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ABSTRACT

Motivation: Modern strategies for mapping disease loci require

efficient genotyping of a large number of known polymorphic sites

in the genome. The sensitive and high-throughput nature of

hybridization-based DNA microarray technology provides an ideal

platform for such an application by interrogating up to hundreds of

thousands of single nucleotide polymorphisms (SNPs) in a single

assay. Similar to the development of expression arrays, these

genotyping arrays pose many data analytic challenges that are often

platform specific. Affymetrix SNP arrays, e.g. use multiple sets of

short oligonucleotide probes for each known SNP, and require

effective statistical methods to combine these probe intensities in

order to generate reliable and accurate genotype calls.

Results: We developed an integrated multi-SNP, multi-array

genotype calling algorithm for Affymetrix SNP arrays, MAMS, that

combines single-array multi-SNP (SAMS) and multi-array, single-

SNP (MASS) calls to improve the accuracy of genotype calls, without

the need for training data or computation-intensive normalization

procedures as in other multi-array methods. The algorithm uses

resampling techniques and model-based clustering to derive single

array based genotype calls, which are subsequently refined by

competitive genotype calls based on (MASS) clustering. The

resampling scheme caps computation for single-array analysis and

hence is readily scalable, important in view of expanding numbers of

SNPs per array. The MASS update is designed to improve calls for

atypical SNPs, harboring allele-imbalanced binding affinities, that are

difficult to genotype without information from other arrays. Using a

publicly available data set of HapMap samples from Affymetrix, and

independent calls by alternative genotyping methods from the

HapMap project, we show that our approach performs competitively

to existing methods.

Availability: R functions are available upon request from the authors.

Contact: yxiao@itsa.ucsf.edu and rufang@biostat.ucsf.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Single nucleotide polymorphisms (SNPs) are sites in the

genome where individuals differ in DNA sequence by a single

base pair. There are �10 million common SNPs that constitute

90% of the variation in the current human population (The

International HapMap Consortium, 2003). While most SNPs

have, to date, no characterized role in cell function, select SNPs

associated with altered proteins or phenotypic traits have been

found. SNPs result from single historical mutation events and,

as nearby variants on the ancestral chromosome harboring the

new allele tend to segregate together (as a haplotype), positional

correlations [termed linkage disequilibrium (LD)] ensue. LD is

fundamental to much of human genetic research: since

sequence variants located at, or near, the causal mutation(s)

for an inherited disease should still carry the disease associa-

tion, a strategy for mapping disease loci can be based on testing

genome-wide associations between a clinical trait and such

(here SNP) variants. The success of such a global search

strategy for eliciting genetic influence on disease relies on

examining large numbers of SNPs in large numbers of affected

individuals and controls, and is only possible due to recently

devised high-throughput technologies. These SNP genotyping

technologies present many statistical and informatic challenges,

forefront of which is the development of a genotyping algorithm

that is highly accurate, scalable, efficient and inexpensive.

The goals of this article are to develop and illustrate such an

algorithm, specific to Affymetrix SNP microarrays.

Affymetrix chips use short oligonucleotide probe quartets to

interrogate each dimorphic site and include up to 260 000

SNPs. Each quartet consists of a perfect match (PM) and a

mismatch (MM) 25-mer, corresponding to both alleles

(arbitrarily named allele A and allele B) of a known SNP,

yielding four different probes — PMA, PMB, MMA and

MMB — that form the basic unit for quantifying allele-specific

hybridization. Each SNP has multiple quartets querying

different strands and shifts surrounding the polymorphic site.

The primary question for data analysis is, then, how to map the

intensities of these probe quartets to a genotype call (AA or AB

or BB) for each SNP represented on the array.

Affymetrix developed the clustering-based MPAM algorithm

(Liu et al., 2003) for their first-generation (10K) SNP

microarrays, and the model-based dynamic model (DM)

algorithm (Di et al., 2005) for subsequent 100K and 500K

arrays. MPAM uses modified partition-around-medoids to

cluster samples (arrays) into different genotypes for each SNP.*To whom correspondence should be addressed.
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It employs numerous fine tunings and heuristic rules in order to
cope with SNPs with low minor allele frequencies (MAF) and/
or sub-optimal hybridization signals. The DM algorithm uses

probe-level log likelihoods to select the best of the four
genotype models (AA, AB, BB, and Null) for each probe
quartet, followed by a SNP-level aggregation to generate

