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Abstract. An artificial compound eye (ACE) is a bio-inspired vision sensor which mimics a natural compound eye (typical of insects). This

artificial eye is able to visualize large fields of the outside world through multi-aperture. Due to its functioning, the ACE is subject to optical

flow, that is an apparent motion of the object visualized by the eye. This paper proposes a method to estimate the optical flow based on capturing

multiple images (multi-aperture).

In this method, based on descriptors-based initial optical flows, a unified global energy function is presented to incorporate the information of

multi-aperture and simultaneously recover the optical flows of multi-aperture. The energy function imposes a compound flow fields consistency

assumption along with the brightness constancy and piecewise smoothness assumptions. This formula efficiently binds the flow field in time and

space, and further enables view-consistent optical flow estimation. Experimental results on real and synthetic data demonstrate that the proposed

method recovers view-consistent optical flows crossed multi-aperture and performs better than other optical flow methods on the multi-aperture

images.
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1. Introduction

Modern robotics imposes the solution of complex

tasks such as industrial operations [27,22,56], speech

recognition [18], machine-human interaction [30] and

navigation [47,21,23]. Within this context, machine

vision tasks are very challenging and fundamental, see

[16,26].

A powerful machine vision tool is the artificial

compound eye, see [50], which allows a broad vision

of the scene. The natural compound eyes widely ex-

ist in insects and crustaceans, and one of the mer-
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its of natural compound eyes is its sensitivity to mo-

tion objects. The outstanding property is contributed

by both its high temporal resolution and the structure

with multiple ommatidia (singular: ommatidium, the

basic unit of compound eyes that provides the picture

element to brain). In general, the motion object is cap-

tured by a small number of ommatidia, and therefore,

the pressure on a processor system can be very low

and the processing speed can be very fast since only a

small amount of data is needed to be processed. As a

bionic system that hopes to inherit the merits of natural

compound eyes, the artificial compound eye (ACE) is

increasingly investigated [6,44,50]. However, few re-

searches have addressed the practical use of ACE cam-

eras [50], such as motion estimation. Although lots

of literatures based on the 2-dimensional motion es-

timation method called optical flow [17] and the 3-

dimensional motion estimation method called scene



flow [45] have been reported in recent years, the mo-

tion estimation method of ACE has scarcely been stud-

ied. There are mainly two limitations about the op-

tical flow estimation of artificial compound eye. On

one hand, ACEs have multiple apertures, while most

of which contains only one pixel in each aperture. The

image resolution obtained by ACE is limited by the

number of apertures [12], and the interval between

apertures are much larger than the pixel interval in

traditional camera. The relatively low resolution and

large aperture interval heavily restricts the accuracy of

optical flow result, in addition, it also limits the use

of optical flow information to other high level com-

puter vision tasks, such as semantic segmentation, ob-

ject recognition et al., due to the sparse sampling of the

scenario. This problem can be addressed by integrat-

ing a pixel array in each aperture. Therefore, an aper-

ture of ACE captures a small image, and the image of

ACE is composed of an image array. Then the image

resolution of ACE with the same aperture is greatly

improved. However, the image array captured by ACE

incurs the second problem, since the ACE often has a

small size [50], the image of an aperture only captures

a small region of the scenario, therefore, estimating

the optical flow on each aperture will suffer from the

aperture problem [9]. In this paper, we mainly address

the second problem of optical flow in ACEs based on

a specific artificial compound eye (electronic cluster

eye, eCley).

The eCley, inspired by a wasp parasite called

Xenos Peckii, is widely researched to get super-

resolution of imagery [6]. In this work, the eCley has

a lenslet array of 17×13 apertures, and the size of the

optics module is 6.8mm×5.2mm×1.4mm (Length ×
Width × Height). This means that the height of the

optics module of eCley is about one third of a single-

aperture optics module with the similar resolution.

With such a compact size, the eCley can be widely ap-

plied to the fields such as bio-medical imaging, doc-

ument analysis, fingerprint identification, micro-robot

navigation. However, since the eCley was proposed

several years ago, only a few researchers have adopted

this kind of camera in the area of computer vision.

This is partially because the optical axes between ad-

jacent apertures of eCley have an small offset to ob-

tain a larger field of view (FOV), which leads to the

oblique incidence of the marginal aperture. As shown

in Fig. 1, a chessboard captured by eCley is parallel to

the eCley, and the image captured by the central aper-

ture (image in the cyan box) has less distortion, while

the images captured by the marginal apertures suffer

from the oblique distortion (images in the red and yel-

low box). The oblique distortion will lead to a com-

plex process for computer vision tasks [52]. Therefore,

standard vision algorithms cannot transfer to eCley di-

rectly to yield accurate results. Besides, the biggest

challenge for using the eCley is that the small size and

small FOV of aperture image resulting in little context

to support the corresponding field inferencing.

Figure 1. The captured image of eCley. Top, the image array of

eCley; Bottom, the cropped image of the corresponding color box

area.

The image caputered by eCley is an image array,

and adjacent aperture images are partially overlapped.

The multi-aperture structure will cause stereo prob-

lem. The depth estimation method for eCley can re-

fer to [52,51]. Due to the short focal length and base-

line of eCley, the stereo nature of aperture images is

negligible when the objects locate larger than 86mm

away from the eCley. Therefore, this paper assumes

that the moving objects are far enough, and the mo-

tion estimation problem with eCley camera becomes

multi-aperture optical flow problem. Howerver, tradi-

tional optical flow methods are based on single aper-

ture image sequences. The small FOV of aperture im-

age will lead to the inaccurate optical flow result, espe-

cially for the border of image, and inconsistent optical



flow between adjacent aperture images. For example,

four adjacent aperture images at time t (left) and time

t +1 (right) are shown in Fig. 2(b), and the color cod-

ing in [2] for the visualization of optical flow is shown

in Fig. 2(a), and the optical flow of each aperture im-

age sequences is estimated independently based on the

DeepFlow method [33,49], which are shown in the

right of Fig. 2(c). The optical flow of bottom-right

aperture image based on DeepFlow method can not

be accurately estimated due to the aperture problem.

Besides, the four aperture images capture the same

motion boundary, but the optical flows at the motion

boundary are less consistent.

