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Abstract: In a production environment, scheduling decides job and machine allocations and the
operation sequence. In a job shop production system, the wide variety of jobs, complex routes, and
real-life events becomes challenging for scheduling activities. New, unexpected events disrupt the
production schedule and require dynamic scheduling updates to the production schedule on an
event-based basis. To solve the dynamic scheduling problem, we propose a multi-agent system with
reinforcement learning aimed at the minimization of tardiness and flow time to improve the dynamic
scheduling techniques. The performance of the proposed multi-agent system is compared with the
first-in–first-out, shortest processing time, and earliest due date dispatching rules in terms of the
minimization of tardy jobs, mean tardiness, maximum tardiness, mean earliness, maximum earliness,
mean flow time, maximum flow time, work in process, and makespan. Five scenarios are generated
with different arrival intervals of the jobs to the job shop production system. The results of the
experiments, performed for the 3 × 3, 5 × 5, and 10 × 10 problem sizes, show that our multi-agent
system overperforms compared to the dispatching rules as the workload of the job shop increases.
Under a heavy workload, the proposed multi-agent system gives the best results for five performance
criteria, which are the proportion of tardy jobs, mean tardiness, maximum tardiness, mean flow time,
and maximum flow time.

Keywords: dynamic job shop scheduling problem; multi-agent system; reinforcement learning;
Industry 4.0; dispatching rules

1. Introduction

Scheduling is one of the critical activities in production management to enhance a
production system’s performance. Scheduling determines the jobs produced on a machine
and the production sequence [1–6]. In case the arrival times of the jobs are pre-known, all
of the jobs in a process can be organized once by static scheduling. However, the arrival
time of each job can barely be foreseen in practice, so it is a necessity to dynamically update
the production schedule while the system is running.

In practice, many dynamic events such as arrival times, processing times, machine
breakdowns, order cancellations, and due date changes can occur. The actual times of the
events are not precise. Random events continuously corrupt the current schedule, so a revised
schedule is needed every time a new event occurs. In this study, we propose a dynamic
scheduling method based on an event-based simulation to model the rescheduling issue.

In dynamic scheduling problems, production systems are classified as job shop, flow
shop, mixed shop, open shop, and group shop [7–14]. In a job shop production system, the
variety of products is high, and the batch volume is low because of the varying customers’
orders. In a dynamic job shop, new orders constantly arrive at the system to be produced,
and completed orders leave the system. The continuous arrivals of jobs that require different

Sustainability 2023, 15, 8262. https://doi.org/10.3390/su15108262 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15108262
https://doi.org/10.3390/su15108262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-7747-0746
https://orcid.org/0000-0002-8657-2303
https://orcid.org/0000-0001-6686-9241
https://orcid.org/0000-0002-7534-6837
https://doi.org/10.3390/su15108262
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15108262?type=check_update&version=3


Sustainability 2023, 15, 8262 2 of 24

machine routes complicate the scheduling of job-shop-type production environments. In
the literature, this problem is named the dynamic job shop scheduling problem (DJSP) and
is in the NP-hard class [15–20].

In recent years, agent-based approaches have started to be used on many different
problems and have been seen to give competing results [21–25]. In order to solve DJSP, a multi-
agent system with reinforcement learning (MAS-RL) is proposed in this study. The MAS-RL
is compared with the first-in–first-out (FIFO), shortest processing time (SPT), and earliest due
date (EDD) dispatching rules. The number of tardy jobs, mean tardiness, maximum tardiness,
mean earliness, maximum earliness, mean flow time, maximum flow time, work in process,
and makespan are used as performance criteria. To examine how the scheduling techniques
perform under different workloads, FIFO, SPT, EDD, and the MAS-RL are tested using five
scenarios with changing job arrival rates. Experiments are carried out for the 3× 3, 5× 5, and
10 × 10 problem sizes. The results show that the MAS-RL is practical for the DJSP and yields
better results than FIFO, SPT, and EDD under heavy workloads.

Another contribution of this study to the literature is that each job type can have
different priority values on each machine in our problem. The job priorities on machines
make flexible changes possible in the production schedule. We propose a unique technique
to the job types’ priorities on the machines in a job shop production system and use the
MAS-RL to recalculate the priorities in each iteration.

This paper is organized as follows: the literature research is presented in Section 2,
the problem statement is given in Section 3, the dispatching rules used to compare the
proposed system are given in Section 4, the proposed MAS-RL structure is described in
Section 5, the simulation model and parameters are presented in Section 6, the experimental
tests and results are provided in Section 7, and, finally, the major conclusions and future
research directions are discussed in Section 8.

2. Literature Summary

In this section, we review the relevant studies published during 2010–2022. For
the literature review, we use “job shop scheduling”, “dynamic job shop scheduling”,
“agent”, “multi-agent system”, and “reinforcement learning” as the keywords. We include
the research papers indexed in Science Citation Index (SCI) and Science Citation Index
Expanded (SCIE). We examine the DJSP characteristics and solution approach in the field.
The interested readers are referred to recent review papers [26–35] in the field. The relevant
studies in the literature are summarized under three main categories as the static problem,
the dynamic problem, and DJSP.

2.1. Static Problem

In a static scheduling problem, it is assumed that all jobs are ready at the beginning
of the scheduling period. The production is scheduled once, so no unexpected events can
interfere with the schedule. Studies on the static problem using MAS are summarized in
Table 1 in terms of problem/environment and solution method.

Table 1. Literature summarized by static problem.

Paper Problem/Environment Solution Method

[36] JSP MAS
[37] Single machine MAS
[38] IMS MAS
[39] Two identical parallel machines MAS
[40] JSP MAS with ACO
[41] Flow shop MAS with RL
[42] Personalized manufacturing MAS with RL

JSP: job shop scheduling problem; IMS: intelligent manufacturing systems; MAS: multi-agent system; ACO: ant
colony optimization; RL: reinforcement learning.
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Komma et al. (2011) [36] is the pioneering research in the field. They prepared a
guide on designing agent architecture in different production systems using the Java Agent
Development Framework. They consider a discrete event simulation by modeling the
components of a production system. Owliya et al. (2012) [37] designed a MAS for general
use. They tested the MAS structure on a single machine scheduling problem. They used
cost and resource utilization rates as the performance criteria. Leitao et al. (2015) [38]
designed a MAS and agents’ communication with each other as block diagrams. These
show the general behavior of the agents. Yu et al. (2018) [39] developed MAS-based
scheduling on two identical parallel machines. They defined the operations and machines
as agents. They took the makespan and total tardiness as the criteria. Wong et al. (2012) [40]
designed a MAS using ACO for the process planning and integrated scheduling problem.
They took the makespan, average flow time, and resource utilization rates as the criteria.
Wang et al. (2019) [41] developed a MAS in which the agents communicate with each
other by using the game theory method. They tested this MAS architecture on a simulation
model of a smart workshop. They took the makespan, machine workloads, and energy
consumption as the criteria. They showed that the MAS architecture yielded better results
than the FIFO-based and SPT-based approaches. Kim et al. (2020) [42] designed a MAS
for personalized manufacturing. They used the makespan and maximum tardiness as
the performance criteria. They compared the designed MAS with the frequently used
dispatching rules in the literature. They used the RL algorithm for the development of the
decision mechanism.

