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Abstract 

 
Previous genome-wide association studies (GWAS) for adiponectin, a complex trait linked to 

type 2 diabetes and obesity, identified >20 associated loci. However, most loci were identified in 

populations of European ancestry, and many of the target genes underlying the associations remain 

unknown. We conducted a multi-ancestry adiponectin GWAS meta-analysis in ≤46,434 individuals 

from the METSIM cohort and the ADIPOGen and AGEN consortiums. We combined study-specific 

association summary statistics using a fixed-effects, inverse variance-weighted approach. We 

identified 22 loci associated with adiponectin (P < 5×10−8), including 15 known and 7 previously 

unreported loci. Among individuals of European ancestry, GCTA-COJO identified 14 additional 

distinct signals at the ADIPOQ, CDH13, HCAR1, and ZNF664 loci. Leveraging the multi-ancestry 

data, FINEMAP + SuSiE identified 46 causal variants (PP>0.9), which also exhibited potential 

pleiotropy for cardiometabolic traits. To prioritize target genes at associated loci, we propose a 

combinatorial likelihood scoring formalism (“GPScore”) based on measures derived from 11 gene 

prioritization strategies and the physical distance to the transcription start site. With “GPScore”, we 

prioritize the 30 most probable target genes underlying the adiponectin-associated variants in the 

multi-ancestry analysis, including well-known causal genes (e.g., ADIPOQ, CDH13) and novel 

genes (e.g., CSF1, RGS17). Functional association networks revealed complex interactions of 

prioritized genes, their functionally connected genes, and their underlying pathways centered around 

insulin and adiponectin signaling, indicating an essential role in regulating energy balance in the 

body, inflammation, coagulation, fibrinolysis, insulin resistance, and diabetes. Overall, our analyses 

identify and characterize adiponectin association signals and inform experimental interrogation of 

target genes for adiponectin. 
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Introduction 

Adiponectin, an abundant adipocytokine secreted almost exclusively by adipocytes, is crucial in the 

interconnection between adiposity, insulin resistance, and inflammation 1–3. Previous genetic studies 

have identified more than 20 loci harboring variants associated with serum levels of adiponectin, 

including ADIPOQ and CDH13 4–7. Genetic analyses have also indicated shared allelic architecture 

between adiponectin, type 2 diabetes, and other metabolic traits (e.g., BMI, WHR) 4,7,8. Due to its 

diverse physiological functions in glucose and lipid metabolism, inflammation, and oxidative stress 

across metabolic and cardiovascular tissues, adiponectin could be a possible therapeutic target for 

metabolic syndrome, diabetes, and coronary disease 9. However, to move established loci toward 

effective clinical and therapeutic targets, the functional variant(s), target/effector gene(s), and the 

mechanistic direction(s) of effect need to be identified; for most loci identified to date, this information 

remains largely unknown. 

Multiple methods have been proposed to prioritize target genes underlying genome-wide 

association study (GWAS) signals using expression, functional genomics, and network data 10–12. 

However, individual approaches often have conflicting findings, making it difficult to interpret or 

prioritize candidate target genes. Attempts to incorporate integrative and complementary gene 

prioritization approaches to identify disease-risk genes have been somewhat successful 13,14. 

However, the primary challenge in using prioritization approaches for a complex trait or disease is 

that the lack of customizability to focus on the integration of the data that is most relevant (e.g., 

tissue specificity) to the disease or trait of interest. This may result in a researcher choosing results 

in an ad hoc or post-hoc manner. A researcher may also want to maximize the likelihood of selecting 

a suitable target gene for experimental follow-up, and considering support from multiple approaches 

will make the selection(s) more robust. 

Leveraging summary statistics from diverse genetic studies, we conducted a multi-ancestry, genome-

wide meta-analysis for adiponectin in up to 46,434 individuals from the Metabolic Syndrome in Men 

(METSIM) cohort and the ADIPOGen and AGEN consortiums 4,5,15. Our primary objectives were to: 

1) discover previously unreported loci associated with plasma adiponectin levels; 2) narrow putative 

causal variants underlying the association signals; 3) prioritize target genes systematically by using 

our proposed “GPScore” approach based on evidence derived from 11 gene prioritization strategies 

and physical distance to transcription start sites; and 4) perform functional profiling of target genes 
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and their underlying pathways. 
 

 
Materials and methods 

 
Ethics statement 

 
The research protocol for all studies was reviewed and approved by the institutional ethics review 

committees at the involved institutions. Written informed consent was obtained from all study 

participants. 

 
Study Design and Participants 

 
Our meta-analysis included summary statistics from 16 studies of European-ancestry individuals from 

the ADIPOGen consortium (n = 29,347 from the discovery phase) 4, four studies with individuals of 

East Asian-ancestry from the AGEN consortium (n=7,825) 5, and the METSIM study (European-

ancestry; n=9,262) 15. While most of our analyses were performed in both European-only and all 

ancestries combined (“multi-ancestry”), we consider the multi-ancestry analyses to be our primary 

results. A detailed description of participant characteristics, genotype and phenotype information, 

quality control, and imputation can be found in Table S1. 