(a)

(b)

(c)

Figure 2. Optical flow results of eCley aperture images. (a) the

color coding of the flow vectors; (b) the aperture images sequences,

left: image at time t, right: image at time t+1; (c) optical flow. left:

the proposed method, right: DeepFlow [33,49].

To address the optical flow problem of eCley,

we first introduce an oblique distortion rectification

method to rectify the image array and estimate the par-

allax between adjacent aperture images. Then, based

on the rectified image array sequences, the Deep-

Matching method [33] is used to obtained the initial

optical flow. While the initial optical flow estimation

of an aperture image based on DeepMatching method

uses only the contexts of corresponding aperture im-

age sequences. The refinement method based on tra-

ditional variational method leads to less accurate re-

sults due to the aperture problem, see the right image

of Fig. 2(c). Therefore, in order to obtain accurate op-

tical flow, a multi-aperture optical flow method is pro-

posed to refine the optical flow fields. In this method,

a unified variational framework for all images is pro-

posed to simultaneously refine the optical flows of all

images. In contrast to traditional variational optical

flow methods using brightness constancy and piece-

wise smoothness assumptions, our model combines

the information of multi-aperture and further imposes

a compound flow field consistency assumption that

combines the corresponding flow fields of adjacent

images. Consequently, the multi-aperture images in-

formation is used to define a global energy function.

By solving the associated Euler-Lagrange equations

and following the coarse-to-fine warping strategy, the

minimization of the nonconvex energy function is ob-

tained.

Experiments are based on synthetic and real data,

and the results demonstrate that our method achieves

more accurate and consistent performances in compar-

ison with those optical flow methods based on single

aperture.

The rest of the paper is organized as follows. The

related work is presented in Section 2. Section 3 de-

scribes our multi-aperture optical flow method. Exper-

iments are presented in Section 4. Finally, conclusions

are followed in Section 5.

2. Related work

Since ACEs are bio-inspired instruments, the bio-

inspired model of optical flow computation and the use

of optical flow signal to control the movement are rel-

atively important aspects for mimicking the function

of their biological prototype. Franceschini et al. [13]

researched the visual behavior and neural networks

of the airborne insects with compound eyes, and de-

signed an artificial compound eye with an array of

elementary motion detectors (EMD) to avoid obsta-

cles. Inspired by insects, Zufferey et al. [59] proposed



a simple control strategy based on optical flow to

avoid obstacles. Pericet-Camara et al. [31] designed a

lightweight artificial elementary eye to extract the lo-

cal optical flow fields. Bračun et al. [3] used the func-

tional subnetwork approach to model the neural sys-

tem of ACE for visual motion recognition. Although

above researches focused on the motion detections

of ACEs and further handling method based on mo-

tion information, a basic unit of the ACE only con-

tains an EMD, which is quite different from the eCley

used in this paper. The basic imaging unit (the aper-

ture) of eCley contains multiple pixels that will form

an image of scenario in the FOV. Therefore, an aper-

ture image of eCley is able to capture much more

information (such as color and environmental con-

text) than the EMD in above ACEs, and is a local

image captured the scenario. The most related cam-

era to eCley is the light field (LF) camera, which

puts a microlenses array behind the main lens. Due

to the ability to capture much richer information than

traditional camera, LF camera is widely researched

in the field of computer vision, such as depth esti-

mation [58,7,19], motion deblurring [41,25], material

recognition [46], super-resolution imaging [11], scene

flow estimation [24]. Since the captured light field in-

formation mainly comes from the microlenses struc-

ture, the eCley can also be considered as a kind of

LF camera that do not have the main lens. The widely

used LF cameras capture multiple aperture images

with small offset. However, the adjacent aperture im-

ages of eCley have much larger offset. For a pixel in

an aperture image, the large offset leads to the corre-

sponding pixels can only be found in several neighbor-

ing aperture images. Therefore, some methods based

on LF image [20], such as epipolar plane image (EPI)

method, angular patches method, can not yield good

performance.

The bio-inspired model for the velocity estima-

tion of local image has been widely researched [15,

40,38,9]. These models mimic the neural models ex-

isted in cortical areas called primary visual cortex (V1)

and medio-temporal area (MT) by using a two layers

feed-forward model. The V1 layers uses a bank of ori-

ented filters (i.e. the Gabor filters or Gaussian deriva-

tives [9]) to obtain the responses of the velocity and

the direction of velocity. Then, the responses of V1

layer are pooled and transfered to the MT layers, fi-

nally, the final responses are acquired by transform-

ing the pooled responses through a non-linear func-

tion. To compute the optical flow of large moved ob-

ject, the multi-scale approach is adopted. Although the

two layers model is likely to the model of the visual

system, the obtained optical flow is worse than the re-

sults by using modern computational method (i.e. the

variational method). The possible reasons may be due

to the fact that the visual system has much more com-

plicated procedure and can use much larger range of

scenario to infer the contextual information. On the

contrary, the convolutional neural network (CNN) us-

ing much more layers to extract the local features and

global abstract descriptors greatly improved the accu-

racy of optical flow [10,14,1,8]. While the CNN-based

method for optical flow needs numerous training data

to learn the hyper-parameters, and the numerous train-

ing data of ACE images are currently unobtainable.

Except for the CNN-based method, the varia-

tional method is another widely researched optical

flow method. After 35 years’ development, current

variational methods achieve more accurate results.

Brox et al. derived a variational formulation to im-

prove the optical flow result by imposing a coarse-to-

fine warping technique for large displacements and us-

ing two nested fixed point iteration strategy to opti-

mize the global energy function [4,29]. Zach et al. im-

proved the Horn-Schunck model by imposing a robust

L1 data term and total variation (TV) regularization

[55]. The energy function is minimized by alternat-

ing optimization strategy, see also [39,34,35,36,37].