While static scheduling problems are ideal for testing new solution methods, real-world
scheduling problems are dynamic. For this reason, a technique that offers feasible solutions to
the static problem may not provide a feasible solution to dynamic real-world problems.

2.2. Dynamic Problem

In a dynamic scheduling problem, the literature research focuses on the flow shop and
job shop production systems. If there are dynamic events in a flow shop production system,
the problem is called “D-Flow shop”. Likewise, in others, if there are dynamic events in the
job-shop-type production, the problem is called “DJSP”; and, if there are dynamic events in
the flexible job-shop-type production, the problem is called the dynamic flexible job shop
scheduling problem (DFJSP) in the literature. In this study, a solution method is proposed
for DJSP, but there are different MAS and AI approaches designed for other problem types
such as CPPS, DFJSP, D-Flow Shop, and SHFS in the literature. The studies on the dynamic
problem are summarized in Table 2 in terms of the problem/environment, the solution
method, and dynamic factors.

Table 2. Literature summarized by dynamic problem.

Paper Problem/Environment Solution Method

[43] D-Parallel Machines Two rival agents, GA
[44] DFJSP NRGA, NSGA-II
[45] DFJSP Dispatching rules, RL
[46] DFJSP MAS
[47] DFJSP MAS
[48] D-Parallel Machines MAS
[49] Cloud manufacturing MAS
[50] CPPS MAS with GA
[51] DFJSP MAS with ACO
[52] D-Flow Shop MAS with DSS
[53] SHFS MAS with GA
[54] DFJSP MAS with RL

DFJSP: dynamic flexible job shop scheduling problem; CPPS: cyber-physical production systems; SHFS: sustainable
hybrid flow shop; MAS: multi-agent system; GA: genetic algorithm; NRGA: non-dominated ranking genetic
algorithm; NSGA: non-dominated sorting genetic algorithm; ACO: ant colony optimization; RL: reinforcement
learning; DSS: decision support system; PT: processing time; MB: machine breakdown; OA: order arrival; DD:
due date; ST: setup time; OC: order cancellation; UO: urgent order.
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Lee et al. (2017) [43] designed a structure with two rival agents in a system with
two parallel machines. The agents’ goal was to minimize the makespan. The structure was
compared with the GA. Ahmadi et al. (2016) [44] used NSGA-II and NRGA in the DFJSP,
considering machine breakdowns. Shiue et al. (2018) [45] designed a structure that changes
the dispatching rules by using RL for the DFJSP. They chose the average flow time and
number of tardy jobs as the criteria. Sahin et al. (2017) [46] designed a MAS for the DFJSP.
Each agent tried to achieve its own goal. They made both dynamic and static scheduling
and achieved satisfactory results. Maoudj et al. (2019) [47] designed a MAS architecture for
the robotic flexible assembly cell, which is considered as the DFJSP. The MAS architecture
created the schedule by switching between the dispatching rules. They used the makespan
as a criterion. They showed that the agent architecture they designed could yield better
results than the metaheuristics they compared it with. Huang and Liao (2012) [48] designed
a MAS architecture for the dynamic parallel machine scheduling problem. In the MAS
structure, which consists of work, machine, and management agent, the communication
between agents is examined in detail. As the criteria, they considered total tardiness,
flow time, resource utilization rates, and revenue value. Y. Liu et al. (2018) [49] studied
cloud manufacturing. They created a MAS-based scheduling mechanism and tested it in a
sample study using the simulation method. They explained the communication between
the agents in detail. Jiang et al. (2017) [50] worked on dynamic scheduling in CPPS.
They established a double-layered decision-making mechanism. This decision-making
mechanism performed the rescheduling activity with a GA. The agents both collected
information and took actions from the decision-making mechanism. S. Zhang and Wong
(2017) [51] simulated different dynamic factors in different scenarios in the DFJSP. They
hybridized the MAS-based approach they developed with the ACO. The makespan was
considered as a criterion. Barenji et al. (2017) [52] worked on MAS-based DSS for solving
the D-Flow Shop problem. They tested the MAS-based DSS by modeling a small- and
medium-sized real-life system in a simulation environment. The proposed a system that
can perform both static and dynamic scheduling. They used the makespan as a criterion.
Shi et al. (2021) [53] designed a MAS that updates the priorities of the jobs with different
types of GA. They tested the MAS structure in sustainable hybrid-flow-type production.
They took into account the makespan, energy consumption, and carbon emissions as the
criteria. The proposed MAS structure increased the computation time as the problem size
increases but gave better results than the compared algorithms. Luo (2020) [54] designed
a MAS with the RL approach for the DFJSP. The makespan was used as a criterion. The
designed MAS was compared with the dispatching rules frequently used in the literature.

Since dynamic scheduling problems reflect real production systems, they are divided
into many categories. It would not be correct to say that a method that gives feasible
solutions for one category necessarily gives feasible solutions in other categories.

In this study, we propose a MAS-RL for the DJSP. The studies conducted on the DJSP
are summarized in Table 3 according to the problem/environment, the solution method,
and dynamic factors.
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Table 3. Literature summarized by dynamic problem (via DJSP).

Paper Problem/Environment Solution Method

[55] DJSP GRASP
[56] DJSP SA
[57] DJSP Dispatching rules
[58] DJSP DSS, dispatching rules
[59] DJSP Single agent with RL
[60] DJSP Single agent with RL
[61] DJSP MAS
[62] DJSP MAS
[63] DJSP MAS
[64] DJSP MAS

DJSP: dynamic job shop scheduling problem; GRASP: greedy randomized adaptive search procedure; SA:
simulated annealing; MAS: multi-agent system; RL: reinforcement learning; DSS: decision support system; PT:
processing time; MB: machine breakdown; OA: order arrival; DD: due date; ST: setup time; OC: order cancellation;
UO: urgent order.