 
Genome-wide meta-analyses 

 
We performed the European-ancestry and multi-ancestry adiponectin meta-analyses using a fixed-

effects inverse variance-weighted meta-analysis approach with the random-effects model (RE2) 

implemented in METASOFT 16, which corrects for population structure while allowing for 

examination of heterogeneity statistics. In the multi-ancestry meta-analysis, we also generated Bayes 

factors (BF) from MR-MEGA 17, which employs meta-regression to account for heterogeneity in 

allelic effects associated with ancestry. We defined the “lead” association signal at each locus to be the 

most significant variant (P < 5×10−8) within a 500 kb window. We considered association signals 

to be previously unreported, or “novel”, if they were located > 500 kb from a previously reported 

adiponectin signal. To identify distinct association signals at each locus identified in the European-

ancestry analysis 4–6,15,18, we performed approximate conditional analyses using genome-wide joint 

conditional analysis (COJO) implemented in the Genome-wide Complex Traits Analysis (GCTA) 
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software 19. Using data from 10,197 METSIM participants to calculate linkage disequilibrium (LD) 

and a collinearity threshold of (R2) = 0.9, we considered a variant to represent an additional, distinct 

signal at a locus if: 1) the variant achieved (P < 5×10−8) in the COJO analysis, and 2) the variant 

was located within +/-1 Mb from the original lead variant at that locus. We use “index variant to 

denote the most significant variant within each of the secondary association signals. 

 
Pleiotropic associations with phenotypes from CMDKP We interrogated our lead and index 

variants with data from the Common Metabolic Diseases Knowledge Portal (www.cmdkp.org) to 

explore pleiotropic associations between the index variants from the multi-ancestry meta-analysis 

and other complex traits across five common disease areas (type 1 and type 2 diabetes, cardiovascular 

and cerebrovascular disease, and sleep disorders). We only considered traits/diseases that achieved 

P< 0.05 in the original analyses. For ease of visualization, we aggregated traits/diseases into 23 broad 

categories. 

 
Identifying candidate causal variants 

 
We used several approaches to identify candidate causal variants at loci identified in both the multi-

ancestry and European ancestry-only meta-analyses. Unless otherwise stated, we used data from 

10,197 METSIM participants as the reference for LD calculations. 

 
Statistical fine-mapping  We performed statistical fine-mapping using FINEMAP 20 and SuSiE 

21. At each adiponectin-associated locus, we computed in-sample dosage LD using LDstore 22. We 

defined a fine-mapping region as the 3 Mb window (+/- 1.5 Mb) around each lead variant. We allowed 

up to 10 causal variants per window and extracted the posterior inclusion probabilities (PIP) of each 

variant using each method independently. The variants with a PIP > 0.90 in either of the fine-mapping 

methods, along with having LD r2 > 0.8 with the lead variant, are considered the final candidate causal 

variants. 

 
Causal variant annotation The majority of the candidate causal variants reside in non-coding 

regions of the human genome. We used RegulomeDB 23 to annotate the candidate causal variants 

from fine-mapping with evidence of regulatory function(s) through functional genomic assays and 
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computational approaches. RegulomeDB provides a score (range 1-7) indicating its potential to be 

functional in regulatory elements and the probability of confidence in the score for each variant. 

We interrogated fine-mapped candidate causal variants from the multi-ancestry fine-mapping using 

CAUSALdb 24, a database containing fine-mapping results from over 3,052 GWAS summary 

statistics. Whenever multiple variants mapped to the same trait across different studies, we meta-

analyzed the different p-values together. 

 
Gene Prioritization 

 
We created the Gene Priority Score (GPScore), which combines evidence from 11 gene prioritization 

strategies 11,21,25–33, along with the physical distance to the transcription start site(s) (TSS), to 

prioritize target genes underlying our adiponectin association signals. For all approaches, we 

considered all protein-coding genes within the +/- 1.5 Mb of the original lead variant from the 

multi- or European-ancestry meta-analyses. For prioritization solely based on gene expression 21,27–

30, we restricted our analysis to tissues most biologically-relevant to adiponectin (adipose 

subcutaneous, adipose visceral omentum, adrenal gland, artery aorta, artery coronary, artery tibial, 

heart atrial appendage, heart left ventricle, kidney cortex, liver, muscle-skeletal, thyroid, and whole 

blood ). Unless otherwise stated, we used data from 10,197 METSIM participants as the reference 

for LD calculations. 

 
Gene Prioritization Score GPScore is a combinatorial likelihood score constructed by 

leveraging various gene prioritization strategies described below. The score is unbiased and only 

involves weighting factors to prioritize signals from a particular tissue. GPScore is defined as 

 

GPScore = 
(−Log10(Pg) + SG).CS 

log2TSSd 
 

Where PG is a combined P-value for MAGMA 25, summary Mendelian randomization (SMR) 28, 

expression quantitative trait loci (eQTL) colocalization (LD-based approach), SNP-heritability 

enrichment 29 and Downstreamer 32 (described below), computed by the sum of z via Stoufferâs 

method34. The second term (SG) represents the combined scores of eQTL colocalization (coloc) 35, 

EMS 30, PoPS 31, EpiMap 11, cS2G 33 and Genehancer 18 scores. We normalized scores for EMS, 

PoPS, and Genehancer scores by scaling between 0 and 1. The third term (CS) is a score ranging 
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from 0 to 1, representing the proportion of support for a particular protein-coding gene across all 11 

gene prioritization strategies. Each strategy has a maximum support score of 1. For eQTL 

colocalizations (coloc), SNP-heritability enrichment, EMS score, and SMR, we assigned a score of 

one if the tissue source was adipose or cardiac-related tissue (given the trait of interest is 

adiponectin); else, we assigned a score of 0.8. The final term (TSSd) is the distance from the lead 

variant to the transcription start site of the gene/transcript, measured in base pairs. 