Subsequently, Wedel et al. further improved the TV −
L1 optical flow algorithm by performing a structure-

texture decomposition of the images and integrating

a median filter into the numerical scheme [48]. Sun

et al. gave a thorough analysis of what has made re-

cent advances possible [42,43]. A systemic analysis

of the energy function, the optimization, and modern

implementation practices was drawn. Consequently, a

method called ”Classic + NL” was proposed to fur-

ther improve the accuracy. The above methods were

performed based on a multi-scale variational frame-

work for large displacements. Although the multi-

scale strategy is the key step for variational framework

to estimate the large displacement, the fine motion

structure with a large displacement cannot always be

correctly estimated. Recently, several algorithms were



proposed to handle this problem by going beyond the

variational framework and incorporating additional

feature corresponding information [5,53,49,32]. Un-

fortunately, due to the small size and small FOV of

aperture image, estimating the optical flow of aperture

image independently often leads to inaccurate results

caused by aperture problem. Since an object near the

border of an aperture image will be close to the image

center of one of the neighboring aperture, incorporat-

ing the neighbor aperture image to address the aper-

ture problem can be considered to be a possible way

to improve the accuracy of optical flow results.

3. Multi-aperture optical flow method

Our goal is to simultaneously recover the optical flows

of an image array captured by a multi-aperture camera

- eCley. However, as shown in Fig. 1, the oblique inci-

dence of marginal aperture leads to oblique distortion,

which will result in the parallaxes of adjacent aperture

images inconsistent. Therefore, in this Section, we first

introduce a method to rectify the image array and es-

timate the parallaxes in Section 3.1. Then the optical

flow method is given in Section 3.2.

3.1. Preprocessing of eCley image array

To address the distortion caused by oblique incidence,

this section introduces the rectification method for

eCley to rectify all the aperture images simultane-

ously. Since the eCley is an array of optical channels,

it can be considered as multi-apertures camera and the

incident angle of marginal aperture is oblique. The pa-

rameters of the marginal apertures obtained by tradi-

tional calibration method [57] will not be the accurate

parameters due to the oblique incidence. Therefore,

based on the fixed system parameters and incident an-

gles, we propose to deduce the rectification parame-

ters of other apertures from the central aperture’s. The

rest of this section gives the detail of our rectification

method.

As the same as calibration method, we use a

chessboard as reference pattern. The chessboard is

parallel to the eCley lens and put far enough to ensure

that the disparity is negligible. The captured chess-

board image is shown in Fig. 1, and each aperture im-

age captures a part of the chessboard. Since the aper-

ture image is a small size and small FOV image and

the optical axis of central aperture is perpendicular to

the imaging sensor plane, the image of central aperture

is considered as undistorted image. Therefore, the size

of black and white block of the central aperture image

can be used as a reference for the rest of aperture to

rectify those images.

To obtain the reference block size in the central

aperture image, the corners of each block need to be

extracted. In this paper, a canny edge detector is ap-

plied to obtain the edges, and then a Least Square (LS)

fitting is performed over these edges to obtain multi-

ple straight lines. Then the corner points can be ex-

tracted from the intersection points of these straight

lines. Consequently, the average size of these white

and black blocks is used as the reference block size.

Since all of the black and white blocks in the chess-

board we used have the same size, the sizes of blocks

in the undistorted images will be the same as the

blocks’ in the central aperture image. Therefore, for an

aperture image, the block size and corner points can

be obtained by using the same procedure as the cen-

tral aperture’s. Assume that the corner point closest

to the aperture image center is chosen as a reference

point, then each corner point can be assigned an undis-

torted coordinate according to the block size of cen-

tral aperture image. Base on the original coordinates

and the undistorted coordinates of corner points, the

Random Sample Consensus (RANSAC) method can

be used to estimate the rectification parameters. Con-

sequently, the aperture image can be rectified by using

those transformation parameters.

Due to the unfixed reference point, the parallax

between rectified adjacent images is required to be re-

estimated. For a rectified aperture image, the undis-

torted corner points can be used to further estimate

the translation parameters. Since there is an inherent

parallax between adjacent aperture images (see [28]

for more detail about eCley), a corner point has a

roughly corresponding point at the neighboring im-

age, then the exact corresponding point is searched

around the corresponding point. Afterward, the trans-

lation parameters are obtained by averaging offsets of

these corner points. For each aperture image (except

the marginal aperture), 4-neighboring aperture images

are used to obtain 4-pair translation parameters, which



can be considered as the inherent parallax between the

rectified adjacent images.

Fig. 3 shows the aperture images and merged im-

age of the chessboard before and after rectification.

The oblique distortion is largely reduced in the rec-

tified aperture images, and the merged image based

on the re-estimated parallax has much less aliasing

than the merged image with original aperture images.

While the rectification needs to be an interpolation

processes, the marginal aperture images after rectifica-

tion is blurrier than the central image, and the merged

image with rectified aperture images is blurry at the

image border.

Figure 3. Top-left: the merged image with original aperture images;

Top-right: the merged image with rectified aperture images. Bot-

tom: the comparison of three aperture images, the first row: original

aperture images of Fig. 1; the second row: corresponding rectified

aperture images.

3.2. Optical flow method

3.2.1. System parameters and notations

Consider an array of M×N apertures, {Ai}, where i is

a two-dimensional vector that indicates the position of

the aperture. Let Ii(x,y, t) : Ω ⊂ R
3 → R, be the recti-

fied image sequence in aperture Ai. Let x := (x,y, t)⊤

be the coordinate of pixel at time t, and w := (u,v,1)⊤

be the displacement vector between an image at time

t and another image at time t + 1. The optical flow

(u,v)⊤ is the objective to estimate.

3.2.2. Optical flow initialization

In order to handle large displacement in optical flow,

lots of literatures blend a matching approach with a

variational method [5,53,49,32], and largely boost the

optical flow performance. This paper also takes ad-

vantage of the matching approach to obtain the ini-

tial optical flow. Since the DeepMatching method is a

quasi-dense matching method tailored for optical flow

problem, for each aperture image sequence Ii(x,y, t)

and Ii(x,y, t +1), the DeepMatching method as [49] is

adopted to obtain the initial optical flow winit
i of aper-

ture image. Due to the small FOV of the aperture, the

captured image frequently shows a textureless or little

texture pattern, which leads to the initial optical flow

less accuracy. To refine the initial optical flow, we pro-

pose a variational optical flow model to incorporate the

adjacent aperture optical flow to improve the result.