Baykasoğlu and Karaslan (2017) [55] developed a GRASP-based approach to the
DJSP problem. They used goal programming logic to reach better performance criteria.
They showed that their proposed GRASP-based approach yields viable solutions. Sel and
Hamzadayı (2018) [56] proposed a simulation optimization study based on the SA carried
out in the DJSP. They considered average flow time and average tardiness as the criteria.
The proposed simulation optimization approach yielded better results than EDD and FIFO.
C. L. Zhang et al. (2019) [57] designed a two-agent structure in the DJSP to minimize the
makespan. They showed that the proposed two-agent structure gives better results as the
problem scale becomes larger. Turker et al. (2019) [58] proposed a DSS for the DJSP. The
proposed DSS was designed to increase the performance of dispatching rules for dynamic
scheduling by using real-time data. They used average machine utilization, average waiting
time, work in process, number of tardy jobs, average tardiness, and average earliness as
the performance criteria. They conducted the experiments in different scenarios with
different job arrival rates. The proposed DSS decided about a job by considering not only
the workload of the machine it is currently in but also the workloads of the machines it
goes to in the following steps. Aydin and Öztemel (2000) [59] designed a single agent
with RL for the DJSP. The agent was trained with RL and was able to carry out scheduling
activities. The designed system consisted of two parts: agent and simulator. The agent
determined the most appropriate dispatching rule by reading the data from the shop
floor. The simulator, on the other hand, applied the dispatching rule determined by the
agent. Kardos et al. (2020) [60] designed a MAS structure using RL for the DJSP. OA was
taken as the dynamic factor in the problem. They compared this structure with the SPT
and other dispatching rules in the literature. Average lead-time was considered as the
objective function. They determined that the complexity of the production environment
was important because, as it increases, using RL for dynamic scheduling becomes more
effective. Erol et al. (2012) [61] developed a MAS-based scheduling approach for AGVs
and machines in a dynamic production system. Jana et al. (2013) [62] designed a MAS
using fuzzy multi-criteria decision making and multi-objective optimization techniques
based on ratios. They tested the designed MAS in different scenarios. M. Leusin et al.
(2018) [63] studied dynamic scheduling in smart workshop environments within the scope
of Industry 4.0. They aimed to collect real-time data with the help of the IoT and RFID
and to make decisions using the MAS structure based on these data. M. E. Leusin et al.
(2018) [64] studied the data they received from a real production system. They aimed to
reduce the workload of the job shop with their designed MAS. The proposed MAS yielded
better results than the job shop’s current scheduling strategy.

As can be seen from the literature summary, there are studies using MAS for the DJSP,
but only one study was found that provided training for a MAS with RL on the DJSP.
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We examined both the method and the problem characteristics of the studies in the
literature and summarized them in the following list. We described the points of our
study’s similarities and differences from the literature. As a result of the literature review,
the following list of improvements to the literature were reached.

1. In our study, each job type can have different priority values on each machine as
a unique scheduling method. In the literature, there is no other study using this
scheduling method exactly as it is in this study. With this method, we aim to give
flexibility to the production schedule. This method, which has a unique scheduling
way, is explained in detail in the following sections. It is thought that researchers can
adapt this scheduling method to their own studies and maybe improve this method
by making some changes.

2. No other studies using MAS with RL for DJSP were found in the literature. However,
there is one study using a single agent with RL, which is Kardos et al. (2020) [60].
Since there are insufficient studies on this specific mixture of the problem and solution
method, our study can be considered as a novel study conducted on this area.

The aspects of our study that differ from Kardos et al. (2020) [60] and how they are
extended are mentioned in the following list.

i. While a single agent with RL was proposed for the DJSP in Kardos et al. (2020) [60],
we extend this approach by proposing a MAS with RL. In other words, a structure
is designed in which there are multiple agents with different purposes. In this way,
instead of trying to optimize the entire system with a single agent, it tries to be
optimized with multiple agents in parts.

ii. While Kardos et al. (2020) [60] considered only the OA as a dynamic factor, we
extend dynamic factors such as OA, PT, and DD. Since using more dynamic events
together means that the problem becomes more difficult to solve, we improve the
literature in this aspect.

iii. While Kardos et al. (2020) [60] took into account the average lead time as a perfor-
mance criterion, we extend the number of performance criteria to nine, which is the
proportion of the tardy jobs, mean tardiness, maximum tardiness, mean earliness,
maximum earliness, mean flow time, maximum flow time, work in process, and
makespan in this study. With the expansion of the performance criteria, the results
in this specific area can be examined in a wider range, making it possible to reach
conclusions from various aspects.

In addition to all these improvements to the literature, we aimed to make it easier for
researchers who are not experts in MAS to understand the MAS easily and develop their
own studies on this subject. From this aspect, the MAS-RL in this study was designed to be
as understandable as possible, and each agent’s working principle was explained in detail.
In this way, we tried to encourage that MAS studies be carried out in the future.

3. Problem Statement

The main frame of the DJSP is to use a limited number of machines (or service
providers), to process a specified number of jobs (or tasks), while trying to optimize the
specified objectives such as the makespan or tardiness. Each of these jobs has a specified
operation sequence or route through the machines, with a specified processing time at the
corresponding machine. When the job passes through the last operation sequence, it is
considered as a finished job.

The DJSP also has other constraints that needs to be taken care of. In some of the studies
in the literature, the problem is attempted to be solved by the mathematical programming
method, while, in other studies, simulation programs specially designed for scheduling
problems are used. The advantages of using a simulation program are that the production
schedule can be stopped and examined at any time, the workflows can be followed visually,
and there is no need for a mathematical model. In our study, the Arena® package program
was used as a simulation program. Within the modules of the program, the constraints
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of DJSP are already present. For this reason, these constraints are given by linguistic
expressions as follows.

1. Different operations are performed on different machines;
2. The machines operate only one job at the same time;
3. The jobs are operated on only one machine at the same time;
4. Operations that have started cannot be interrupted or paused;
5. The jobs must follow their routes in the specific order;
6. The queue capacity is unlimited for any machine.

Job shop scheduling problems can be of different sizes. The problem size is expressed
as the number of job types and the number of machines (jxm). The machine and job-type
thresholds of a job shop that determine the complexity of a job shop-instance are not
generally agreed upon in the literature [65]. In addition, there are studies in the literature
that mention that the problem size does not make a difference for the performance of the
dispatching rules [66,67].

In this study, we performed experiments for the 3× 3, 5× 5, and 10× 10 problem sizes
to show that our proposed approach works well for different problem sizes. The routes
that jobs follow in a job-shop environment are complex and difficult to follow. To illustrate
this, a visual representation of the 3 × 3 problem size dynamic job-shop environment is
given in Figure 1.
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Figure 1. Visual representative of the 3 × 3 problem size dynamic job-shop environment.

“M” means machine, and “jt” means job type. Job type 1 is marked in red, job type
2 is marked in green, and job type 3 is marked in blue. Each job type visits each machine
according to its route. For example, jt1’s route (red) is M1–M2–M3, jt2’s route (green) is
M2–M3–M1, and jt3’s route (blue) is M3–M1–M2. A machine can have more than one job
of the same job type in the queue.

The DJSP is an NP-hard class problem due to its complexity. The increase in the diversity
of machines and job types and the increase in the complexity of the jobs’ routes make it almost
impossible to reach the optimum solution of the problem in the polynomial time. Due to the
stochastic and dynamic nature of the job arrivals to the system, it may cause a computational
burden to produce reliable solutions even with the 3 × 3 problem size.