One of the methodological issues in computing GPScore is that some of the gene prioritization 

strategies (i.e., coloc, EMS, SMR, GeneHancer, cs2G) report values for individual variants/position, 

whereas other strategies prioritize genes (i.e., MAGMA, Downstreamer, Epimap, PoPS, LDSC). We 

transformed variant/position level scores into gene-level scores using recommendations from Lehne 

et al. 36. For expression-based enrichments, a variant/position may have a statistic corresponding to a 

tissue (e.g., colocalization of a variant in adipose tissue). Using the average or highest quartile of a 

statistic may result in the inability to assign tissue information after the final transformation. Because 

preserving tissue information in the variant scores is essential for weighing support (CS), we have 

opted to use either the lowest p-value (MAGMA, SMR, eQTL colocalization LD-based approach, 

SNP-heritability enrichment, Downstreamer) or the maximum score (coloc, EMS, PoPS, EpiMap, 

Genehancer) per gene. Alternatively, in situations where tissue information is less critical, the average 

or highest quartile of statistics could be used. 

 
MAGMA gene analysis To quantify the degree of association of each gene with adiponectin 

while incorporating LD structure between variants, we used MAGMA v1.1025 to perform gene-set 

analyses and obtain gene P-values from the multiple linear principal components regression F-test. 

The null hypothesis of the F-test is that the gene has no effect on the phenotype, conditional on all 

covariates. The variant-wise mean model was used, and variants were assigned to one of the 18,383 

(GRCh37) protein-coding genes with an annotation window of 50 kb. We used the computed gene 

P-value to calculate the PG term in GPScore. 

 
eQTL colocalization (coloc) We used a combination of SuSiE 21 and coloc 27 to assess for 

evidence of shared association signals/causal variants between our adiponectin GWAS data and cis-

eQTLs from GTEx 37 using the coloc.susie() function 35. The coloc + SuSiE approach has been shown 

to improve the accuracy of colocalization analyses (coloc only) when multiple causal variants exist 

within a window 35. We extracted the posterior probability of the variant being causal for the shared 
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signal (H4) for each tissue most biologically-relevant to adiponectin and used it in the SG term for the 

GPScore. 

 
eQTL colocalization (LD-based) As a supplemental approach to coloc+SuSiE, we further 

examined for colocalizations between our adiponectin-associated variants and eQTLs in GTEx and 

in RNA-seq data from 434 METSIM participants using an LD-based approach 26. For 

colocalization with the GTEx data (restricted to adiponectin-related tissues described above), we 

considered the GWAS and eQTL signals to be colocalized when the lead or index GWAS variant 

and the variant most strongly associated with the expression level of the corresponding transcript 

(eSNP) exhibited high pairwise LD (LD r2 > 0.70) in European + East Asian ancestry data within 

1KGp328. For colocalization with the METSIM RNA-seq data, we considered the GWAS and 

eQTL signals to be colocalized when the lead or index GWAS variant and the eSNP exhibited high 

pairwise LD (LD r2 > 0.80) calculated using 10,197 METSIM participants. The P-value of 

association with the eSNP was used to calculate the PG term in GPScore. 

 
Summary-based Mendelian randomization Summary-based Mendelian randomization (SMR) 

is another approach that integrates GWAS and eQTL data to identify genes whose expression levels 

are associated with a complex trait. We applied multi-SNP SMR 28 to test for the effect of gene 

expression (adiponectin-related tissues from GTEx) variation on adiponectin. We included the 

probes with at least one cis-QTL at PEQTL < 5 × 10−8, and we performed a HEIDI (Heterogeneity in 

dependent instruments) test to exclude results that may reflect linkage. In GPScore calculations, we 

considered the PSMR values of each probe corresponding to tissue, excluding probes with strong 

evidence of heterogeneity (PHEIDI > 0.01). We used the PSMR to calculate the PG term in GPScore. 

SNP-heritability enrichment To evaluate whether the variant heritability was enriched in the 

variants within tissue-specific genes (±100 kb) compared to other regions, we applied partitioned 

LD score regression (LDSC) 29 with the ‘-overlap-annot’ option. We constructed the annotation list 

of tissue-specific genes by selecting genes with the top 10% median TPM (transcripts per million) 

values in each adiponectin-relevant tissue from the expression data. We calculated the P-values from 

one-sided Z-score coefficients for tissue-specific genes and included them in the PG term in GPScore. 
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EMS annotation The EMS annotation is defined as the predicted probability that a variant has a 

cis-regulatory effect on gene expression, which we calculated by training a random forest model on 

fine-mapped eQTLs and 6,121 features, such as epigenetic marks and sequence-based neural network 

predictions 30. We extracted the computed EMS for all top variant-gene pairs in adiponectin-relevant 

tissues in GTEx v837 from the Finucane Lab (https://www.finucanelab.org/data). We then extracted 

the normalized EMS score for all variants from the adiponectin meta-analyses (P < 0.05 and minor 

allele frequency> 0.50%) and then incorporated it into the SG term in GPScore. 

 
PoPS A gene-level Polygenic Priority Score (PoPS) is a similarity-based gene prioritization 

approach that leverages both polygenic and locus-specific genetic signals 31. We used PoPS v0.2 to 

identify potential target genes from gene-level association statistics (derived from MAGMA) by 

integrating 57,543 gene features from public bulk and single-cell expression datasets, protein-

protein interaction networks, and pathway databases. The PoPs score for each gene is then 

incorporated into the SG term in GPScore. 

 
Downstreamer We used Downstreamer 32 to calculate co-regulation Z-scores per gene using 

expression data from 31,499 public RNA-seq samples from many different tissues 38. Integrating 

this information into the calculation of the gene priority score will likely prioritize genes that are 

co-regulated with many important adiponectin-associated genes in the GWAS. We calculated the P-

values from one-sided co-regulation Z-scores per gene and included them in calculating the PG term 

in GPScore. 

 
Epimap Human epigenome reference, EpiMap (epigenome integration across multiple annotation 

projects) uses the correlation of enhancer activity with gene expression across cell types to map 

regulatory SNPs to their target genes. This information is useful in the complex trait investigation 

and studies of disease locus mechanisms. We downloaded gene-enhancer links by mark activity-by-

gene expression correlation for the adipose tissue from the Epimap repository 11 and mapped the link 

scores for the genes overlapping in the 3Mb region around the lead variant. We then incorporated 

the link scores into the SG term in GPscore. 