genotype calls for each SNP. It is important to note that
these genotype calling algorithms were used and tuned in the
probe design and selection phase, so as to optimize perfor-

mance from a much larger initial pool of probes from known
SNPs. For example, the 100K array contains 116 204 SNPs
that were selected based on their preferential hybridization and

prediction performance using the DM algorithm from a data set
comprising the � 535 000 known SNPs in XbaI and HindIII
restrictive digestion fragments. Thus, the genotyping perfor-

mance of DM will be optimistically biased when applied to the
100K array.
In a similar vein, GEL (genotype calling using empirical

likelihood) proposed by Nicolae et al. (2006), employs like-

lihood calculations at the quartet level based on preliminary
genotype calls as supplied (for example) by DM. Improvements
over DM are furnished by weighting information from each

quartet according to its genotyping quality. Both GEL and DM
have a higher genotyping accuracy than MPAM, yet they
do not account for probe-specific effects or incorporate

multi-array information, leaving room for improvement.
Accordingly, Rabbee and Speed (2006) proposed the
classification-based RLMM (robust linear model with

Mahalanobis distance) algorithm that takes advantage of the
large number of publicly available SNP calls from the HapMap
project in order to define genotyping rules. They show

improved genotyping accuracies, compared to the DM algo-
rithm, for a set of HapMap individuals using 100K arrays.
Another recent development, SNiPer-HD (SNiPer-High

Density, (Hua et al., 2006), employs an expectation-maximiza-
tion (EM) algorithm with parameters based on a training
sample set, also exhibited superior performance to DM.

However, both RLMM and SNiPer-HD rely crucially on the
availability of good training data sets which most projects lack.
For instance, in the case of SNiPer-HD (Hua et al., 2006), the

authors took advantage of a set of 900 arrays with known
genotyping information. The PLASQ algorithm proposed by
LaFramboise et al. (2005) seeks to infer allele-specific copy

number changes along with genotype calls via linear models on
the probe intensities using an EM algorithm. It also requires
calibration from a set of at least 8–15 normal diploid samples.

Among these above-mentioned methods, DM, GEL,
SNiPerHD and PLASQ operate mainly within each SNP, and
do not exploit similarities of allele-specific hybridization

patterns across the thousands of available SNPs. MPAM and
RLMM do attempt to incorporate between SNP information,
albeit only in cases where MAF are concerned.

Realizing DM’s limitations, we and others have indepen-
dently and simultaneously developed improved genotyping
algorithms for mapping 100K and 500K arrays. BRLMM

(Affymetrix, 2006), advanced by Affymetrix, is an extension
of the RLMM model that removes RLMM’s dependence
on training data. It uses stringent DM calls as initial genotyping

seeds to derive a prior distribution for typical genotype regions.

Each SNP is then visited and its genotyping regions

re-calibrated using an ad hoc Bayesian procedure. CRLMM,

proposed by Carvalho et al. (2006), is also in line with the

principles of RLMM. The genotyping component of CRLMM

is largely similar to BRLMM, but it employs refined normal-

ization and summarization methodologies to facilitate cross-lab

data comparison and integration.
Here, we propose an algorithm that integrates allele

specific information via a multi-array, multi-SNP (MAMS)

approach. Our algorithm starts with model-based clustering

of the multitude of SNPs located on the same array, using

a resampling scheme for computational efficiency. Based on

the derived genotypes, a subset of SNPs showing unique

hybrization kinetics is identified, and subject to a within-SNP,

across-array clustering approach. Our method requires no

fine tuning or training data. We evaluate the performance

of MAMS on both the 100K and 500K SNP array platforms

and show that the accuracy and efficiency of MAMS compare

favorably to other genotyping methods.

2 METHODS

Our algorithm consists of four components as further detailed below:

(i) preprocessing: summarizing probe-level intensities into SNP-level

indices for the two alleles; (ii) single-array, multi-SNP (SAMS)

genotype calls: applying model-based clustering to the SNP-level

indices within an array, and making genotype calls based on model-

based inference; (iii) multi-array, single-SNP (MASS) genotype calls:

employing hierarchical clustering on the indices within each SNP and

(iv) MAMS genotype calls: aggregate (ii) and (iii) by evaluating quality

scores of SAMS and MASS calls.

