent handles all the activities the agent is responsible for. Therefore, the agentcan uniformly manage service requests and internal activities. Finally, some toolsfor the development of multi-agent systems focus on complementary aspects withrespect to those addressed in Seta2000. For instance, RAJA [Ding et al. 2001]supports the development of resource adaptive multi-agent systems, whose con�g-uration parameters can be dynamically tuned by controllers, in reaction to changesin the resource availability. RAJA is mostly focused on load balancing and run-timeadaptation of parameters tuning the agent behavior (e.g., level of �delity in videotransmission). Instead, Seta2000 focuses on the con�gurability of the high-levelsystem functionalities, such as dynamic versus static user modeling.As n-tier architectures are a popular solution for complex Web-based systems,the relation between our architecture and the other approaches has to be discussed,with speci�c reference to frameworks like J2EE [Sun Microsystems 2002], which areindustry standards for developing Web-based systems. The Seta2000 infrastructureprovides the developer with an Agent-Oriented extension that can sit on top of aJ2EE platform. In fact the underlying layer of Voyager can be substituted withthe EJB + JMS layer, as the J2EE platform incorporated most of the advancedtechnologies7 o�ered by Voyager at the time the Seta2000 infrastructure was imple-mented. Exploiting the EJB allows interoperability in heterogeneous server envi-ronment. The standard mapping of the EJB architecture to CORBA enables a nonJava platform CORBA client to access an Enterprise Bean object. On the otherhand, Microsoft's .NET provides a framework for building, deploying, and runningXML Web services and applications, but does not support action-based agents likeSeta2000 and it supports less interoperability than J2EE, therefore it has not beenselected as the underlying platform.At a di�erent level, the current Enterprise Portals developed for e-commerceapplications represent an excellent example of specialized environments assisting theservice development e�orts. However, they can hardly be extended to �t speci�cdomain requirements. Similarly, the architectures of the current personalizationservers, such as [BroadVision 2002; Dynamo 2000] and [NetPerceptions 2002], arenot open: they can be instantiated on a speci�c application domain, by they donot support the extension of their own architectures to o�er new facilities.7. INTEGRATION OF EXTERNAL SOFTWAREThe modularity and extensibility of the Seta2000 architecture enabled us to inte-grate in the role �llers several external software tools for the management of very7For instance, asynchronous message support and the \container" concept, now o�ered by JMSand the J2EE Application Servers.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 19speci�c activities. For instance:| The User Modeling Component exploits the JESS rule-based system [Sandia2002] to maintain a structured representation of the interaction context and toproduce a synthetic description of the user's behavior. Such description is thenused within a Bayesian Network [Pearl 1988] to reason about the user's interestsand preferences.| The Personalization Agent exploits JTg2 [DFKI and CELI 2000] for the gen-eration of the linguistic descriptions to be included in the Web pages. The JTg2engine is a general-purpose generator: in its simplest conception, it takes objectsas its input and returns strings. We used it to generate natural language descrip-tions. In both the SeTA and INTRIGUE systems, the use of NLG techniques hasdramatically reduced the amount of pre-compiled information to be de�ned at con-�guration time. Moreover, it supported the generation of multilingual descriptions,tailored to di�erent user characteristics.8. CONCLUSIONS AND FUTURE WORKWe have presented the Seta2000 infrastructure for the development of personalizedrecommender systems supporting the interaction with users using di�erent devices,such as desktop computers and mobile phones. The built-in facilities o�ered by theinfrastructure are the adaptation to contextual parameters, e.g., the output device,and the user's preferences. However, Seta2000 o�ers software libraries supportingthe extension of these services to satisfy speci�c domain requirements. Our infras-tructure is based on the exploitation of Multi-Agent technologies and this paperhas focused on two main topics: the management of the inter-agent communicationand the design of the internal agent architecture.The proposed infrastructure has clear pros and cons as far as scalability andapplicability issues are concerned. On the one hand, we acknowledge that thisarchitecture is less eÆcient than traditional distributed and component-based ar-chitectures, due to factors such as the communication overhead imposed by high-level communication languages, the