In Table 4, the model notations are described.
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Table 4. Notations.

Notation Description

j jth job or job index
m mth machine or machine index
t Current time
Aj Arrival time of jth job to the system
Aj,m Arrival time of jth job to mth machine
Cj Completion time of jth job
Dj Due date of jth job
Pj Total processing time of jth job
Pj,m Processing time of jth job on mth machine
Zm Priority index of mth machine

In the job-shop-type production system, jobs (j) randomly arrive at the shop floor
according to exponential distribution. The arrival time of each job is recorded as (Aj). The
processing times of the job on each separate machine (m) are determined according to the
normal distribution and are recorded as (Pj,m). The due dates of the jobs are assigned as
(Dj). After the assignments, the jobs are directed to the first machines on their routes. If
a machine is in idle state and the machine’s queue is empty, the job’s processing starts
immediately, otherwise the job is directed to the machine’s queue and waits for the machine
to become idle. When the machine becomes idle, and the job is chosen to be next, it enters
the machine and is processed as the time (Pj,m). The job is then routed to the next machine
according to its route, and this sequence repeats until the job’s route complete. Here,
we assume that the transportation times between the machines can be neglected. The
completion time of each job is recorded as (Cj) and is used to calculate the flow time (Fj)
and deviation from the due date (Devj). These formulations are presented below. The flow
time is calculated by Equation (1). Equation (2) calculates the deviation from the due date.
A positive deviation indicates that the job is tardy (or late), and the outcome of the equation
is considered tardiness (Tj). If the deviation is negative, it corresponds to earliness (Ej). It is
undesirable for a job leaving the system to be early or tardy. A job that is early indirectly
causes other jobs in the system to be tardy. This is a situation where every job is requested
to be completed exactly on its due date [68].

Fj = Cj − Aj, (1)

Devj = Cj − Dj, (2)

4. Dispatching Rules Used

Dispatching rules are used for arranging jobs in the machines’ queues according to a
specific rule. Dispatching rules are known as priority rules. Dispatching rules are used to
determine the job that starts processing on the machine as soon as the machine becomes
idle. In this study, FIFO, SPT, and EDD rules, which are the most frequently used rules in
the literature, were compared to the MAS-RL.

4.1. FIFO Rule

The way FIFO works is based on giving priority to the job that arrives to the machine
first. The FIFO rule is one of the most frequently used rules in the literature. In addition,
it is easy to apply in theory as well as in practice. FIFO fits for systems where the entities
are food with a short expiration date or people. In fact, we unknowingly use FIFO in most
of the public zones where we encounter queues such as supermarkets, restaurants, banks,
and counters in our daily life. In order to mathematically apply FIFO, it is necessary to
know the arrival times of the jobs in the queue of the machine (Aj,m). The job with the
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minimum arrival time should be selected and processed on the machine as a priority. FIFO
is formulated in Equation (3).

Min(Zm) = Aj,m ∀j, m (3)

4.2. SPT Rule

SPT is based on giving priority to the job with the shortest processing time. As
example of a real-life use of SPT is when there is a long queue in front of a cash register in a
supermarket, but customers with a few items take the lead. SPT minimizes mean flow time.
In order to mathematically apply SPT, it is necessary to know the processing times of the
jobs in the queue of the machine (Pj,m). The job with the minimum processing time should
be selected and processed on the machine as a priority. SPT is formulated in Equation (4).

Min(Zm) = Pj,m ∀j, m (4)

4.3. EDD Rule

EDD is based on prioritizing the job with the shortest due date. For example, a real-
life use of EDD is when a customer with very urgent business takes the lead while there
is a long queue in front of a cash register in a supermarket. EDD is generally used for
minimizing tardiness. In order to mathematically apply EDD, it is necessary to know the
due dates of the jobs (Dj). The job with the minimum due date should be selected and
processed on the machine as a priority. EDD is formulated in Equation (5).

Min(Zm) = Dj ∀j, (5)

5. Proposed MAS-RL Approach

In this section, we introduce the MAS structure and the RL mechanism. In the MAS
structure, we explain the agents in the system and the relationships between the agents.
The RL mechanism, which provides a learning function to the MAS, is examined.

5.1. Multi-Agent System Structure

The MAS is an AI approach distributing intelligence to different individuals by agents.
The MAS is a computerized system that consists of multiple intelligent agents communicat-
ing with each other. An agent has a goal, sensors, and actuators. When an agent is put into
an environment, the agent should be able to change the environment for its intended goal.

In the MAS, there are multiple agents that can have different goals and different ways
of changing the environment. The MAS can be compared to a bee colony. The different
types of bees are specialized for different goals, such as searching for resources, making
honey, or defending the colony. Each bee type has different actuators to achieve its own
goal. The natural swarm intelligence of the bee colony can be imitated with the MAS.

The MAS should be intelligent in order to provide feasible solutions. Intelligence
is defined as the “ability to learn”. There are three main machine learning methods:
supervised, unsupervised, and RL. We used RL to implement the learning ability to the
MAS. The aforementioned three types of machine learning are explained in the next section.

The proposed MAS-RL structure designed in this study is shown in Figure 2. Five
different types of agents are designed for the MAS-RL, and they all have different goals. All
of them have the ability to communicate with each other and take actions toward a goal.
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Figure 2. The proposed MAS-RL structure.

In the MAS-RL structure, jobs are created by a Job Agent, and a chain reaction begins
when an order arrives. The reaction continues until the maximum number of jobs has been
reached. We describe the goals, decisions, and internal mechanisms of the agents.

5.1.1. Job Agents

The main goal of a Job Agent is to create jobs according to incoming orders and report
the job’s information to the Database Agent. The first aspect of the job information is the
job’s arrival time to the system. The information about job arrivals is obtained by the Job
Agent, generating a random number from the exponential distribution. Another task of the
Job Agent is to determine the job type corresponding to the incoming order and to assign
processing times for the considered job type. These processing times are obtained by the
Job Agent by generating a random number from the normal distribution.

As soon as a job enters the system, its due date is determined. After the assignments, the
Job Agent sends jobs to the Queue Agent and reports the job information to the Database Agent.

5.1.2. Queue Agents

A Queue Agent sends the selected job to a Machine Agent when the machine is in idle
state. It also provides the current state of the queue to the relevant agents.

Information such as how many jobs are in the queue at the moment, how long the total
processing time of these jobs is, and what these jobs’ types are, are continuously transferred
to the Database Agent. When a job is removed from the queue and sent to the Machine
Agent, the information changes are recalculated and reported to the Database Agent.

5.1.3. Machine Agents

A Machine Agent sends the jobs to the queue of another machine when a job is
completed on the current machine. The machine’s status is monitored as busy or idle by
the Machine Agent and when a change occurs that notifies the Database Agent.