2.1 Data

We evaluated the MAMS algorithm on both the Affymetrix 100K

public dataset [90 Centre d’Etude du Polymorphisme Humain (CEPH)

samples] and the 500K public dataset (39 CEPH samples). For both

datasets, we used reference calls from the International HapMap

Project (The International HapMap Consortium, 2003) that were

generated using other genotyping techniques. Of the 116 204 SNPs on

the XbaI and HindIII (100K) arrays, 27 049 SNPs were available from

HapMap release 14. Among the 262 264 SNPs on the NspI (500K)

arrays, 54 540 SNPs have independent calls in HapMap release 20.

These SNPs form the HapMap reference set that we use to benchmark

our algorithm.

2.2 Preprocessing

Unless otherwise noted, all intensities are on the log2 scale. Let

PMAijk and PMBijk be the probe intensities for array i, SNP j

and probe quartet k, for alleles A and B, respectively. Similarly,

MMAijk and MMBijk are their MM counterparts. We use

MMijk ¼ maxðMMAijk,MMBijkÞ as an arguably more robust summary

of non-specific binding and cross-hybridization for probe quartet k.

We summarize the 4k probe intensities by taking medians of

background-corrected signals for alleles A and B (�A and �B,

respectively), and their relative signal intensity (�AB):

�A, ij ¼ mediankðPMAijk �MMijkÞ, ð1Þ

�B, ij ¼ mediankðPMBijk �MMijkÞ, ð2Þ

�AB, ij ¼ mediankðPMAijk � PMBijkÞ: ð3Þ

These indices form the basis of all downstream analysis.

Y.Xiao et al.
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2.3 SAMS: single-array multi-SNP classification

with mixture models

Let xj ¼ ð�AB, �A, �BÞ denote the intensity indices for the jth SNP

(suppressing the subscript for array i; j ¼ 1, . . . , n). We adopt a normal

mixture model-based approach to cluster the SNP data so that each

observation is from a mixture of G multivariate normal distributions

with proportions �1, . . . ,�g. We take G¼ 3 corresponding to the three

genotypes: AA, AB and BB. The likelihood for the mixture model is:

Lð�g,�gÞ ¼ Lð�AA, �AB, �BB;�AA,�AB,�BBÞ

¼
Yn
j¼1

XG
g¼1

�g fgðxj; �gÞ,

where, fg is the multivariate normal density function of the gth

component, and �g denotes the corresponding parameters: mean �g and

covariance matrix �g. Maximum likelihood estimates of model

parameters can be obtained via the EM algorithm (Dempster et al.,

1977). The E-step computes a matrix, zjg, which is an estimate of the

conditional probability that the jth SNP belongs to the gth component

of the mixture given the current parameter estimates. The M-step

computes the mixing proportions, means and covariance matrices given

the current probabilities zjg.

The orientation, volume and shape of the component distributions

are determined by the covariance matrix �g, which can be parametrized

in a variety of ways (Banfield and Raftery, 1993). In the simplest case,

where �g ¼ �I, all clusters are spherical and of the same size, and only

one parameter needs to be estimated. Alternatively, when all geometric

features are allowed to vary between clusters, Gðdðdþ 1Þ=2Þ parameters

need to be estimated, where d is the data dimension. We consider

all combinations of (constant, variable) � (orientation, volume, shape)

parameterizations for modeling fitting. To select the best-fitting model

in mixture model clustering, Fraley and Raftery (2002) used the

Bayesian information criterion (BIC) for its appropriateness and good

performance; we also adopt this approach.

Model fitting and selection make recourse to the R library mclust

(Fraley and Raftery, 2002). Because of the large data set size we

randomly sample 2000 data points and apply model-based clustering to

this smaller set. This procedure is repeated 10 times, and final estimates

of means and covariance matrices are obtained by averaging over these

sets. Posterior conditional probabilities of genotype class membership

for each SNP in the entire data set are then computed using these

parameters. The SAMS call for SNP i on array j, clSAMS, ij, is just

the genotype cluster with the highest posterior probability and its

genotyping uncertainty can be obtained by subtracting the highest

posterior probability from 1.

2.4 MASS: multi-array single-SNP

hierarchical clustering

Clustering/classification based on within-SNP intensities forms the

basis of the (Liu et al. 2003) and Rabbee and Speed (2006)

methodologies. We also integrate this approach into our algorithm.