3.2.3. The variational optical flow model

Based on the variational formulation of optical flow,

the total energy function we aim to minimize is

E(u,v) = ∑
i

Ei(u,v), (1)

where Ei(u,v) is the energy function of aperture Ai,

and is a weighted sum of three terms,

Ei(u,v) = E i
Data +αE i

Smooth +βE i
Compound , (2)

where E i
Data is data term, E i

Smooth is smooth term,

E i
Compound is compound term that encourages the flow

of adjacent images to be similar. α and β are weight

parameters accordingly. If β = 0, Ei(u,v) becomes the

energy function of traditional optical flow model.

E i
Data imposes the brightness constancy and gra-

dient constancy assumption, and is obtained by

E i
Data =

∫

Ω
Ψ(|Ii(x+w)− Ii(x)|2

+ γ|∇Ii(x+w)−∇Ii(x)|2)dx,

(3)

where ∇ = (∂x,∂y)⊤ denotes the spatial gradient. The

function Ψ is a penalty function. As illustrated in



[42,43], among three penalty functions, the quadratic

penalty Ψ(x2) = x2, the Charbonnier penalty Ψ(x2) =√
x2 + ε2 and the Lorentzian penalty Ψ(x2) = log(1+

x2

2δ 2 ), the Charbonnier penalty performs the best. So

the Charbonnier penalty is chosen in this paper and ε

is a small positive constant to make sure the function

is convex.

The smooth term E i
Smooth imposes a piecewise

smoothness assumption to deal with the ambiguities of

low texture regions and give a smooth flow field. It is

obtained by penalizing the total variation of flow field,

E i
Smooth =

∫

Ω
Ψ(|∇3u|2 + |∇3v|2)dx, (4)

where ∇3 = (∂x,∂y,∂t )
⊤. If only two sequence images

are available, it will be replaced by the spatial gradient

∇ due to ∂t = 1.

By using a modern optimization method, tradi-

tional optical flow model with the two terms men-

tioned above can yield an accurate result [4]. While in

our eCley images, the image captured by an aperture

only spans a small FOV and has a small size, which

may lead to less accurate results due to the lack of

texture information in aperture image. As shown in

Fig. 2(c), the optical flows of adjacent aperture images

are not consistent by using DeepFlow method, espe-

cially in the motion boundary. Fortunately, adjacent

images are partially overlapping and can provide spa-

tial correspondence information to improve the con-

sistence optical flow results. As for the corresponding

areas of the border area of aperture image in adjacent

images, at least one of them will be close to the center

of corresponding image. Therefore, the moving object

in corresponding area will have less chance to move

out of the aperture image and more likely to have an

accurate flow boundary. Thus, this paper further im-

poses a compound term E i
Compound to improve the opti-

cal flow. The left image of Fig. 2(c) shows that the pro-

posed compound term gives more consistent and accu-

rate optical flow result. the compound term E i
Compound

assumes that the corresponding pixels of adjacent im-

ages have the same flow field, and is expressed as

E i
Compound =

∫

Ω

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ(|w−w j|2)

∑
j∈Ne(i)

δ (x j)
dx,

(5)

where Ne(i) indicates the 4-nearest neighboring aper-

tures of aperture Ai; x j indicates the corresponding

pixel of x in aperture A j, and w j is its displacement

vector. δ (x j) is a Dirac function which is 1 if x j exists,

and is 0 otherwise. Ψ(|w−w j|2) measures the differ-

ence between the flow of pixel x and the corresponding

pixel x j.

Since pixel x in aperture Ai generally has at least

two corresponding pixels among Ne(i). The flow vec-

tor of x tends to be the mean of displacement vectors

of corresponding pixels by using an uniform weight

to all corresponding pixels. If all corresponding pix-

els use the same weight, the error flow vector of cor-

responding pixels located at the border of adjacent im-

age will force the flow vector of pixel x to tend to the

error flow vector. To reduce the effect of correspond-

ing border pixels, a weight function g(x j) is added.

The pixel closer to the border of image will have a

smaller weight, and the weight of pixel x j only relates

to its position in the corresponding image. Therefore,

we use a Gaussian function to model the relative im-

portance of the position of pixel.

3.2.4. Minimization

Based on the preprocessing method in 3.1, the paral-

lax between aperture images is obtained, so for a pixel

in aperture Ai, the corresponding pixels x j are known.

Although a new compound term is added, the same

penalty function is used for compound term so that

the total energy function is differentiable. The energy

function of each aperture, according to the calculus of

variations, a minimizer of eq.(2) must fulfill the as-

sociated Euler-Lagrange equations with homogeneous

Neumann boundary conditions. For better readability

we follow the abbreviations defined in [4]



Ix := ∂xI(x+w),

Iy := ∂yI(x+w),

Iz := I(x+w)− I(x),

Ixx := ∂xxI(x+w),

Ixy := ∂xyI(x+w),

Iyy := ∂yyI(x+w),

Ixz := ∂xI(x+w)−∂xI(x),

Iyz := ∂yI(x+w)−∂yI(x),

(6)

where t is replaced by z. Since the energy function of

each aperture is the same, i is omitted for simplicity.

The Euler-Lagrange equations of eq.(2) is ex-

pressed as

Ψ′(I2
z + γ(I2

xz + I2
yz)) · (IxIz + γ(IxxIxz + IxyIyz))

+β

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ′(|w−w j|2)(u−u j)

∑
j∈Ne(i)

δ (x j)

− α div(Ψ′(|∇3u|2 + |∇3v|2)∇3u) = 0,

Ψ′(I2
z + γ(I2

xz + I2
yz)) · (IyIz + γ(IyyIyz + IxyIxz))

+β

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ′(|w−w j|2)(v− v j)

∑
j∈Ne(i)

δ (x j)

− α div(Ψ′(|∇3u|2 + |∇3v|2)∇3v) = 0.

(7)

Since the initial optical flow based on Deep-

Matching still suffers from the aperture problem, The

variational refinement is based on a standard coarse-

to-fine warping scheme. After a pyramid of images

is constructed, the flow is estimated from the coars-

est level to the finest level, and at each level, a fixed

point iteration method is used to compute w. Let wk =
(uk

,vk
,1)⊤, k = 0,1, ..., be the displacement vector at

iteration k. The coarsest level w0 is initialized based

on the DeepMatching result winit , and the finer level

is initialized by using the final result of previous level.