thread-based agent management model, andthe internal plan-based model of agent behavior.8On the other hand, the same factors facilitate the development of complex ubiq-uitous and user-adaptive services. First of all, the introduction of high-level com-munication between agents abstracts from the details of the method invocationand facilitates the integration of heterogeneous (traditional and agent-based) soft-ware within the system agents. Moreover, the possibility to wrap heterogeneouscomponents and to exploit a plan-based agent model supports the development ofproactive components, which would be very expensive to develop otherwise.Indeed, the Seta2000 infrastructure can be applied to develop social agents andcomponents in rather di�erent application domains, like peer-to-peer interactionbetween Web Service consumers and providers. As it well known, the current stan-8It should be noticed that the use of threads in our framework can be seen as ineÆcient, but it isunlikely that in such complex systems it will be the most signi�cant factor in the overall systemperformance. Moreover, action-based approaches to software development (see also planners andthe like) are intrinsically heavier than procedural software.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

20 � Ardissono Liliana et al.dards for Web Service communication (e.g., WSDL [W3C 2002] and reference im-plementations) support one-shot interactions, but they fail to support conversationswhere consumers have to invoke several operations on the service provider beforethe service is completed (e.g., imagine the interaction with a web service support-ing the con�guration of a product). At the same time, the emerging Web Servicestandards for the management of workow, e.g., BPEL [Curbera et al. 2002], arefocused on the management of the service composition and assume a rather simpletype of interaction between the provider and the individual consumer. In order tomanage successful business interactions and, in the meantime, enable the consumerssuitably match the provider's conversation requirements to their own business logic,a losely coupled approach to the management of the interaction is needed. More-over, the communication capabilities of service providers and consumers should beenhanced by means of a lightweight approach, especially on the side of the con-sumer, which may need to start several e-business interactions with heterogeneousproviders and cannot be required to manage tightly coupled interactions with eachof them, especially when the Web Service is exploited outside a complex and wellestablished B2B relationship. To address these issues, we are currently applying theSeta2000 infrastructure to the development of an infrastructure supporting exible,asynchronous and long-lasting conversations between Web Service consumers andproviders; see [Ardissono et al. 2003] and [Petrone 2003] for details. In order tofacilitate the consumer in the conversation management, we propose to exploit anaction-based framework for the service invocation, which supports the consumer inthe introduction of contextual conditions on the service invocation.ACKNOWLEDGMENTThis work has been partially funded byMIUR and by the National Research CouncilCNR (grant number CNRG0015C3). We are grateful to Pietro Torasso for havingcontributed to this work with suggestions and fruitful discussions. We also thankDoug Riecken, Benjamin Pierce and the anonymous reviewers who helped us toimprove this paper with very insightful comments.REFERENCESAlbers, M., Jonker, C., Karami, M., and Treur, J. 1999. An electronic market place: genericagent models, ontologies and knowledge. In Proc. of the Agents'99 Workshop: "Agent-baseddecision-support for managing the Interned-enabled supply-chain". Seattle, WA, 71{80.AOS. 2002. JACK Intelligent Agents [tm]. http://www.agent-software.com/shared/products/index.html.Ardissono, L., Barbero, C., Goy, A., and Petrone, G. 1999. An agent architecture forpersonalized Web stores. In Proc. 3rd Int. Conf. on Autonomous Agents (Agents '99). Seattle,WA, 182{189.Ardissono, L., Goy, A., and Petrone, G. 2003. Enabling conversations with Web Services.In Proc. 2nd Int. Joint. Conf. on Autonomous Agents and MultiAgent Systems. Melbourne,Australia, to appear.Ardissono, L., Goy, A., Petrone, G., and Segnan, M. 2001. A software architecture for dy-namically generated adaptive Web stores. In Proc. 17th International Joint Conf. on Arti�cialIntelligence. Seattle, WA, 1109{1114.Ardissono, L., Goy, A., Petrone, G., and Segnan, M. 2002. Personalization in business-to-consumer interaction. Communications of the ACM, Special Issue \The Adaptive Web" 45, 5,52{53.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