For a given SNP j, let x1j, . . . , xIj denote the I (I¼ 90 for 100K arrays

and I¼ 39 for 500K arrays) samples in the 3D space (�A, �B, �AB).

To assign the I samples into genotype clusters, we apply agglomerative

hierarchical clustering using Euclidean distance and average linkage,

and cut the dendogram according to the number of clusters determined

by clSAMS, ij. clMASS, ij is subsequently determined based on the cluster

membership.

2.5 MAMS by comparative quality scores

A well-classified SNP can be characterized as follows: distances between

different clusters that define genotypes are large and distances among

samples within each cluster are small. The tightness of each cluster

indicates that the SNP exhibits consistent hybridization signals across

the multiple arrays (samples), whereas the separation of clusters shows

that the PM probes successfully detect signals from both alleles

and there is no substantial cross-hybridization in the MM signals.

The silhouette width has been frequently used to assess the quality

of clustering (Rousseeuw, 1987), and for a point l in a cluster,

is defined as

sðl Þ ¼ ½bðl Þ � aðl Þ�=maxðaðl Þ, bðl ÞÞ,

where a(l ) is the average distance from l to all points within the cluster,

and b(l ) is the average distance from l to all data points outside the

cluster. The smaller the within-cluster distance and the larger the

between-cluster distance, the better the point is classified. Therefore,

a large and positive silhouette width signals that the point is well

classified, whereas a negative silhouette width signals the point is

arbitrarily or wrongly classified. We calculate silhouette scores for the

clustering results from both the SAMS (Section 2.3) and MASS

(Section 2.4) procedures, denoted sSAMS, ij and sMASS, ij, respectively. The

resultant MAMS genotype clij is then determined by competitive calls

of clSAMS, ij and clMASS, ij:

clij ¼
clSAMS, ij if sSAMS, ij > 0,
clMASS, ij if sMASS, ij > 0 AND sSAMS, ij < 0:

�
ð4Þ

To assign genotype confidence to MAMS calls, we calculate the

post hoc posterior probabilities of a SNP belonging to the best-fitting

genotype models. The model parameters required for this purpose are

SNP-specific mean � matrices and the genotype-specific variance–

covariance matrices estimated in the M step of SAMS .

3 RESULTS

Figure 1 plots median-summarized intensities for all SNPs on

one of the CEPH Hind III arrays, with color labeling according
to known HapMap genotypes (obtained independently). It is

apparent that the genotype groups fall into three distinct
clusters (Fig. 1a, PMA versus PMB), and demonstrates that the

majority of the SNPs exhibit commensurate allele-specific
hybridization patterns. The top cloud (green) is for genotype

group BB, the one along the diagonal (blue) is AB, and that at

the bottom is AA. Interestingly, genotype group clusters can
be recovered using MM intensities alone (Fig. 1b, MMA versus

MMB), but with no clear separation between clusters. This
indicates that the MM probes retain allele-specific hybridiza-

tion signal. Figure 1c and d display background-adjusted
indices �A and �B and the relative allele index �AB (Equation

1–3). The enhanced separation suggests that accounting for
MM signals aids discrimination. This contrasts with what is

observed in expression arrays, where incorporating MM signals
often has adverse effects on predicting transcript abundance

(Irizarry et al., 2003).

3.1 SAMS

We applied model-based clustering to the points in 3D space

(�AB, �A, �B) for each array. Colinearity among the three indices
is less of a concern in this classification setting than it is in

regression contexts. Since there is extra information in the third
dimension (results not shown), we use all three indices for

downstream classification analysis. Model-based clustering
yields the results shown in Figure 2. The model selected is the

unconstrained model with variable volume, orientation and

MAMS genotyping algorithm for Affymetrix SNP microarrays
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shapes for the three component normal distributions. The

superimposed ellipses in panel (a) are projections of the fitted

model, with axes indicating SDs. Figure 2a also highlights

the points that have uncertainty >0.1 which, as expected,

fall between clusters. Figure 2b confirms that the points

that have higher uncertainty values are also the ones that

are most likely to be misclassified. The overall accuracy

rates for the XbaI and Hind III sets of 100K arrays,

treating the HapMap genotypes as ground truth, are 99.50

and 99.57%, respectively, slightly lower than Affymetrix’s

DM algorithm.

3.2 MASS

The second step in the MAMS procedure takes advantage

of the availability of multiple arrays and investigates the

distribution pattern of the � vectors for each SNP separately.