At each step k+1, wk+1 will be the solution of

Ψ′((Ik+1
z )2 + γ((Ik+1

xz )2 +(Ik+1
yz )2))

· (Ik
x Ik+1

z + γ(Ik
xxIk+1

xz + Ik
xyIk+1

yz ))+

β

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ′(|wk+1 −wk+1
j |2)(uk+1 −uk+1

j )

∑
j∈Ne(i)

δ (x j)

− α div(Ψ′(|∇3uk+1|2 + |∇3vk+1|2)∇3uk+1) = 0,

Ψ′((Ik+1
z )2 + γ((Ik+1

xz )2 +(Ik+1
yz )2))

· (Ik
y Ik+1

z + γ(Ik
yyIk+1

yz + Ik
xyIk+1

xz ))+

β

∑
j∈Ne(i)

δ (x j) ·g(x j) ·Ψ′(|wk+1 −wk+1
j |2)(vk+1 − vk+1

j )

∑
j∈Ne(i)

δ (x j)

− α div(Ψ′(|∇3uk+1|2 + |∇3vk+1|2)∇3vk+1) = 0.

(8)

We assume uk+1 = uk +△uk, vk+1 = vk +△vk,

and use the same approximate expression of Ik+1
∗ as

[4]

Ik+1
z ≈ Ik

z + Ik
x△uk + Ik

y△vk
,

Ik+1
xz ≈ Ik

xz + Ik
xx△uk + Ik

xy△vk
,

Ik+1
yz ≈ Ik

yz + Ik
xy△uk + Ik

yy△vk
.

(9)

Then let

(Ψ′)k
Data = Ψ′((Ik

z + Ik
x△uk + Ik

y△vk)2

+ γ((Ik
xz + Ik

xx△uk + Ik
xy△vk)2 +(Ik

yz + Ik
xy△uk + Ik

yy△vk)2)),

(Ψ′)k
Smooth = Ψ′(|∇3(u

k +△uk)|2 + |∇3(v
k +△vk)|2),

(Ψ′)k
Compound = Ψ′(|(wk +△wk)− (wk

j +△wk
j)|2).

(10)

With eqs. (9) (10), the first equation in eq. (8) can

be written as



(Ψ′)k
Data ·

(

Ik
x (I

k
z + Ik

x△uk + Ik
y△vk)+

γ
(

Ik
xx(I

k
xz + Ik

xx△uk + Ik
xy△vk)+ Ik

xy(I
k
yz + Ik

xy△uk + Ik
yy△vk)2

)

)

+

β

∑
j∈Ne(i)

δ (x j) ·g(x j) · (Ψ′)k
Compound · ((uk +△uk)− (uk

j +△uk
j))

∑
j∈Ne(i)

δ (x j)

−α div

(

(Ψ′)k
Smooth ·∇3(u

k +△uk)

)

= 0,

(11)

and the second equation can be expressed in a simi-

lar way. In order to estimate the increment of displace-

ment vector at each iteration, we follow Brox et al [4]

and use a second, inner, fixed point iteration. We ini-

tialize the inner iteration with △uk,0 = 0, △vk,0 = 0.

Then at each step l +1, the system of equations in in-

crement of displacement vector △uk,l+1, △vk,l+1 are

(Ψ′)k,l
Data ·

(

Ik
x (I

k
z + Ik

x△uk,l+1 + Ik
y△vk,l+1)

+ γ
(

Ik
xx(I

k
xz + Ik

xx△uk,l+1

+ Ik
xy△vk,l+1)+ Ik

xy(I
k
yz + Ik

xy△uk,l+1 + Ik
yy△vk,l+1)

)

)

+

β

∑
j∈Ne(i)

δ (x j) ·g(x j) · (Ψ′)k,l
Compound · ((uk +△uk,l+1)− (uk

j +△u
k,l+1
j ))

∑
j∈Ne(i)

δ (x j)

−α div

(

(Ψ′)k,l
Smooth ·∇3(u

k +△uk,l+1)

)

= 0.

(12)

For the first equation of eq.(8), here we further

assume that △u
k,l+1
j = 0, and we use the uk−1

j to re-

place uk
j so that there is not any new unknown variable

added. Then the final linear system can be solved by

successive overrelaxation (SOR) method [54].

The minimization is performed from the coarse

level to the fine level, and therefore, the original image

resolution is the finest level. At each image level, the

outer loop is iterated k times. In each outer loop, the

inner loop iterates l times to estimate the increment

of displacement vector. After each outer loop iteration

we further use a weighted median filter (WMF) with

size of 5× 5 to remove outliers and preserve motion

boundary [42,43]. The pseudo code of our method is

shown in Algorithm 1, and the function f (wk
r) is to

Algorithm 1 Pseduo code of the proposed optical flow

method

Input: two frame of image set Ii(t),Ii(t + 1), i ∈
[1,M]× [1,N].
Output: displacement vector w

1: rectify the eCley image (Section 3.1)

2: initial optical flow estimation (Section 3.2.2)

3: variational refine method initialization

4: for image level r = 1 : maxlevel do

5: for iter k = 1 : 3 do

6: for each Iim(t) and corresponding Iim(t +
1) do

7: ∆wk
r = 0

8: ∆wk
r estimation (eq.(12))

9: wk+1
r = wk

r +∆wk
r

10: wk+1
r = WMF(wk+1

r )

11: w1
r+1 = f (wk

r)

transfer the displacement vector wk
r to next finer scale

as an initialization.