5.1.4. Database Agent

A Database Agent stores the incoming information and forwards the information to
the other agents. The agent that needs to acquire information requests the information from
the Database Agent. The Database Agent acts as an information center for the other agents.
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5.1.5. Decision Agent

A Decision Agent decides which job in the queue has the highest priority using the
current values in the priority table. After determining the prior job, the Decision Agent
transmits the information to the Database Agent and the RL mechanism. The Decision
Agent informs the RL mechanism by sending the values from the priority table that it
used while determining the prior job. Then, the RL mechanism updates the priority table
according to the deviations from the due date of the jobs.

5.2. Reinforcement Learning Mechanism

Machine learning algorithms receive historical input and output data from supervised
learning. The supervised learning method allows the algorithm to create outputs as close
to the desired result as possible by changing the model between each input/output pair.
Supervised learning algorithms include decision trees, neural networks, support vector
machines, and linear regression.

The labeled training sets and data are not used in unsupervised learning. Instead, the
machine searches the data for less obvious patterns. Machine learning of this type makes
decisions by using the data to find patterns. K-means, Hidden Markov models, a Gaussian
mixture, and hierarchical clustering models are common unsupervised learning algorithms.

RL is a machine learning type that reflects humans’ learning mechanism. The agent
learns by interacting with the environment and receives a positive reward or negative
reward (punishment). The agent is programmed to seek a long-term reward to reach the
goal [69]. The RL mechanism is illustrated in Figure 3. The agent takes an action by looking
at the state. The environment changes according to the action taken. According to this
change, the agent receives a reward. Then, the loop starts over by looking at the state again.
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To use the RL mechanism, a priority table is needed, as in dispatching rules. Therefore,
a priority value is defined for each job type on each machine. These values are indicated
by W. W values are visualized in Table 5 only for the 3 × 3 problem, as the size of the
problem increases as the job types and the number of machines increase. For the 5 × 5 and
10 × 10 problems, the table expands as the job types (i) and machines (m) increase.

Table 5. W values by job type and machine indices (3 × 3 problem).

Wi,m
Machine (m)

M1 M2 M3

Job type (i)
Type1 W11 W12 W13
Type2 W21 W22 W23
Type3 W31 W32 W33

When scheduler agents need to select a job from the corresponding machine’s queue,
they give priority to the job type with the highest W value. This structure is formulated in
Equation (6).

Max(Zm) = Wi,m ∀I, (6)
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In cases where the queues have more than one job of the same job type, the W values
of the jobs are equal. When trying to give priority to one of these jobs, a tie situation occurs.
To break the tie, the FIFO rule is used to define the earliest job that came to the queue.

The W values are updated for every job leaving the system. A job leaving the system
changes the priority values of the jobs in the same type in the system. For example, a job
with job type Type2 updates W21, W22, and W23 when leaving the system. The magnitude
of change takes place, as shown in Equation (7) for tardy jobs and as shown in Equation (8)
for early jobs.

newWi,m = oldWi,m +
[(

Tj/max
(
Tj
))

+ (Ni/max(Ni)) + (Mm/max(Mm))
]
/α ∀i, m, (7)

newWi,m = oldWi,m −
(

Ej/max
(
Ej
))

/β ∀i, m (8)

α: Total number of tardy jobs;
Tj: Tardiness of the jth job;
Ni: Total number of jobs of Typei in the system;
Mm: Total number of jobs waiting in the queue of the mth machine;
β: Total number of early jobs;
Ej: Earliness of the jth job.
By dividing each variable by its maximum value, the effect of these variables on the W

value is normalized. This way, the effect of the spike values over the W values is reduced,
and the W values become more stable over time.

The update activity occurs in time t. In other words, the max(x) functions in the
Equations (7) and (8) are considered as the greatest measurement value of x up to time t.
According to this, the W values increase by a maximum of 3 in a single update, and the
update rate slows down over time.

Since early jobs and tardy jobs should affect the W value in opposite directions, and
earliness and tardiness are expressed with different notations, two separate equations are
presented as W update equations.

The logic of the change in W values is explained as follows.

1. A tardy job affects the W values as much as the delay time (the same applies to early jobs);
2. A tardy job affects the W values as much as the jobs of the same type in the system;
3. A tardy job updates much more than the W value for machines with a long queue length.

The magnitude of the W value shows the priority of the job on the machine. The
higher the W value is, the higher the priority of the job type is. The W value increases in
the case of tardiness and decreases in the case of earliness. Tardy jobs are more undesirable
than early jobs in production systems. For this reason, the change in the W value is greater
for tardy jobs than early jobs. While there are three factors affecting the W value for tardy
jobs in Equation (7), it is seen that there is only one factor for early jobs in Equation (8).

6. Simulation Model

In order to simulate a real job-shop environment, all input data need to be dynamically and
stochastically obtained throughout the simulation period. For this reason, while the simulation
is running, input data such as jobs’ arrival times, processing times, and due dates are generated
according to the probability distributions when needed. The routes and processing times of the
jobs used in the 3 × 3 problem simulation model are given in Table 6. The processing times are
randomly generated by the normal distribution. Job type (i) in the table expands to 5 lines for
the 5× 5 problem and 10 lines for the 10× 10 problem. The processing times used for the 5× 5
and 10 × 10 problems are given in Tables 7 and 8, respectively.
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Table 6. Routes and processing times (3 × 3 problem).

Job Type (i) Route (Processing Time) *

Type1 M1[N(25,1)] M2[N(23,4)] M3[N(20,9)]
Type2 M2[N(25,4)] M3[N(20,9)] M1[N(23,1)]
Type3 M3[N(25,9)] M1[N(20,1)] M2[N(23,4)]

* Each number is in minutes. M: machine; N: normal distribution (mean and variance).

Table 7. Routes and processing times (5 × 5 problem).

Job Type (i) Route (Processing Time) *

Type1 M1[N(25,1)] M2[N(23,4)] M3[N(20,9)]
Type2 M2[N(25,4)] M3[N(20,9)] M1[N(23,1)]
Type3 M3[N(25,9)] M1[N(20,1)] M2[N(23,4)]
Type4 M4[N(25,1)] M5[N(20,4)] M1[N(23,9)]
Type5 M5[N(25,4)] M1[N(20,9)] M2[N(23,1)]

* Each number is in minutes. M: machine; N: normal distribution (mean and variance).

Table 8. Routes and processing times (10 × 10 problem).

Job Type (i) Route (Processing Time) *

Type1 M1[N(25,1)] M2[N(23,4)] M3[N(20,9)]
Type2 M2[N(25,4)] M3[N(20,9)] M1[N(23,1)]
Type3 M3[N(25,9)] M1[N(20,1)] M2[N(23,4)]
Type4 M4[N(25,1)] M5[N(20,4)] M1[N(23,9)]
Type5 M5[N(25,4)] M1[N(20,9)] M2[N(23,1)]
Type6 M6[N(25,9)] M7[N(20,1)] M8[N(23,4)]
Type7 M7[N(25,1)] M8[N(23,4)] M9[N(20,9)]
Type8 M8[N(25,4)] M9[N(20,9)] M10[N(23,1)]
Type9 M9[N(25,9)] M10[N(20,1)] M1[N(23,4)]
Type10 M10[N(25,1)] M1[N(23,4)] M2[N(20,9)]

* Each number is in minutes. M: machine; N: normal distribution (mean and variance).