This proves informative for SNPs exhibiting idiosyncratic

hybridization properties. Such SNPs are difficult to reliably

genotype with any approach (including SAMS) that relies

on combining information from multiple SNPs. Figure 3

underscores the motivation behind the MASS component.

The � vector for all 90 XbaI arrays from two SNPs are

displayed, color coded to indicate genotypes as assigned

by SAMS. Both SNPs show well-formed genotype clusters

among the 90 arrays, however, only the first SNP possesses

a high confidence (uncertainty <0.05) in genotypes assigned

by SAMS. For the second SNP, half of the arrays in the

heterozygous group are misclassified as BB homozygotes.

Close inspection reveals that the misclassification is due to

a collective shift of the �AB signals from zero to negative values.

This shift, consistent among all arrays of the heterozygous

genotype, stems from an intensity bias between the PM

for the two alleles. This collective shift, along with the well-

delineated clusters of this SNP (as characterized by small

within- and large between-cluster distances), suggest that

a SNP-dependent clustering approach may yield more accurate

classifications. Indeed, using MASS as operationalized above,

including inheriting the number of clusters from SAMS,

correctly genotypes all 90 arrays for this SNP.

3.3 MAMS

Even though MASS is more effective with some SNPs than

SAMS as illustrated above, it faces challenges in correctly

classifying SNPs when separation between genotype groups is

insufficient, or when the number of genotype groups is not

evident. To identify and characterize such probes, we employed

silhouette width to quantify within-SNP clustering quality.

Based on the scatterplots used to assign genotypes, we and

others observe that satisfactory classification can be obtained

when the silhouette width is >0.65. Employing this cutoff,

2:6% of the Hind III SNPs do not form good-quality clusters,

and � 5:1% of the SNPs cannot be confidently assigned to

genotypes. For such cases, multiple-array, single-SNP methods

are inferior to multi-SNP based algorithms in terms of genotype

accuracy. The MPAM algorithm, as proposed by Affymetrix

for 10K SNP arrays, invokes many heuristic rules, including

visual inspection to overcome this problem. To avoid making

such arbitrary decisions, and to build a more flexible, robust

and scalable algorithm, we base our genotype calls on SAMS

and correct these only in instances where such calls are

apparently wrongly assigned, as indicated by negative SAMS

silhouette widths in Equation (4). An example is showcased in

Figure 3b. For this SNP, the within-cluster average silhouette

widths from SAMS genotypes are 0.92 (BB), 0.14 (AB) and

0.82 (AA), whereas they are 0.92 (BB), 0.75 (AB) and 0.82 (AA)
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for MASS genotypes. Figure 3c and d display the silhouette

widths for each individual array according to SAMS and

MASS calls, respectively. As noted, the silhouette widths are

much improved for 15 heterozygous samples under MASS

genotyping.

3.4 Accuracy of MAMS genotyping

We measure the accuracy of MAMS genotypes by computing

its concordance with HapMap reference calls and compare it to

DM for 100K arrays. Excluding the HapMap no calls, the

concordance between MAMS and HapMap genotyping is

99.70 and 99.62% for HindIII and XbaI arrays, respectively.

The corresponding concordance between DM and HapMap is

slightly lower: 99.63 and 99.61%. The improvement in accuracy

was achieved by reducing misclassification for known hetero-

zygous bases while maintaining classification accuracy for

known homozygous bases (see Table 1). For both XbaI and

HindIII (100K) arrays, the DM algorithm was integral to probe

design and selection. Hence, performance results for DM are

overly optimistic. To obtain an unbiased comparison and, more

importantly, to test the extensibility of MAMS to a much larger

data set, we evaluate the performance of MAMS using the

recently released 500K data set consisting of 39 CEPH samples

and compare it to both DM and BRLMM. The genotype

concordance between MAMS and HapMap is 99.57%, whereas

BRLMM is 99.59% and DM has a notably worse accuracy of

99.21%. Table 1 displays the relation between concordance and

the call rates calculated using default DM and BRLMM

settings for the three algorithms. We chose a threshold for

MAMS confidence metric that would lead to comparable call

rate and accuracy to those given by default DM and BRLMM

settings.

3.5 SNP quality measurements

Even though during the development of the 100K SNP arrays

Affymetrix conducted probe screening at both the SNP and

quartet level, some SNPs still perform consistently worse than
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others. Of course, one would like to identify such SNPs and to

this end we propose two SNP quality measurements.