 
GeneHancer GeneHancer calculates a score derived from: gene-enhancer genomic distances and 

combined scores of tissue co-expression correlation between genes and enhancer RNAs, enhancer- 
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targeted transcription factor genes, eQTLs for variants within enhancers, and capture Hi-C 18. The 

score represents the strength of enhancer association to a particular gene (GeneHancer score), which 

can be useful in predicting regulatory elements and their target genes. We extracted the GeneHancer 

scores for enhancer gene pairs for genes physically located within the adiponectin fine-mapping 

regions and incorporated into the SG term in GPscore. 

 
Combined SNP-to-gene score annotation The SNP to Gene (cS2G) strategy is a heritability-

based framework that combines different SNP-to-gene strategies to link regulatory variants to their 

target genes. We extracted the cS2G scores, which include 10 main functional SNP-to-gene strategies, 

as previously described 33, from 9,997,231 variants in the 1000 Genomes Project European reference 

panel and 19,476,620 variants in the UK Biobank. The cS2G score annotation was performed on 

selected variants (P < 0.05 and minor allele frequency > 0.50%) from the meta-analyses. The cS2G 

score ranges from 0 to 1, where a score>0.5 is considered good evidence; we incorporated this score 

into the SG term in GPScore. 

 
Disease enrichment and Functional association networks 

Disease enrichment analysis of prioritized genes To study mechanisms underlying human 

diseases related to adiponectin, we investigated the human gene-disease associations of our adiponectin-

prioritized genes. We examined for enrichment between the prioritized genes from the multi-ancestry 

adiponectin meta-analysis and a wide range of disease phenotypes relevant in human genomics by 

gene-disease enrichment analysis (DisGeNET) 39, using enrichr 40. We considered a DisGeNET term 

enriched if adjusted P < 0.01. 

 
Functional association network construction To investigate potentially functionally-similar 

genes and their underlying pathways, we constructed a functional association network using 

GeneMANIA 41. Prioritized genes alone do not contain enough information to build networks that 

mediate the underlying functional relationship. We used an algorithm 42 in GeneMANIA that 

constructs network weights based on the reproducibility of Gene Ontology (GO) biological process 

co-annotation patterns. We expanded the gene list with functionally similar genes from multiple 

genomics and proteomics data sources. We primarily used the physical and genetic interaction, 

predicted protein interaction, and pathway and molecular interaction data available in 
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GeneMANIA. 

Results 
 

Multi-ancestry meta-analysis reveals 15 known and 7 novel risk loci for 

adiponectin 

We conducted a multi-ancestry, genome-wide association meta-analysis for adiponectin using 

summary statistics from the METSIM cohort 15 and the ADIPOGen 4 and AGEN consortia 5 (N ≤ 46, 

434; Table S1). We also performed a genome-wide association meta-analysis for adiponectin in data 

from up to 38,609 individuals of European-ancestry (METSIM cohort and ADIPOGen consortium 

only) 4,15. Each individual cohort performed single-variant association analyses for adiponectin, 

adjusted for age, sex, BMI, and study-specific covariates as appropriate (e.g., principal components, 

study site). We meta-analyzed summary statistics using fixed-effects analyses implemented in 

METASOFT16. We corrected for population substructure in the multi-ancestry meta-analysis using 

the computed inflation factors for both the mean effect (λMeanEffect) and heterogeneity portions 

(λheterogeneity) 
16. Because RE216 and MR-MEGA 17 are not sufficiently powered in a meta-analysis of 

only three input files 43, we consider the fixed-effects results as our primary results; however, we 

present results from RE2 and MR-MEGA for comparison. 

 
Multi-ancestry meta-analysis association results We identified 22 loci associated with adiponectin 

(P<5×10−8), including seven loci that have not previously been associated with adiponectin (Table 

1, Figure 1, Figure S1). Previously unreported loci are located at or near CSF1, RGS17, ADRB1, 

PDE3B, RBMS2, HCAR1, and PHF23. Effect direction for all lead variants showed concordance 

between all three studies, and the effect sizes for each of the lead variants were also consistent 

between the three datasets (Spearman r≥ 0.88; Figure S2). Further, MR-MEGA results for all 22 

loci have a log10BF > 30, further supporting the results from the fixed-effect models. We also 

confirmed (P<0.05) 83 out of 167 (49.7%) previously reported variants to be associated with 

adiponectin in our meta-analysis (Table S2). 

Lead variants at four loci exhibited evidence of heterogeneity in effect sizes (I2 > 80%; rs1515108 

(IRS1), rs17366568 (ADIPOQ), rs7978610 (ZNF664), rs12051272 (CDH13); Table 1). All four loci 

are well-established associations with adiponectin levels 4,5,7. Among the four heterogeneous loci, two 
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of the loci were still considered statistically significant in RE2 models accounting for the high 

heterogeneity (rs17366568, rs12051272). Large differences in effect allele frequencies between 

European- and East-Asian ancestry populations is likely driving the observed heterogeneity (Table 1, 

Figure S2). 

 
European meta-analysis In a meta-analysis of European-ancestry individuals from METSIM 

and the ADIPOGen consortium, we identified 19 loci associated with adiponectin (Table 2, Figures 

1, S2), 18 of which were also identified in the multi-ancestry results. One additional previously 

unreported locus, located near LINC01214 on chromosome 1 (rs7617025) was identified only in the 

European-ancestry analysis. All the lead variants showed effect direction concordance between 

METSIM and ADIPOGen. 