The jobs’ arrival rates are assigned separately for five different scenarios. As the
time between arrivals becomes shorter, the jobs’ arrivals become more frequent, and the
workload of the system increases. The scenarios are presented in Table 9, which represents
very low, low, moderate, heavy, and very heavy workloads. The time between arrivals is
randomly generated by the exponential distribution.

Table 9. Simulation scenarios.

Scenario Time Between Arrivals * Workload

Scenario 1 Exp(80) for each job type Very low
Scenario 2 Exp(75) for each job type Low
Scenario 3 Exp(70) for each job type Moderate
Scenario 4 Exp(65) for each job type Heavy
Scenario 5 Exp(60) for each job type Very heavy

* Each number is in minutes. Exp: exponential distribution.

There are different due date assignment methods in the literature for job-shop-scheduling
problems. These different methods do not have any advantages over each other. Due to
its ease of implementation, one of the “processing time multiplying” methods was used
in [70]. In this method, the due date is assigned by the uniform distribution for each job,
as shown in Equation (9). When calculating the due date, the arrival time of the job and
the estimated total processing time should also be taken into account. After the due date
assignment, jobs go to the first machine on their routes.

Dj = Pj ×U(10, 20) + Aj ∀j, (9)
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A job that finishes its route on the machines is completed. For completed jobs, the flow
time (Fj) and deviation from the due date (Devj) are calculated by Equation (1) and Equation
(2), respectively. If the Devj value is positive, the job is tardy and updates the W values
using Equation (7). If the Devj value is negative, the job is early and updates the W values
using Equation (8).

The simulation model is prepared in the Arena® ver.13.50 package program. Due to its
large size, only a small section of the 3 × 3 problem simulation model is given in Figure 4.
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The designed MAS-RL structure is transferred to the event-based simulation model.
The momentary status of each job, machine, or queue can be observed by stopping the
model at any time. In this way, the job shop can be continuously monitored to determine
whether there is a problem with any component.

7. Experimental Results

Since the simulation model works with random numbers, it is necessary to eliminate the
effects of extreme values. For this reason, the number of replications is set to 30, and each
simulation run ends when 5000 jobs are completed. The average results of 30 replications for the
3× 3, 5× 5, and 10× 10 problems are presented in Table 10, Table 11, and Table 12, respectively.
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Table 10. Simulation results of the 3 × 3 problem.

Proportion of
Tardy Jobs (%)

Mean
Tardiness

(Min.)

Maximum
Tardiness

(Min.)

Mean
Earliness

(Min.)

Maximum
Earliness

(Min.)

Mean flow
Time (Min.)

Maximum
Flow Time

(Min.)

Work in
Process

Makespan
(Hour)

Method PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Scenario 1
Very Low

FIFO 0.0620 25.9 355.3 824.1 1557.1 196.2 1120.7 7.3 66,924.6
SPT 1.2520 703.7 7210.0 863.0 1488.7 176.7 8192.4 6.6 66,924.6
EDD 0.0007 0.4 12.8 837.1 1488.7 182.6 1319.7 6.8 66,921.9
MAS-RL 1.4880 816.7 8946.9 837.9 1534.3 207.1 10,187.6 7.7 66,925.1

Scenario 2
Low

FIFO 2.0720 102.9 1045.5 718.3 1488.7 319.0 1760.6 12.7 62,742.6
SPT 3.4600 1780.3 60,804.5 840.0 1488.7 273.9 61,818.7 10.9 62,748.0
EDD 0.8080 21.7 616.1 734.7 1487.6 291.6 2001.2 11.6 62,745.4
MAS-RL 4.4640 2177.4 62,340.9 804.8 1489.5 350.7 63,219.9 14.0 62,737.5

Scenario 3
Moderate

FIFO 97.1746 13,521.8 36,801.6 31.9 1360.6 14,517.6 37,617.2 621.6 59,198.3
SPT 8.2614 24,910.4 1777,509.0 813.9 1476.3 2339.9 1778,872.0 483.4 59,078.0
EDD 96.6794 13,495.2 36,005.7 24.9 1333.9 14,490.6 37,388.6 619.9 59,199.2
MAS-RL 9.5980 13,124.4 929,348.3 778.0 1522.2 1560.0 930,029.2 619.0 59,197.3

Scenario 4
Heavy

FIFO 99.8687 146,470.2 309,508.1 14.0 1228.1 147,484.6 310,245.0 6795.2 59,525.5
SPT 9.6920 20,484.6 982,673.0 800.9 1479.1 2267.7 984,130.9 5323.8 58,371.6
EDD 99.8360 138,305.8 287,823.7 13.9 1228.1 139,319.3 289,232.9 6421.9 59,164.1
MAS-RL 9.2300 2308.4 74,976.0 753.7 1543.2 549.9 75,725.3 9927.5 61,857.7

Scenario 5
Very Heavy

FIFO 99.9313 318,497.1 654,419.2 20.4 1228.1 319,509.6 655,283.1 15,976.4 61,046.3
SPT 11.2326 21,244.2 1881,254.0 792.6 1437.9 2728.6 1882,365.0 11,563.3 58,026.9
EDD 99.8860 263,448.1 538,873.6 14.9 1228.1 264,458.1 540,218.8 13,214.7 59,151.9
MAS-RL 8.2454 1037.0 33,360.2 748.1 1481.7 419.1 34,138.3 25,073.8 67,228.3

PC: performance criterion; FIFO: first-in–first-out; SPT: shortest processing time; EDD: earliest due date; MAS-RL: multi-agent system with reinforcement learning.
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Table 11. Simulation results of the 5 × 5 problem.

Proportion of
Tardy Jobs (%)

Mean
Tardiness

(Min.)

Maximum
Tardiness

(Min.)

Mean
Earliness

(Min.)

Maximum
Earliness

(Min.)

Mean Flow
Time (Min.)

Maximum
Flow Time

(Min.)