3.5.1 Relative signal strength (RSS) Research in expression
arrays indicates that low intensity probes are, in general, not

reliable (Huber et al., 2002). To investigate the effect of signal

strength on genotyping confidence, we devised a measure

‘Relative Signal Strength’ (RSS) for MM-adjusted average

allele signal strength. It is defined as RSS ¼ maxð�A, �BÞ,
the maximum of the two MM adjusted allele signals. Due

to copy number differences between homozygous bases and
heterozygous bases, signals tend to be lower for heterozygous

genotypes. Therefore, we examined the relationship between

RSS and MAMS genotype accuracy separately for homozy-

gotes and heterozygotes in Figure 4a. We divided SNPs

according to their RSS percentiles and calculated the accuracy

within these subsets. For instance, the leftmost points in both

curves show that accuracies of the SNPs whose RSS values are
among the lowest 1% are 94.2 and 97.4% for AA/BB and AB,

respectively. For AA/BB, genotyping accuracy improves

monotonely with increasing RSS and reaches 99.5% for the

top 90% of the SNPs whose PM signals are >2-fold as strong

as MM signals. Most impressively, the accuracy exceeds 99.9%

for the top 60% SNPs. The trend for the heterozygous bases,

however, differs in two ways. First, accuracy peaks at a lower

level (99.6%) reflecting the intrinsic difficulty in classifying
heterozygous genotypes. Second, accuracy drops to an average

of 99.3% for the top 10% of SNPs that have the highest RSS.

3.5.2 Signal bias Further investigation revealed that the
decrease in accuracy for heterozygous SNPs with high RSS is

linked to disparate signal intensities between alleles A and B.

We plotted the absolute values of �AB against MAMS

genotyping accuracies for the heterozygous bases in
Figure 4b. As expected, when the difference between the

intensity of the two alleles is more than 2-fold, accuracy

decreases appreciably. It is particularly strikingly that few

correct calls are made when �AB � 1:5, which translates to a

3-fold difference in signal intensity between alleles A and B.

To characterize the SNPs that display strong signal bias

between the two alleles we conducted a two-sided test on the

vector �AB, ik for the ith SNP under the null hypothesis,
H0 : meanð�AB, ikÞ ¼ 0. Controlling the false discovery rate at

0.1, there are 103 SNPs showing strong signal bias and hence

prone to misclassification. The identification of these SNPs
might have important consequences for other applications

of SNP arrays, for instance, estimation of allele frequencies
from pooled DNA (Meaburn et al., 2006). These

highly allele-imbalanced SNPs might also be the results of

copy-number polymorphisms that warrant further investigation
(Iafrate et al., 2004).

3.6 Array quality measurements

In SNP genotyping experiments, it is important to obtain array
quality measures so that decision on whether to repeat an array

can be made. The single-array, clustering-based algorithm of

SAMS yields a natural quality metric based on the separation of
the three genotype clusters in the 3D � space. If the three clusters
are well separated, the uncertainty measures for an over-
whelmingmajority of the SNPs will be small and their associated

silhouette widths will be large. Accordingly, we devised two

array quality measures: (1) SAMS call rate, which is defined as
the percentage of SNPs having uncertainty values smaller than a

cutoff; (2) median silhouette width summarizing all SNPs on the
array. As all of the 90 HindIII and 39 NspI HapMay arrays

provided by Affymetrix are of superior quality, we used one

HapMap array ( Nsp1 in Fig. 5) and three other Nsp arrays of
suboptimal-quality samples produced at the UCSF Genomics

Core Facility ( Nsp2-4 in Figure 5) to demonstrate the utility of
these two metrics. Note that the array Nsp4 was used as a

negative control by hybridizing a sample to the array that did not

contain any genetic material. Figure 5a depicts the distribution
of �AB values for all four arrays and deterioration of the

separation of the three genotype clusters is apparent and for
Nsp4, as expected, there is no discernable groups. The SAMS call

rates at uncertainty cutoff 0.3 for these four arrays are depicted

in Figure 5b and are, 99.2, 90.4, 75.4 and 46.7%, respectively
and are comparable with DM call rates. A SAMS call

rate (at uncertainty 0.3) higher than 90% suggests an array

Table 1. Comparison of MAMS, DM and BRLMM genotyping concordance with HapMap reference calls based on 90 HindIII and 39 NspI arrays