 
Distinct association signals At all 19 loci identified in the European-ancestry, we sought to 

identify additional association signals located within +/- 1 Mb of the lead variant using GCTA-COJO. 

We detected (Pjoint < 5 × 10−8 ) 14 additional signals at four loci (Table S3; Figures 1, S3), including 

eight signals near ADIPOQ (LD r2 = 0.001-0.846), one near HCAR1 (LD r2 = 0.183), one near 

ZNF664 (LD r2 = 0.008), and four near CMIP/CDH13 (LD r2 = 0-0.046) (Table S4). 

 
Pleiotropic associations with complex traits We evaluated the lead variants at each of the 

22 loci reported in the multi-ancestry meta-analysis for association with other complex traits and 

diseases. For these traits, we examined existing GWAS and genome-wide meta-analysis results in 

the Common Metabolic Diseases Knowledge Portal (www.cmdkp.org). We found 89 unique lead 

variant-phenotype combinations that reached Bonferroni significance (Table S5). Lead adiponectin-

associated variants are most strongly associated with the lipids, hepatic, hematological, glycemic, and 

anthropometric phenotype groups (Figure S4, Table S5). 

 
Putative causal variants implicate shared biological mechanisms 

Fine-mapping to identify potential causal variants To identify potential causal variants 

underlying adiponectin association signals in both the multi- and European-ancestry analyses, we 

first constructed 3 Mb windows (+/- 1.5 Mb) around the lead variant (Figure S5). The variants with 

a PIP> 0.90 in either FINEMAP 20 or SuSiE 21 and LD r2 > 0.8 with the lead GWAS variant were 

identified as candidate causal variants. In fine-mapping the multi-ancestry adiponectin loci, we 
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nominated 46 putative causal variants at 17 loci (Table S6; Figure S6). Among the 46 putative 

causal variants, 10 (rs2061155, rs1515108, rs1108842, rs998584, rs596359, rs10787516, 

rs10886863, rs7978610, rs12051272, rs731839) were also the lead variants from the meta-analysis. 

In the European-ancestry analyses, fine-mapping analyses nominated putative causal variants at 

seven loci, including two variants near CDH13 (Table S7; Figure S7). Among the seven putative 

causal variants, six (rs16861209, rs998584, rs11045172, rs2925979, rs12051272, rs731839) were 

the lead variants from the meta-analysis. 

 
Regulatory effects of nominated causal variants To investigate the regulatory effects among 

our nominated causal variants, we used the RegulomeDB 23 to obtain RegulomeDB scores, which rank 

the presence of regulatory motifs for variants on a scale from 1a (most evidence) to 7 (no data). In 

multi-ancestry fine-mapping results, 17 of the 46 putative causal variants were scored as “regulatory” 

(score < 5, with probability prob≥ 0.50; Table S6). rs683039, located at 12kb 5’ of RGS17, had the 

lowest RegulomeDB score (score=1f; prob=0.93), demonstrating the largest evidence for being in a 

regulatory region (Figure S1). In European-ancestry fine-mapping results, six of the eight putative 

causal variants were scored as “regulatory” (score < 5, with prob p≥ 0.50; Table S7). rs2925979, 

located near CMIP, had the lowest RegulomeDB score (score=2b; prob=0.75), demonstrating the 

largest evidence of being in a regulatory region. 

 
Causal variants enriched for cardiometabolic traits We also examined our nominated causal 

variants for shared genetic architecture with fine-mapping results of 2,629 unique traits from over 

3,052 GWAS summary statistics obtained from the CAUSALdb database 24, which includes UK 

Biobank and other cohorts. When a candidate adiponectin-causal variant was reported in more than 

one prior study, we meta-analyzed the p-values. In total, we found 306 unique lead variant-trait 

combinations that are Bonferroni significant (Table S8, Figure S8). We observed that most of our 

nominated causal variants show prior strong associations for liver-related diseases, type 2 diabetes 

mellitus, hormones, body size, and body composition measurements (Figure S8). 
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Gene prioritization highlights genes underlying adiponectin association 

signals 

GPScore to nominate locus-specific target genes Variants underlying genetic association 

signals may not necessarily regulate the closest gene 44–48. To assess and prioritize target genes 

underlying adiponectin-associated signals, we developed a combinatorial likelihood scoring 

formalism (“GPScore”) based upon measures derived from 11 gene prioritization strategies (Tables 

S9-S30), along with the physical distance to the transcription start site(s) (TSS) (Figure 2). We 

integrated multiple lines of evidence into the score by using four terms: PG (combined p-value), SG 

(combined scaled scores), CS (proportion of support), and TSSd (distance from TSS of the gene to 

the lead GWAS variant). The most likely target gene(s) were selected based on the highest locus-

specific GPScore within the 3Mb window. For the four regions with overlapping windows 

(12q24.31 near HCAR1 and ZNF664 and 16q23 near CMIP and CDH13), the flanking size of 1.5 

Mb is reduced to 1 Mb to limit the window overlap. 

In multi-ancestry analysis, we prioritized a total of 30 genes with high relative locus-specific 

GPScore values across 22 locus windows (Table 3, S31; Figure 3). Out of 22 regions, 15 had one 

prioritized gene, six had two prioritized genes (PBRM1 and GNL3 at 3p21.1, ADIPOQ and RFC4 

at 3q27.3, NAP1L5 and FAM13A at 4q22.1, FDGFR2 and WDR11 at 10q26.12, CTDNEP1 and 

ELP5 at chr17p13.1, and PEPD, and CEBPG at 17p13.1), and one region had three prioritized genes 

(CCDC92, DNAH10OS, and ZNF664 at 12q24.31) (Table 3, Figure 3). GPScore prioritized well-

known adiponectin target genes concerning various cardiovascular/cardiometabolic diseases 

including IRS1, ADIPOQ, PDE3A, CCDC92, CDH13 49–53. GPScore also prioritized target genes for 

previously unreported loci that have been shown to play key roles in adipose-related metabolic 

functions (e.g., CSF1, RGS17, ADRB1, and CYP2R1) 54–57. 