4. Experimental results

This section presents the experimental evaluation of

the proposed method. In this paper, all experiments are

performed on a laptop with an Intel Core i5-3210M

CPU clocked at 2.5GHz and 4GB RAM. To evalu-

ate the efficiency of the proposed method, four opti-

cal flow methods, DeepFlow [33], Classic+NL [43],

LDOF [5] and EpicFlow [32], are used for compar-

ison. Classsic+NL method is a baseline variational

optical flow estimation method. DeepFlow, EpicFlow

and LDOF used dense descriptors matching and in-

terpolation to estimate the initial flow, and then used

variational method to optimize the optical flow. In

the proposed method, the initial optical flow is ob-

tained as the same as DeepFlow. The accurate de-

scriptor matching method and interpolation method

can largely improve the initial flow result, and fur-

ther achieve more accurate optical flow after optimiza-

tion. Among the optical flow results submitted to Sin-

tel dataset based on variational method (with or with-

out descriptor matching), EpicFlow ranks 17th, Deep-

Flow ranks 20th, Classic+NL ranks 43th, and LDOF

ranks 50th. The parameters of DeepFlow, Classic+NL,

LDOF, EpicFlow are kept the same as in the litera-



tures. The evaluation of the results is based on Mid-

dlebury datasets, Sintel datasets and real data captured

by eCley, and the performances of benchmark datasets

with ground truth are evaluated with the standard met-

rics, the average angular error (AAE) and average end-

point error (EPE). All the visualized optical flow im-

age are using the color coding method as [2].

In our method, all parameters at the initial opti-

cal flow estimation stage are kept the same as in [33].

At the variational refinement stage, since the most of

motions in the Middlebury dataset are small, while the

Sintel dataset contains large motions, therefore, the

downsampling factor in coarse-to-fine step of Middle-

bury dataset and Sintel dataset are 0.8 and 0.5, respec-

tively. For the outer iteration at each image level k,

Fig. 4 gives the AAE and EPE of four images and their

averages under different k. In order to better visual-

ize the results, the AAE and EPE at different iterations

are compared with the initial flow’s (iteration = 0), and

the ratio of AAE and EPE are shown in the figure.

As shown in the figure, after 1 iteration, both the EPE

and AAE decrease significantly thanks to the coarse-

to-fine scheme. As the iteration increase, most AAE

and EPE decrease gradually and then turn to increases.

When k = 3, the average AAE and EPE are the small-

est. Therefore, we use k = 3 in our experiments. The

inner iteration based on SOR method l = 100. Fig. 5

- Fig. 8 gives the AAE and EPE of Middlebury data

and Sintel data under different α and β , respectively.

The data are divided into image array as described in

Section 4.1. We find that good results of Sintel data

are obtained at α = 0.5, β = 1. For Middlebury data,

α = 0.9 has the best result, and the smallest AAE ob-

tained at β = 1.2 but smallest EPE at β = 0.8, in order

to balance the AAE and EPE, we choose the median

value with β = 1 for the Middlebury data.

4.1. Results on benchmark datasets

Middlebury dataset The evaluation on Middlebury

Benchmark is performed on 7 pairs of frames, which

have ground truth optical flow. In order to construct an

image array like the images captured by eCley, each

frame is divided into a set of partially overlapping im-

ages. More concretely, the RubberWhale, Hydrangea

and Dimetrodon sequence with resolution of 584×388

pixels are divided into 7× 11 sub-images with reso-

Figure 4. The AAE and EPE ratio under different k.

Figure 5. The AAE and EPE of Middlebury data under different α .

lution of 96× 96 pixels, the Grove2, Grove3, Urban2

and Urban3 sequence with resolution of 640 × 480

pixels are divided into 5 × 7 sub-images with reso-

lution of 160 × 160 pixels, and the overlap between

neighboring images is half FOV of the sub-image. The

ground truth optical flow images are divided in the

same way. The sub-image pair is extracted from the



Figure 6. The AAE and EPE of Middlebury data under different β .

Figure 7. The AAE and EPE of Sintel data under different α .

original image pair at the same position but in different

frame, and is a local image pair of original image pair.

Since the ground truth describes the displacement of

each pixel of current frame at the following frame, the

displacement of each pixel in sub-image will keep the

same as the original image. Therefore, the optical flow

extracted from the same position can be considered as

the ground truth of each sub-image. The original im-

age, ground truth optical flow, and the divided image

array and ground truth array are shown in Fig. 9. Ta-

ble 1 gives AAE and EPE of five optical flow meth-

ods, and the visualized results are shown in Fig. 10.

The percentage in the bracket shown in Table 2 indi-

Figure 8. The AAE and EPE of Sintel data under different β .

(a) original image and optical flow

(b) divided image and optical flow

Figure 9. (a) left: the original Urban2 image; right: the original op-

tical flow ground truth. (b) left: the divided image array; right: the

divided optical flow ground truth.

cates the improvement rate of our method, in which

the negative percentage means our method is worse

than the corresponding method. Our method achieves

the best result among the five methods except for the

Dimetrodon sequence.

Sintel dataset The Sintel dataset and ground

truth is divided in the similar way. The resolution of

Sintel image is 1024×436 pixels. Due to the large mo-

tion existed in Sintel image, we use a relatively high

resolution (200× 200) of sub-image to avoid the ob-
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Figure 10. Visualized optical flow results on Middleburry datasets. In the error map, the blue color means no error or tiny error, white means

small error, the orange color indicates large error.



Table 1. AAE/EPE for test sequences from Middlebury benchmark

Sequences Classic+NL DeepFlow EpicFlow LDOF Proposed

RubberWhale 3.2144/ 0.0996 3.2442/ 0.1014 4.0227/ 0.1232 7.5509/ 0.2346 2.8994/ 0.0947

(10.86%/ 5.17%) (11.89%/ 7.07%) (38.74%/ 30.10%) (160.43%/ 147.73%)

Hydrangea 2.1954/ 0.1809 2.6967/ 0.2027 2.3398/ 0.2003 3.6114/ 0.3680 2.1344/ 0.1743

(2.86%/ 3.79%) (26.34%/ 16.29%) (9.62%/ 14.92%) (69.20%/ 111.13%)

Dimetrodon 1.7508/ 0.0909 1.7448/ 0.0905 2.0073/ 0.1016 2.4334/ 0.2610 1.8672/ 0.0969

(-6.23%/ -6.19%) (-6.55%/ -6.6%) (7.5%/ 4.85%) (30.32%/ 169.35%)

Urban2 2.9435/ 0.7381 2.7157/ 0.3780 3.5239/ 0.5181 5.8456/ 1.5918 2.5436/ 0.3301