Array Method Cutoff Call rate (%) Concordance (%)

Overall Hom Het

Nsp I 250K DM 1 100 99.21 (0.28) 99.32 (0.27) 98.95 (0.43)

BRLMM 1 100 99.59 (0.11) 99.65 (0.11) 99.47 (0.14)

MAMS 1 100 99.57 (0.11) 99.67 (0.10) 99.31 (0.16)

DM 0.33 96.27 (1.19) 99.66 (0.08) 99.72 (0.08) 99.50 (0.15)

BRLMM 0.5 99.70 (0.14) 99.69 (0.06) 99.74 (0.06) 99.55 (0.11)

MAMS 0.3 99.37 (0.23) 99.67 (0.07) 99.77 (0.05) 99.45 (0.14)

Hind III 50K DM 1 100 99.63 (0.15) 99.81 (0.05) 99.20 (0.27)

MAMS 1 100 99.70 (0.11) 99.77 (0.13) 99.53 (0.18)

DM 0.33 99.50 (0.32) 99.74 (0.07) 99.84 (0.03) 99.50 (0.23)

MAMS 0.3 99.58 (0.23) 99.74 (0.07) 99.83 (0.06) 99.59 (0.15)

Number in parentheses are standard errors.
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is of high quality.Median silhouette widths in Figure 5 are not as

sensitive as SAMS call rates, but can be used as a reference.

3.7 Prediction accuracy versus number of quartets

The 100K SNP array uses 10 probe quartets with the

polymorphic nucleotide having different shifts from the

center of the probe sequence. We investigated the possibility

of reducing the number of quartets for each SNP since so

doing enables enlargement of the pool of SNPs that could be

queried on an array with the same density. Our strategy

was to randomly choose 1, 3 or 5 quartets for each SNP

and then subject the reduced data to the same MAMS

procedure. Figure 1 in Supplementary Material displays

the distribution of �AB and �A in panels (a) and (b),

respectively. With only one quartet, the parameter �AB from

the three genotypes are still able to form distinctive,

albeit overlapping distributions. However, �A has become

much less discriminatory in separating genotype BB from

AB and AA. The overall accuracies using the 90 CEPH

Hind III arrays from MAMS are 96.73, 98.84, 99.23 and

99.69% for 1, 3, 5 and 10 quartets, respectively. It is therefore

conceivable to use only 5 quartets for genotyping arrays, as

accuracy remains high.

4 DISCUSSION

The MAMS genotying algorithm consists of two components,

which operate at different data levels. The first component is

the SAMS approach. By employing a sampling method,

SAMS is scalable to large SNP arrays, and by operating

within a single array, it does not require large sample sizes to

make genotyping feasible. The algorithm takes about an hour

to run 90 HindIII arrays on a 1.4GHz and 1GB RAM Dell

PC. The running time can be shortened by skipping the model

selection step and directly estimating parameters for the

most complex model. This can be done safely owing to

the abundance of data points. The second component of

MAMS employs a MASS clustering algorithm, analogous to

similar predecessor genotyping algorithms. By adding this

multi-array approach and by employing silhouette scores as

an objective assessment of genotype quality of SAMS and

MASS, MAMS is able to adaptively handle subsets of SNPs

that exhibit idiosyncratic hybridization behavior while retain-

ing genotying accuracies for the multitude of well-behaved

SNPs. Similar operational procedures are also employed in

BRLMM and consequently both algorithms display superior

genotyping accuracy compared to DM. Unlike BRLMM,

which requires specification of parameters for clustering space

transformation and weights for the prior distribution, MAMS

relies on practically no tuning parameters. One could,

however, opt to set a user-determined threshold of the

difference in silhouette scores between SAMS and MASS,

above which the algorithm accepts genotyping results of

MASS. However, the optimal threshold is dependent upon

number of samples and is not recommended when sample size

is small (<30).