Gene prioritization results using variants from the European-ancestry analysis yielded similar 

results to the multi-ancestry prioritization (Table S32). At the 18 loci shared between European- and 

multi-ancestry analyses, 13 loci yielded the same set of prioritized genes. At 4 of the shared loci, 

the European-ancestry GPScore prioritized additional target genes (Table S32). At the chr17p13.1 

locus shared between the European- and multi-ancestry results, GPScore prioritized a different target 

gene in the European-ancestry analysis (ACAP1) than in the multi-ancestry analysis (CTDNEP1 and 

ELP5). Differences in GPScore prioritization between the two sets of analyses is likely explained by 
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differences in effect sizes and allele frequencies used as input to the gene prioritization strategies. 

To see which of the GPScore terms received the most weight in the score calculation, we 

quantified each term’s contribution to the GPScore (Figures 4a, S9) by fitting a multiple regression 

model and averaging over orderings proposed by Lindeman et al. and implemented in the realimpo 

package58. Across the 22 multi-ancestry regions tested, the average contributions (on a scale of 0-

1) were: SG=0.133, CS=0.199, TSSd=0.255, and PG=0.411. The 2q36.3 window where IRS1 is 

prioritized has the lowest TSSd contribution since the transcription start site for IRS1 is 541,389bp 

away from the lead adiponectin GWAS variant but has the strongest support for being the effector 

gene (Table S31). The 3p21.1 window has the highest TSSd contribution since both the prioritized 

genes PBMR1 and GNL3 are close to the lead variant (Figure 4d). The variants in 5q11.2,6p21.1 

and 8q24.13 windows have the lowest contribution of CS (proportion of support) due to a lack of 

support from many of the gene prioritization strategies (Figure 4a). The PG (combined p-value) has 

an average contribution of 0.411 across all the windows. Regarding the gene prioritization 

strategies, all prioritized genes have MAGMA P-value < 5×10−8, relatively higher POPS scores, 

and CS2G annotations while supporting the majority of other strategies (Figure S9). Because 

several prioritization strategies rely on a reference panel for LD calculation, we repeated GPScore 

using only the METSIM cohort summary statistics; the top prioritized genes for the common 

windows remain the same (Table S33). 

 
Pinpointing biological functionality through disease enrichment and 

functional interaction networks 

Disease enrichment analysis We evaluated the association of multi-ancestry prioritized genes 

with disease phenotypes using gene-disease enrichment analysis 39,40. We found a strong 

enrichment (adjusted P < 0.01) of DisGeNET terms related to cardiometabolic traits and diseases, 

including waist-hip ratio, arteriosclerosis obliterans, non-alcoholic fatty liver disease, body mass 

index, coronary artery disease, hypoadiponectinemia, and high-density lipoprotein measurement 

(Figure 5a, Tables S34-35). Other highly enriched terms are related to cancer outcomes, including 

thymoma, endometrial neoplasms, endometrial adenocarcinoma, giant cell tumors, noninfiltrating 

intraductal carcinoma, and non-hereditary clear cell renal cell carcinoma. These findings support 

recent epidemiological evidence that links adiponectin to cancer 59,60. 
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Functional association network For the multi-ancestry meta-analysis results, we constructed an 

interactive functional association network, illustrating the relationships among the connected genes, 

prioritized genes, and associated pathways (Figures 5, S10; Tables S36-39). In Figure 5, we display 

the network results where we use the default of adding 20 “related” genes and pathways into the 

network. With the default network size, 76.6% of our prioritized genes (23/30) were incorporated into 

functional association networks, with most having multiple connected genes (Figure 5b). A total of 

10 pathways were represented in the network, with many genes heavily involved in the adipocytokine 

signaling pathway, integrins in angiogenesis, leptin pathway, and type 2 diabetes. 

 

Discussion 

Adiponectin is an insulin-sensitizing and anti-inflammatory hormone secreted by adipocytes whose 

signaling is involved in several metabolic processes crucial to type 2 diabetes, neurodegeneration, 

and cardiovascular disease. In this study, we conducted the largest multi-ancestry adiponectin GWAS 

meta-analysis to date, in up to 46,434 individuals from the METSIM cohort and the ADIPOGen and 

AGEN consortiums. We identified 22 loci associated with adiponectin (P < 5 × 10−8 ), including 15 

known and seven novel loci. European-ancestry results revealed 14 additional secondary signals at 

the ADIPOQ, CDH13, HCAR1, and ZNF664 loci. Most of the lead variants showed associations with 

other complex traits/diseases, suggesting pleiotropy. We narrowed the list of putative causal variants 

to 46 (PP>0.9), 17 of which demonstrated moderate to strong regulatory evidence. Our nominated 

causal variants also showed potential pleiotropy for other complex cardiometabolic traits, such as 

liver-related diseases, type 2 diabetes, hormones, body size, and body compositional measurements. 