(15.72%/ 123.6%) (6.77%/ 14.51%) (38.53%/ 56.95%) (129.82%/ 382.22%)

Urban3 3.5065/ 0.4410 3.4933/ 0.4251 6.5589/ 1.2668 18.4243/ 1.9045 2.2718/ 0.3189

(54.35%/ 38.29%) (53.77%/ 33.3%) (188.71%/ 297.24%) (711.0%/ 495.53%)

Grove2 2.1397/ 0.1432 2.1276/ 0.1435 2.3944/ 0.1587 3.3487/ 0.2753 1.4409/ 0.0981

(32.66%/ 45.87%) (47.65%/ 46.28%) (66.17%/ 61.77%) (132.40%/ 180.63%)

Grove3 5.8726/ 0.6077 5.8431/ 0.6001 6.7210/ 0.7004 8.7605/ 0.9313 5.0618/ 0.4937

(16.02%/ 23.09%) (15.44%/ 21.58%) (32.78%/ 41.87%) (73.07%/ 88.63%)

ject moving outside the sub-image. The image array

contains 3×9 sub-images. Table 2 shows the AAE and

EPE of 16 Sintel image sequences. Our method per-

forms the best for almost all the test images. Fig. 11

gives the visualized results of divided image arrays,

and Fig. 12 shows the sub-image results of image ar-

ray for visualized comparison. In Fig. 11, the Clas-

sic+NL and LDOF are much worse than the other three

methods. Our method yields the similar performance

to DeepFlow method and both of them outperform the

EpicFlow method. As shown in Fig. 12, for the motion

boundary near the image border, our method is able to

correctly estimate the motion boundary and performs

better than DeepFlow method.

In addition, the compared methods are used to

estimate the optical flow based on single image se-

quence. Therefore, Table 3 gives the results on the

original benchmark data in comparison with our result

on multi-aperture images. The results indicate that the

proposed method for small sub-image array achieves

an approximate optical flow accuracy to these methods

on the original image sequences, although the aperture

problem of sub-image array is more severe than the

original image.

4.2. Results on real data

In this section, we used the real-world sequences cap-

tured by eCley. the eCley image used in this section

contains 13× 13 apertures. Each aperture image after

rectification has a resolution of 101× 101 pixels, and

the parameters of our method on eCley image keep the

same as in Sintel dataset. The first sequences (Fig. 13)

involves the vertical motion of an arm and a hand,

in a static scene. As shown in Fig. 13, Classic+NL

method is able to estimate the motion boundary, but

the corresponding flow fields across adjacent aperture

images do not keep consistent; DeepFlow, LDOF and

EpicFlow use descriptor matching to estimate initial

optical flow and have more consistent results, but they

can not accurately estimate the motion boundary; Our

method is able to estimate the motion boundary and

keep the flow fields consistent between adjacent im-

ages. In addition, EpicFlow uses the edges information

for interpolation, the optical flows of textureless sub-

images are much worse than our method and the other

three methods. The second sequences in Fig. 14 show

complex motions of a person, where the body and head

have a horizontal motion, and two hands are vertically

moved. Also, the Classic+NL method is less consis-

tent. DeepFlow and LDOF fail to estimate the motion

boundary. EpicFlow yields worse result at textureless

sub-images. Our method performs best.

The computing time of the variational step in the

proposed method takes 170 seconds for Sintel data,

125 seconds for Middlebury data, and 213 seconds for

eCley images. The DeepFlow method takes 140, 103

and 194 seconds for Sintel data, Middlebury data and

eCley images, respectively. The Classic+NL method

takes 240, 177, 421 seconds, respectively. The LDOF
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Figure 11. Visualized optical flow results on Sintel datasets. In the error map, the blue color means no error or tiny error, white means small

error, the orange color indicates large error.



Table 2. AAE/EPE for test sequences from Sintel benchmark

Sequences Classic+NL DeepFlow EpicFlow LDOF Proposed

alley 1 4.8839/ 0.5602 5.2970/ 0.4916 5.8962/ 0.5762 12.8830/ 0.8826 3.4515/ 0.3710

(41.5%/ 51%) (53.47%/ 32.51%) (70.83%/ 55.31%) (273.26%/ 137.90%)

alley 2 4.1721/ 0.4771 3.4958/0.4010 4.6241/ 0.5438 4.9992/ 0.6666 2.3877/ 0.3206

(74.73%/ 48.81%) (46.41%/ 25.08%) (93.66%/ 69.62%) (109.37%/ 107.92%)

ambush 4 30.8977/ 16.5084 18.8441/ 9.9561 21.3644/ 12.6051 24.7671/16.8604 16.9577/ 9.1512

(82.2%/ 80.4%) (11.12%/ 8.79%) (25.99%/ 37.74%) (46.05%/ 84.24%)

ambush 5 14.1738/ 3.3918 9.0546/ 1.7866 14.2703/ 2.7259 13.8827/ 3.4023 8.2569/ 1.6359

(71.66%/ 107.33%) (9.66%/ 9.21%) (72.83%/ 66.63%) (68.13%/ 105.71%)

ambush 7 17.0295/ 6.1172 11.3141/ 2.3059 16.1809/ 3.5922 20.1161/ 3.7040 12.7842/ 2.1459

(33.21%/ 185.07%) (-11.5%/ 7.46%) (26.57%/ 67.40%) (57.35%/ 72.61%)

bamboo 1 4.7622/ 0.4509 4.8079/ 0.4528 4.9010/ 0.4672 8.1417/ 0.7365 4.2248/ 0.4180

(12.72%/ 7.87%) (13.8%/ 8.33%) (16.01%/ 11.77%) (92.71%/ 76.20%)

bamboo 2 11.3918/ 1.7387 8.6703/ 0.9452 10.0012/ 1.2423 19.5096/ 1.5828 7.6564/ 0.8378

(48.79%/ 107.53%) (13.24%/ 12.82%) (30.63%/ 48.28%) (154.81%/ 88.92%)

bandage 1 8.0451/ 1.6240 6.2041/ 1.2877 8.1358/ 1.5168 9.8101/ 2.5097 5.6050/ 1.2075