Work in
Process

Makespan
(Hour)

Method PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Scenario 1
Very Low

FIFO 0.1774 31.8 396.7 807.3 1517.1 212.9 1155.0 7.7 40,159.6
SPT 2.9273 672.6 6980.3 851.8 1492.3 198.6 7925.5 7.3 40,157.4
EDD 0.0000 0.0 0.0 812.3 1476.4 207.4 1155.5 7.7 40,161.2
MAS-RL 2.9066 694.5 11,580.3 833.9 1526.2 225.7 12,299.5 8.3 40,162.1

Scenario 2
Low

FIFO 2.9283 134.0 1463.8 703.2 1518.8 341.8 2200.4 13.4 37,647.4
SPT 4.8063 1408.8 23,034.2 828.6 1520.7 300.9 23,837.0 11.6 37,648.8
EDD 1.2274 41.7 1346.2 701.9 1443.2 332.2 2633.9 13.3 37,649.1
MAS-RL 7.1273 1259.4 34,200.2 802.6 1490.5 366.6 34,911.7 14.3 37,647.2

Scenario 3
Moderate

FIFO 66.9928 9022.7 23,639.6 519.3 1475.3 7188.8 24,333.4 335.9 35,394.7
SPT 10.2025 11,274.8 631,114.7 802.4 1473.7 1475.4 632,527.4 295.0 35,326.7
EDD 65.1996 8563.3 24,306.8 460.5 1351.8 6709.3 25,625.7 316.9 35,394.7
MAS-RL 8.1283 5066.7 95,829.3 769.9 1511.5 1244.8 296,884.5 234.3 35,423.5

Scenario 4
Heavy

FIFO 99.5923 73,912.2 223,541.9 11.5 1235.9 74,921.5 224,328.6 3216.2 35,244.3
SPT 13.5168 24,535.7 1061,210.0 787.3 1424.7 3677.3 1062,187.0 1880.3 34,383.5
EDD 99.4782 61,000.6 160,568.2 11.7 1253.6 62,009.0 161,911.7 2998.6 34,803.2
MAS-RL 11.2910 6647.3 159,869.8 761.1 1510.4 2226.2 321,038.9 3162.7 35,176.7

Scenario 5
Very Heavy

FIFO 99.8029 182,154.6 447,721.8 14.3 1235.9 183,164.0 448,479.4 8475.7 36,380.5
SPT 14.5394 24,415.0 1141,526.0 778.7 1378.4 3935.3 1142,311.0 4074.0 34,097.2
EDD 99.7692 140,873.3 320,446.6 14.2 1232.3 141,881.7 321,842.8 7224.5 34,937.7
MAS-RL 14.3290 12,056.7 279,491.2 761.2 1500.5 3535.1 380,282.3 7659.6 35,638.4

PC: performance criterion; FIFO: first-in–first-out; SPT: shortest processing time; EDD: earliest due date; MAS-RL: multi-agent system with reinforcement learning.
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Table 12. Simulation results of the 10 × 10 problem.

Proportion of
Tardy Jobs (%)

Mean
Tardiness

(Min.)

Maximum
Tardiness

(Min.)

Mean
Earliness

(Min.)

Maximum
Earliness

(Min.)

Mean Flow
Time (Min.)

Maximum
Flow Time

(Min.)

Work in
Process

Makespan
(Hour)

Method PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Scenario 1
Very Low

FIFO 0.0621 28.7 363.7 813.0 1567.4 207.2 1116.6 7.7 20,080.8
SPT 1.7560 721.4 10,302.0 854.3 1518.9 193.9 11,260.4 7.7 20,079.6
EDD 0.0567 2.4 235.7 811.6 1567.4 208.5 1522.4 8.0 20,081.5
MAS-RL 2.4076 748.1 18,821.1 837.2 1569.2 219.3 13,091.2 8.4 20,082.4

Scenario 2
Low

FIFO 1.1907 102.3 965.3 718.6 1529.1 311.1 1670.8 12.3 18,826.3
SPT 4.3534 1341.6 27,101.8 829.9 1488.7 287.7 27,905.2 11.6 18,827.4
EDD 0.5360 17.7 398.7 710.3 1455.7 313.4 1735.6 12.8 18,825.0
MAS-RL 6.3634 1185.1 29,832.9 804.0 1501.2 325.0 36,975.3 13.1 18,824.8

Scenario 3
Moderate

FIFO 50.4454 3762.5 18,931.2 482.6 1503.2 3019.0 19,763.4 219.7 17,668.8
SPT 10.0694 5601.6 234,970.8 801.8 1467.3 879.2 236,211.9 193.3 17,650.0
EDD 54.3946 3174.7 13,905.2 436.6 1408.5 2737.2 15,239.6 183.2 17,659.6
MAS-RL 7.9996 2078.8 31,730.2 767.2 1516.8 703.8 86,913.1 183.0 17,670.2

Scenario 4
Heavy

FIFO 98.8220 35,831.5 115,192.0 16.5 1279.1 36,837.3 116,002.1 1771.3 17,599.8
SPT 13.8220 17,165.0 878,177.5 784.8 1394.7 2760.8 879,134.1 1135.9 17,239.8
EDD 98.5106 29,157.2 77,267.3 12.2 1279.1 30,162.4 78,584.2 1473.9 17,363.9
MAS-RL 11.5424 3677.9 76,001.8 762.2 1466.0 1992.9 157,937.2 1612.4 17,412.1

Scenario 5
Very Heavy

FIFO 99.5094 90,354.6 228,592.7 13.3 1279.1 91,360.0 229,408.6 3977.2 18,181.1
SPT 15.3220 18,423.5 571,284.7 777.2 1411.5 3194.9 572,492.6 2455.3 17,338.4
EDD 99.4280 68,201.4 160,346.6 13.0 1279.1 69,208.6 161,772.0 3565.1 17,396.0
MAS-RL 15.0272 7029.7 142,948.3 762.9 1515.7 2988.3 189,488.4 3614.8 18,002.5

PC: performance criterion; FIFO: first-in–first-out; SPT: shortest processing time; EDD: earliest due date; MAS-RL: multi-agent system with reinforcement learning.
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Tables 10–12 should be evaluated by themselves. Moreover, each scenario should be
evaluated on its own. The values highlighted in bold show the best result among FIFO, SPT,
EDD, and the MAS-RL for that scenario. For example, for the 3 × 3 problem in Scenario 5,
the MAS-RL gave the best result with 8.2454% in PC1. This is also true for the 5 × 5 and
10 × 10 problems: the MAS-RL gave the best results for PC1 in Scenario 5.

For each problem size in each scenario, the method that is best in most of the nine
performance criteria is highlighted in bold. For example, for the 3× 3 problem in Scenario 5,
the MAS-RL gave the best results within five of the nine criteria. The same situation was
observed in Scenario 4. So the MAS-RL was the best method for five different scenarios:
two times for the 3 × 3 problem, three times for the 5 × 5 problem, and three times for the
10 × 10 problem.

When only examining from the aspect of the MAS-RL, from Scenario 1 to Scenario 5,
the number of best results given by the MAS-RL was 0-1-2-5-5 for the 3 × 3 problem,
0-0-4-4-4 for the 5 × 5 problem, and 0-0-4-4-4 for the 10 × 10 problem. It can be said that
the performance of the MAS-RL increased as it progressed from Scenario 1 to Scenario 5.
The MAS-RL gave better results as the workload load increased.