Variants underlying genetic association signals may not necessarily regulate the closest gene 44–48 

and may impact protein levels thousands or even millions of base pairs away 61. Based on prior 

estimates 62, the 3 Mb fine-mapping mapping region (+/- 1.5 Mb around the index variant) should 

roughly capture more than 99% of such regulatory activity. Multiple methods currently exist to 

prioritize target, or effector, genes underlying GWAS signals, primarily from gene expression 

quantitative trait loci (eQTL) data 10, regulatory genomic activity 11, and protein-protein interaction 

networks and pathway databases 12. Two common challenges of existing gene prioritization 

approaches are 1) inadequate customizability to represent the data which is disease/tissue relevant, 

and 2) conflicting findings from various approaches due to differences in assumptions, methodology, 
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and representation models, resulting in the selection of methods/results in an ad hoc or post hoc 

manner. To address these limitations, we developed combinatorial likelihood scoring formalism, 

GPScore, based upon measures derived from 11 gene prioritization strategies, along with the 

physical distance to the transcription start site(s) (TSS). GPScore integrates multiple lines of 

evidence into the unbiased score that can be customizable to include weighting factors to prioritize 

signals from a particular tissue and can be broadly applicable to other complex traits that do not 

have much training data. By utilizing GPScore, we prioritize the 30 most probable target/effector 

genes for adiponectin in the multi-ancestry analysis. The prioritized gene list includes several well-

known causal genes related to serum adiponectin levels. This list includes ADIPOQ, which is 

responsible for encoding the adiponectin protein, and CDH13, which encodes an adiponectin 

receptor protein 51. Insulin receptor substrate-1 (IRS1) is a substrate of the insulin receptor tyrosine 

kinase, and it is central to inducing insulin actions, including binding and activating PI3K and 

increasing glucose transport 63. Acute knockdown in adipocytes was shown to result in increased 

Adipoq mRNA expression, but reduced adiponectin secretion 64. The treatment of myoblast cell 

line (C2C12) with adiponectin was also shown to enhance the ability of insulin to stimulate IRS-1 

tyrosine phosphorylation and Akt phosphorylation 50. CCDC92 has been shown to be important in 

insulin resistance and influencing adipocyte differentiation 65, and knockdown of CCDC92 in mice 

was shown to reduce obesity and insulin resistance 66. We also used GPScore to prioritize target 

genes among our novel loci from our multi-ancestry meta-analysis, including several for which the 

biological mechanisms underlying the association with adiponectin may be unclear. The CSF-1 gene, 

which was prioritized at 1p13.3, has shown to have therapeutic potential in tissue repair 67 due to its 

involvement in macrophage homeostasis and inflammation via the CSF-1 receptor 68. There is also 

some supportive evidence that CSF-1/CSF-1R signaling is essential in the pathology of and 

diabetes 69. Due to its essential role in G protein signaling, RGS17 is considered a potential 

therapeutic target for lung and prostate cancers 70; however, individuals with type 2 diabetes have 

been shown to have higher levels of RGS17 auto antibodies than individuals without type 2 

diabetes, and expression levels of RGS17 are significantly upregulated in adipose tissue during 

periods of weight loss 71. ADRB1, which encodes the adrenergic beta-1 receptor, was prioritized at 

10q25.3. While ADRB1 is most known for the functional role it plays in cardiomyocyte function 

72,73, visceral adiponectin release was shown to be triggered by cAMP via signaling pathways 

involving adrenergic beta receptors in mice. The CYP2R1 protein, a receptor for vitamin D 25-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 2, 2023. ; https://doi.org/10.1101/2023.05.02.23289402doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.02.23289402
http://creativecommons.org/licenses/by-nc-nd/4.0/


18  

hydroxylase in the liver 74, plays a crucial role in non-alcoholic fatty liver disease 75. 

Epidemiological studies have also demonstrated associations between serum vitamin D and 

adiponectin levels. While there is less existing evidence to support the mechanism(s) between 

some of the prioritized genes and adiponectin levels (e.g., TRIB1, RBMS2), a further experimental 

examination into the prioritized genes is warranted. 

Our functional profiling of prioritized genes with human disease phenotypes revealed the 

enrichment of terms related to cardiovascular diseases, coronary artery disease, and other 

cardiometabolic traits. Interestingly, many genes also showed enrichment related to cancer 

etiopathogenesis, and recent evidence has shown adiponectin’s antiangiogenic and tumor growth-

limiting properties of adiponectin 59. Our functional association network analysis also helped 

illustrate the complex interactions of prioritized genes, their functionally connected genes, and their 

underlying pathways. We observed the key underlying pathways centered around insulin signaling 

(through IRS1, IRS2, INS, INSR) and adiponectin signaling (thorough ADIPOR1, ADIPOR2) 

suggesting potential crosstalk and an essential role in regulating energy balance in the body, 

inflammation, coagulation, fibrinolysis, insulin resistance, and diabetes. 

There are several caveats to our current GPScore gene prioritization approach that should be 

considered. First, while we were able to utilize our approach in both single- and multi-ancestry 

summary data, our multi-ancestry analysis is still primarily European (83.14%) and includes only 

one other ancestry population (East-Asian ancestry); thus, more diverse studies are needed to 

determine if our approach is less robust when including data with additional heterogeneity. 

Because our data was largely from European-ancestry populations, we used data from 10,197 

Finnish METSIM participants as the reference for LD calculations for our fine-mapping and gene 

prioritization strategies. We acknowledge, however, that this is likely not the most appropriate 

panel for LD calculation in our multi-ancestry population. We plan to expand our work by utilizing 

a larger, more diverse ancestry LD reference panel. However, the flexibility of our approach allows 

researchers to determine the most appropriate LD panel for their study population. The GPScore 

prioritization procedure depends on the quality and availability of disease/cell-relevant data, the 

accuracy of the strategy used, and the annotation quality of variants and genes. As additional data 

becomes available, it could easily be incorporated into our GPScore approach. It is also possible 

that transforming variant/position-level scores into gene-level scores may result in a loss of 

information; however, this information is still retained in the initial prioritization approaches and 
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could still be considered. Lastly, while beneficial to rank genes in a locus-specific manner, the 

strength of GPScore does not implicate causality for a complex trait or disease, nor is it comparable 

across locus windows. 