(43.53%/ 34.49%) (10.69%/ 6.64%) (45.15%/ 25.61%) (75.02%/ 107.84%)

cave 2 41.9416/ 16.0512 9.0333/ 2.8502 15.5628/ 4.1770 13.0757/ 3.9949 7.8904/ 2.5342

(506.69%/ 579.39%) (30.67%/ 20.64%) (97.24%/ 64.83%) (65.72%/ 57.64%)

cave 4 22.2026/ 6.3129 14.0963/ 3.9122 21.2991/ 5.4596 17.9773/ 4.9500 12.7640/ 3.6907

(73.95%/ 71.05%) (10.44%/ 6.0%) (66.87%/ 47.93%) (40.84%/ 34.12%)

market 2 12.9066/ 1.7816 12.0870/ 1.2845 15.9892/ 1.7816 21.6570/2.0481 10.4974/ 1.1384

(22.95%/ 56.50%) (15.14%/ 12.83%) (52.32%/ 56.50%) (106.31%/ 79.91%)

market 5 21.2936/ 14.6889 7.5622/ 2.8192 9.6230/ 3.4391 11.2901/ 5.4965 6.9999/ 2.5895

(204.2%/ 467.25%) (8.03%/ 8.87%) (37.47%/ 32.81%) (61.29%/ 112.26%)

market 6 25.7618/ 10.3904 18.9207/ 6.1782 22.6330/ 7.5181 24.7129/ 9.2926 17.6978/ 6.0227

(45.57%/ 72.52%) (6.91%/ 2.58%) (27.89%/ 24.83%) (39.64%/ 54.29%)

mountain 1 5.6542/ 0.736 6.2371/ 0.5722 8.6418/ 0.6092 20.6351/ 1.3487 7.0734/ 0.7204

(-20.06%/ 2.16%) (-11.82%/ -20.57%) (22.17%/ -15.44%) (191.73%/ 87.22%)

temple 2 30.7928/ 24.9824 13.8948/ 11.8773 18.3791/ 15.3767 19.6556/ 18.5054 11.7069/ 11.0138

(163.03%/ 126.83%) (18.69%/ 7.84%) (56.99%/ 39.61%) (67.90%/ 68.02%)

temple 3 16.9331/ 3.6524 12.4207/ 3.4254 25.2147/ 6.9696 16.6264/ 7.5460 9.6350/ 2.9133

(75.75%/ 25.37%) (28.91%/ 17.58%) (161.70%/ 139.23%) (72.56%/ 159.02%)

method takes 317, 244, 648 seconds and EpicFlow

method takes 123, 88 and 160 seconds. In addition, al-

though our method imposes a compound term to im-

prove the result, at each iteration, the aperture im-

age only needs the optical flow fields of current aper-

ture image and adjacent images from the last itera-

tion. Therefore, the estimation of optical flow of one

aperture image does not need the information from

this iteration and can be accelerated by using multi-

threading processors.

From the experimental results on Middlebury

datasets, Sintel datasets and the real data, the proposed

method has a better performance on the sub-image ar-

ray structure. But there are also some failure cases, i.e.

the proposed method can only take care of the motion

within an aperture image, if the motion crosses the

aperture images, then the proposed method will fail to

obtained the accurate flow. As shown in Fig 15, the

bottom-left image sequences cannot estimate the ac-

curate optical flow due to the across images motions.

Since the large motion that across images will lead

to the lack of matching point for the moving object,

therefore, future work will focus on the fast moving

objects that across multiple images.



Figure 12. The optical flow results of sub-image array.

Table 3. AAE/EPE for data based on original images

Sequences Classic+NL DeepFlow EpicFlow LDOF Proposed

RubberWhale 3.0539/ 0.0921 3.0679/ 0.0925 2.9382/ 0.0959 3.8738/ 1.3901 2.8994/ 0.0947

Hydrangea 1.8994/ 0.1520 1.8895/ 0.1507 1.8235/ 0.1464 2.7091/ 0.3102 2.1344/ 0.1743

Dimetrodon 1.4704/ 0.0771 1.4699/ 0.0769 1.4823/ 0.0821 2.0311/ 1.1304 1.8672/ 0.0969

Urban2 2.2361/ 0.3012 2.2407/ 0.2881 2.3349/ 0.2990 6.1663/ 0.7509 2.5436/ 0.3301

Urban3 3.3396/ 0.3734 3.3770/ 0.3758 2.9892/ 0.3594 3.8125/ 0.4972 2.2718/ 0.3189

Grove2 2.0853/ 0.1388 2.1270/ 0.1417 1.7491/ 0.1097 2.3481/ 0.1596 1.4409/ 0.0981

Grove3 5.5149/ 0.5825 5.4848/ 0.5804 5.3204/ 0.5389 6.3925/ 0.6837 5.0618/ 0.4937

alley 1 3.8725/ 0.4002 3.9862/ 0.4054 3.7482/ 0.3897 4.2193/ 0.5203 3.4515/ 0.3710

ambush 5 8.5670/ 2.4261 7.6437/ 1.3808 7.9523/1.6944 9.3815/ 2.8471 8.2569/ 1.6359

cave 2 10.9686/ 3.1578 7.4004/ 2.3027 7.2018/ 2.2027 10.8731/ 3.2010 6.9132/ 2.3626

temple 2 13.6418/ 12.3415 9.1151/ 6.0763 8.9470/ 5.9871 14.0981/ 12.5981 11.7069/ 11.0138
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Figure 13. Results comparison of the real data captured by eCley (hand).

5. Conclusion

In this paper, we proposed a multi-aperture optical

flow method for ACE - eCley. we first introduce an im-

age rectification method for eCley. Based on the multi-

aperture configuration, all apertures are used to simul-

taneously recover the optical flow of multi-aperture

and keep the flow consistent across apertures. In ad-

dition, the method based on a variational framework,

which imposes a compound flow field consistency

assumption along with the brightness constancy and

piecewise smoothness assumptions. The correspond-

ing information from multi-apertures adds supplemen-

tary constrains that reduce ambiguities and improve

stability. Our results on Middlebury benchmark, Sintel

benchmark and real data from eCley demonstrate the

validity of the proposed method.
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Figure 14. Results comparison of the real data captured by eCley

(human).

Figure 15. The failure situation.
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