Since PC1, PC2, and PC3 are related to tardiness, these criteria usually symmetrically
act with each other. Looking at these criteria, EDD was generally expected to give the best
results. However, for all the problem sizes, EDD only gave the best results in Scenario 1
and Scenario 2. The reason for this may be that the workload of the job shop increased a
lot since Scenario 3, so it may cause bottlenecks. In systems with bottlenecks, standard
dispatching rules may not yield the expected results. In Scenario 4 and Scenario 5, it was
observed that the MAS-RL excels in tardiness.

Since PC4 and PC5 are related to earliness, these criteria were examined together.
Earliness and tardiness factors are expected to act in opposition to each other. When
examined for all problem sizes, it can be said that EDD gave good results for PC4 and PC5.
It was observed that the MAS-RL did not achieve good results in terms of earliness.

SPT was expected to give the best results for the PC6 and PC7 criteria in terms of flow
time. It is well-known that SPT minimizes the flow time in the single machine scheduling
problem. However, this is not the case in the DJSP. For all problem sizes, for the aspect of PC6,
SPT (2 out of 5) under low workloads and the MAS-RL (3 out of 5) under heavy workloads
gave the best results. For the aspect of PC7, FIFO and EDD shared first place, while the
MAS-RL only gave the best results for the 3 × 3 problem size for Scenario 4 and Scenario 5.

PC8 is a measure that shows the number of jobs in the job shop at any given moment.
It is one of the important criteria that indicate the chaos in the job shop. The higher it is, the
harder it is to keep track of jobs and scheduling activities. For this reason, PC8 is desired to
be low. The rule that is expected to give the best results for PC8 in the literature is SPT and
its derivatives. As expected, SPT gave the best results in almost every situation.

One of the frequently used performance criteria for scheduling problems in the liter-
ature is PC9. The makespan indicates how long it takes to complete a certain number of
jobs. In other words, it shows when the last job exited the system. For all problem sizes, it
is seen that SPT gave the best results as the workload increased in Scenarios 3, 4, and 5.

An event-based graph of the W values in the 3 × 3 problem is given in Figure 5 to
examine the curve. As seen in the graph, the W values started from 0 at the beginning of
the simulation and made peaks to extreme values. After the peaks, the rate of change in the
W value gradually decreased and became stable state. A graph was similarly formed for
the 5 × 5 and 10 × 10 problems.
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In the graphs shown in Figure 5, it is seen that a learning curve (LC), which is very
common in machine learning studies in the literature, has emerged. The LC is known for
initially making hard peaks and becoming stable as time passes [71]. The LC describes
a system’s performance on a task as a function over some resource to solve that task, as
shown in Figure 6.
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In machine learning studies, performance criteria such as the Mean Squared Error
(MSE) or the Mean Absolute Percentage Error (MAPE) are often used. In our study, instead
of using them, a strategy based on instantly correcting the error occurred was adopted.
The MAS-RL constantly monitored the system and updated the W values according to
the magnitude of the errors. That is, the error and W values symmetrically proceeded
according to each other.

8. Conclusions

In this paper, a MAS-RL approach was proposed to solve the DJSP. The performance
of the proposed approach were compared to the FIFO, SPT, and EDD dispatching rules in
the literature. Five different scenarios with increasing job arrival rates and nine different
performance criteria were used for comparison. Experiments were performed for the
3 × 3, 5 × 5, and 10 × 10 problem sizes. The following conclusions were made from the
experimental results.

1. As the workload increases, the MAS-RL performs better. From Scenario 1 to Scenario
5, the workload increases along with the performance of the MAS-RL. It is understood
that this is caused by two factors. The first factor is that as the workload increases,
the number of jobs in the system also increases, so more scheduling activities are
needed. The MAS-RL quickly examines the status of all jobs in the system and makes
the most appropriate choices. The second factor is that the MAS-RL starts to make
more effective decisions after completing its learning stage. Having many jobs in the
system at the same time enables the MAS-RL to learn faster and also allows it to apply
what it has learned to more jobs.

2. The MAS-RL can successfully overcome tardiness. For all problem sizes, the MAS-RL
gave the best results in Scenarios 4 and 5 for all the performance criteria related to
tardiness. In the literature, the dispatching rules that work best for tardiness are
known as EDD and its derivatives. However, the MAS-RL showed promising results
for tardiness, outperforming EDD under heavy workloads.

3. The MAS-RL can reduce the flow time. For the 3 × 3 problem in Scenarios 4 and 5,
the MAS-RL gave the best results for all the performance criteria related to flow time.
For the 5 × 5 and 10 × 10 problems, the MAS-RL only gave the best results for PC6
(mean flow time).

4. The MAS-RL can give feasible solutions for the aspect of the makespan. The makespan
shows how long the duration is to complete a certain number of jobs. For all the
problem sizes in Scenario 2, the MAS-RL gave the best results for the makespan. For
real businesses, it is not very meaningful to only look at the makespan. Even when
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the makespan is optimal, if orders exceed the due date, it would not be long before
the business loses its customers. We still included the makespan in our study, as it has
been calculated since the first studies of scheduling problems.

5. There is no remarkable relation between the size of the problem and the performance
of the MAS-RL. Except for minor differences, the solution methods for all the problem
sizes yield similar results.

Another unique contribution of this study to the literature is that each job type could
receive different priorities on each machine. In addition, the priorities were reconciled with
the RL mechanism so that they could change over time. This technique allowed for more
flexible changes to be possible in the production schedule.

In future studies, the MAS-RL can be tested in even larger or smaller systems. Dynamic
events such as machine failures and order cancellations can be implemented in future
research. A different variety of parameters can be used in the calculation of the W values.
This may change the duration of the learning period for the MAS-RL. Researchers can
adapt this scheduling method to their own studies for different problem types.
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Abbreviations

ACO Ant colony optimization
AIS Artificial immune systems
CPPS Cyber-physical production systems
CR Critical ratio
DD Due date
D-FJSP Dynamic flexible job shop scheduling problem
DJSP Dynamic job shop scheduling problem
DMAS Distributed multi-agent system
DSS Decision support system
EDD Earliest due date
FBS Filtered beam search
FIFO First-in–first-out
FMS Flexible manufacturing system
GNN Graph neural network
GRASP Greedy randomized adaptive search procedure
HFS Hybrid flow shop
HICA Hybrid imperialist competitive algorithm
IMS Intelligent manufacturing systems
JSP Job shop scheduling problem
MAS Multi-agent system
MB Machine breakdowns
NRGA Non-dominated ranking genetic algorithm
NSGA Non-dominated sorting genetic algorithm
OA Order arrivals
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OC Order cancellations
PT Processing times
RL Reinforcement learning
SA Simulated annealing
SEA Symbiotic evolutionary algorithm
SHFS Sustainable hybrid flow shop
SPT Shortest processing time
ST Setup times
TS Tabu search
UO Urgent orders
VNS Variable neighborhood search
WSI Weighted sum of indicators
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