In conclusion, we discovered 15 known and seven previously unreported genomic loci associated 

with adiponectin through multi-ancestry genome-wide meta-analysis. The 46 putative causal variants 

identified through fine mapping showed potential pleiotropy for cardiovascular/metabolic traits. In 

addition, we provide a novel and customizable gene prioritization method, GPScore, that integrates 

multiple lines of evidence, thus increasing the likelihood of identifying the true target gene underlying 

a GWAS association signal. Our prioritized genes and underlying pathways yield new insights into 

the genetic architecture of adiponectin. Future research should include phenotyping of adiponectin 

in large-scale, diverse biobanks and cohorts, thus increasing sample size and ancestral diversity for 

robust prediction of target genes. 
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Table 3. Adiponectin multi-ancestry meta-analysis prioritized target gene list. Prioritization of 30 likely

target/effector genes by using locus-specific gene priority score constructed from eleven gene prioritization

strategies along with TSS distance.

Lead Variant Chr: Position(hg19) Prioritized Gene Lead GWAS Variant to gene TSS GPScore
rs333947 1:110470764 CSF1 17900 1.3351

rs2061155 1:219665008 LYPLAL1 317822 0.2503

rs1515108 2:227123086 IRS1 541389 0.9413

rs1108842 3:52720080 PBRM1 147 3.7674

rs1108842 3:52720080 GNL3 4908 2.5499

rs17366568 3:186570453 ADIPOQ 9990 1.1682

rs17366568 3:186570453 RFC4 45606 0.8853

rs13131633 4:89739479 NAP1L5 120093 0.5508

rs13131633 4:89739479 FAM13A 293070 0.4818

rs6450176 5:53298025 FST 521786 0.3813

rs998584 6:43757896 VEGFA 19975 0.2982

rs596359 6:153457053 RGS17 4669 1.6313

rs2980879 8:126481475 TRIB1 38912 0.3179

rs10787516 10:115813924 ADRB1 10118 0.3602

rs10886863 10:122929493 FGFR2 428479 0.3052

rs10886863 10:122929493 WDR11 318806 0.2006

rs11023332 11:14784110 CYP2R1 129688 0.5779

rs11045172 12:20470221 PDE3A 51958 1.9119

rs2657888 12:56938383 RBMS2 22670 0.5667

rs10778506 12:107143260 RIC8B 25113 0.4618

rs601339 12:123174743 HCAR2 13147 0.9471

rs7978610 12:124468572 CCDC92 11194 3.0608

rs7978610 12:124468572 DNAH10OS 49041 2.0406

rs7978610 12:124468572 ZNF664 12180 2.0127

rs2925979 16:81534790 CMIP 56015 0.8602

rs12051272 16:82663288 CDH13 2880 3.3914

rs222852 17:7140606 CTDNEP1 15204 1.5380

rs222852 17:7140606 ELP5 14129 1.3088

rs731839 19:33899065 PEPD 113635 0.5830

rs731839 19:33899065 CEBPG 34829 0.5403
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Figure Legends: 

 

Figure 1. Miami plot of the multi-ancestry (top) and European-ancestry (bottom) genome-

wide meta-analysis results for adiponectin. The y-axis represents −log10(P) value from the 

fixed-effects analyses. Each blue dot represents a variant tested in the meta-analysis. The 

transcript closest to the lead variant (triangles) at each locus is listed in rectangle boxes. Index 

variants from the additional distinct association signals identified in the European-ancestry 

meta-analyses are denoted by squares and colored based on the linkage disequilibrium with the 

lead variant at that locus (orange: 0.10<r
2
<0.42; yellow: r

2
<0.10). 

 

Figure 2. Schematic overview of gene prioritization score construction for finding target genes 

of adiponectin. Flow diagram illustrating various gene prioritization strategies using multiple 

data sources: expression QTLs, pathways and networks, regulatory elements, and non-

functionally informed methods. The gene prioritization score incorporates all this evidence 

using four terms: PG, SG, CS, and TSSd (distance to the transcription start site). We prioritize 

locus-specific target genes using the gene prioritization score, with higher values indicating 

stronger support across approaches. 

 

Figure 3. Adiponectin locus-specific prioritized genes and strength. A chromosome ideogram 

depicts the location and strength of GPScore values, CS (proportion of support) of each 

prioritized gene identified in an adiponectin multi-ancestry meta-analysis. Red stars highlight 

the strength of the GPScore measured in percentile, whereas green circles highlight the 

proportion of support from the 11 prioritization approaches. Some locations have multiple 

prioritized genes with relatively similar scores. 

 

Figure 4. The relative contribution of terms from the Gene Priority Score and illustrative 

biological examples. a. Relative importance of four terms: PG, SG, CS, and T SSd for the gene 

priority score construction across 22 associated regions in multi-ancestry analysis. b-d. Top: 

Locus zoom plots of multi-ancestry summary statistics, colored by LD with the lead variant. The 

color of the heatmap represents enrichment for the GPScore term. The top prioritized genes at 

each exemplary locus are CSF1 (b), ADIPOQ and RFC4 (c), GNL3 and PBRM1 (d). 

 

Figure 5. Disease enrichment and functional interaction network of adiponectin multi-

ancestry prioritized genes. a. Select results from the disease enrichment analysis (DisGeNET, 

enrichr) using the multi-ancestry prioritized genes list. DisGeNET terms related to 

cardiovascular/cardiometabolic traits show strong enrichment (adjusted p < 0.01). b. An 

interactive functional association network, illustrating the relationships among the connected 

genes (blue circles), prioritized genes (red triangles), and underlying associated pathways 

constructed using GeneMANIA. A total of 10 pathways were represented in the network (purple 

squares). A complete network is shown in Figure S10. 
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