Multi-agent infrastructure for personalized Web-based systems � 21Ardissono, L., Goy, A., Petrone, G., Segnan, M., and Torasso, P. 2003. Intrigue: personal-ized recommendation of tourist attractions for desktop and handset devices. Applied Arti�cialIntelligence, Special Issue on Arti�cial Intelligence for Cultural Heritage and Digital Libraries,to appear.Bellifemine, F., Poggi, A., and Rimassa, G. 2001. Developing multi agent systems with aFIPA-compliant agent framework. In Software - Practice & Experience. Vol. 31. John Wiley &Sons, Ltd., 103{128.Billsus, D. and Pazzani, M. 1999. A personal news agent that talks, learns and explains. InProc. 3rd Int. Conf. on Autonomous Agents (Agents '99). Seattle, WA, 268{275.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. 2001. A knowl-edge level software engineering methodology for agent Oriented Programming. In Proc. 5thInt. Conf. on Autonomous Agents (Agents '01). Montreal, Canada, 648{655.BroadVision. 2002. Broadvision. http://www.broadvision.com.Cotter, P. and Smyth, B. 2000. Personalisation technologies for the digital TV world. In Proc.14th European Conf. on Arti�cial Intelligence. Berlin, 701{705.Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller, D., Thatte, S., and Weer-awarana, S. 2002. Business process execution language for web services, version 1.0.http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.DFKI and CELI. 2000. JTg2. http://www.celi.it/english/tecnologia/tecLing.html/.Ding, Y.,Malaka, R., Kray, C., and Schillo, M. 2001. RAJA - a resource-adaptive Java agentinfrastructure. In Proc. 5th Int. Conf. on Autonomous Agents (Agents '01). Montreal, CA,332{339.Dynamo. 2000. Dynamo. http://www.atg.com.Finin, T.,Weber, J.,Wiederhold, G., Genesereth, M., Fritzson, R.,McGuire, J., Shapiro,S., and Beck, C. 1993. DRAFT speci�cation of the KQML agent-communication language.Tech. rep., The DARPA Knowledge Sharing Initiative.FIPA. 2000. Foundation for Physical Intelligent Agents. http://www.�pa.org/.Fowler, M. and Scott, K. 2000. UML distilled. ADDISON-WESLEY.Genesereth, M. and Ketchpel, S. 1994. Software agents. Communications of the ACM: SpecialIssue on Intelligent Agents 37, 7.Georgeff, M. and Ingrand, F. 1989. Decision-making in an embedded reasoning system. InProc. 11th International Joint Conf. on Arti�cial Intelligence. Detroit, Michigan, 972{978.Graham, J. and Decker, K. 2000. Tools for developing and monitoring agents in distributedmulti agent systems. In Proc. of the Agents'2000 workshop on Infrastructure for scalable multi-agent systems. Barcelona.Jennings, N., Sycara, K., and Wooldridge, M. 1998. A roadmap of agent research and de-velopment. In Autonomous Agents and Multi-agent Systems. Kluwer Academic Publishers,Boston, 275{306.Maybury, M., Ed. 2000. Special Issue on News on Demand. Vol. 43. Communications of theACM.Maybury, M. and Brusilovsky, P., Eds. 2002. The adaptive Web. Vol. 45. Communications ofthe ACM.NetPerceptions, Inc. 2002. Net perceptions. http://www.netperceptions.com.ObjectSpace. 2000. Voyager. http://www.objectspace.com/index.asp.O'Connor, M., Cosley, D., Konstan, J., and Riedl, J. 2001. PolyLens: a recommender systemfor groups of users. In Proc. European Conference on Computer Supported Cooperative Work(ECSCW 2001). Bonn, Germany.Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.Morgan Kaufmann Publishers, San Mateo, CA.Petrie, C. 1996. Agent-based engineering, the Web, and intelligence. IEEE Expert December,24{29.Petrone, G. 2003. Managing exible interaction with Web Services. In AAMAS-03 workshopon Web-services and agent-based engineering. Melbourne, Australia, 41{48.ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

22 � Ardissono Liliana et al.Rao, A. and Georgeff, M. 1991. Modeling rational agents within a BDI-architecture. In Proc.2th Int. Conf. Principles of Knowledge Representation and Reasoning. Cambridge, MA, 473{484.Resnick, P. and Varian, H., Eds. 1997. Special Issue on Recommender Systems. Vol. 40. Com-munications of the ACM.Riecken, D., Ed. 2000. Special Issue on Personalization. Vol. 43. Communications of the ACM.Sandia National Laboratories 2002. JESS, the Java Expert System Shell.http://herzberg.ca.sandia.gov/jess/.Shehory, O. and Sturm, A. 2001. Evaluation of modeling techniques for agent-based systems.In Proc. 5th Int. Conf. on Autonomous Agents (Agents '01). Montreal, CA, 624{631.Stein, A. and Maier, E. 1994. Structuring collaborative information-seeking dialogues.Knowledge-Based Systems 8, 2-3, 82{93.Sun Microsystems, I. 2002. Java 2 Platform Enterprise Edition. http://java.sun.com/j2ee/.Sycara, K., Pannu, A., Williamson, M., and Zeng, D. 1996. Distributed intelligent agents.IEEE Expert December, 36{45.W3C. 2002. Web Services De�nition Language. http://www.w3.org/TR/wsdl.Wooldridge, M., Jennings, N., and Kinny, D. 1999. Amethodology for Agent-Oriented analysisand design. In Proc. 3rd Int. Conf. on Autonomous Agents (Agents '99). Seattle, WA, 69{76.Received M Y; revised M Y; accepted M Y

ACM Transactions on Internet Technology, Vol. V, No. N, August 2003.