Our MAMS genotyping algorithm operates at the SNP

intensity level by summarizing probe level data into self-

normalizing SNP level indices. These � indices are essentially

ratios of intensities, and are therefore not sensitive to

between-array variation. This property obviates the need for
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normalization. However, when cross-lab arrays need to be
integrated, there might be sample preparation effects that differ
from lab to lab that can lead to accentuated between-array
variation (Nannya et al., 2005 and Carvalho et al., 2006). In

such cases, we strongly recommend investigating if batch effects
exist before carrying out a genotyping analysis. Some appro-
priate strategies for normalization are described in Carvalho

et al. (2006). We note that these can incur a substantial
computational burden.
We also found that, unlike expression arrays, incorporating

MM information into the indices is desirable. We applied
MAMS using only the �AB index, which contains no MM
information. This led to a decrease in prediction accuracy from

99.69 to 99.30% for the HindIII arrays. However, because MM
signals retain a large portion of allele-specific hybridization
signals, they need to be robustly summarized across alleles so as
to account for signal disparities between the two alleles. To

illustrate this finding, we compare the densities of various
intensity summaries of allele A in Figure 6a. PMs alone
clearly do not provide sufficient information for genotyping

discrimination, which implies that hybridization intensities of
the PMs are highly SNP dependent. ComparingMM andMMA
adjusted allele A signals (�A¼PMA–MM, black solid line,

versus PMA–MMA, black dotted line) indicates that �A yields

the most discriminatory power. A similar comparison supports

the choice of �AB¼PMA–PMB as shown in Figure 6b.

Analogous findings on the positive effects of MM probes on

SNP genotyping was also reported in LaFramboise et al. (2005).

Even though we and others showcased the values of MMs in

SNP genotyping, MAMS can easily accommodate other indices

that do not make use ofMMprobes, for instance, the 2D indices

used in Affymetrix (2006) and Carvalho et al. (2006). Our

stepwise procedure also makes it flexible with incorporating

other methods in one of the steps, for instance, BRLMM’s

Bayesian component can replace MASS if desired.

The performance of MAMS is superior to DM and

comparable to BRLMM. The improvement over DM is

primarily due to substantial gain in accuracy of heterozygous

bases. However, this improvement still leaves room for further

enhancement, especially for SNPs with MAF. We found that

for SNPs that have a lower than 10% MAF, genotyping

accuracy for MAMS is 0.55% lower than the other MAF

categories (for which accuracies are essentially constant),

whereas for BRLMM, it is 0.35% lower (see Fig. 2 in

Supplementary Material). Even though minor bias against

SNPs with low MAF could be ameliorated by increasing

sample size for both BRLMM and MAMS, how to improve

performance without making recourse to larger samples is an

area of future research.
Two important by-products of MAMS are the two SNP

quality measures that quantify the prediction performance on

a per SNP basis. SNiPer-HD Hua et al. (2006) also furnishes a

quality control metric for each assayed SNP based on silhouette

widths. Such use is best suited to large (hundreds of samples),

genome-wide SNP association studies since the magnitudes of

silhouette scores is highly dependent upon sample size, and is

also biased unfavorably toward SNPs with low MAF. Our use

of silhouette scores differs in that they are employed to identify

potentially misclassified SNPs by SAMS. Further, our SNP

quality measures can identify SNPs that exhibit an inequality of

allele intensities, which renders heterozygous genotypes more

susceptible to misclassification. The biochemical basis for this
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Fig. 5. Array quality measurements. Panel (a) plots the distribution of

�AB and panel (b) plots the two quality metrics for the four arrays.

SAMS call rate was calculated for an uncertainty cutoff at 0.3.
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behavior could include extreme G-C content of the probes,

type of the polymorphic base pair and suboptimal PCR

amplicon size. We investigated the effect of polymorphic

base-pair type on discriminative power as approximated by

�AB. Boxplots of the distribution of �AB for genotypes AB

stratified by the six polymorphic base-pair groups — AC,

AG, AT, CG, CT and GT — are displayed in Supplementary

Figure 3. It is clear that �AB displays systemic trends depending

on the type of the two alleles. When alleles A and B form base

pairs of the same strength, as measured by the number of

hydrogen bonds — i.e. for AT and CG — �AB centers

approximately at zero. However, when there is an inequality

in the number of hydrogen bonds between the two alleles, �AB
leans in the direction of the base that forms more hydrogen

bonds. For instance, when allele A is ‘A’ and allele B is ‘C’,

�AB is more likely to be negative. How this influences discri-

minatory performance is the subject of further investigation.

Interestingly, we did not find an enrichment of ‘AC’,‘AG’,‘CT’

and ‘GT’ polymorphic pairs in the SNPs that show an

imbalance in the signal intensities of the two alleles.
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