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identification rate of 100% on all the employed databases 

and a recognition time less than one second per person.
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1 Introduction

Biometric systems are constantly evolving and promise tech-

nologies that can be used in automatic systems for identify-

ing and/or authenticating a person’s identity uniquely and 

efficiently without the need for the user to carry or remember 

anything, unlike traditional methods like passwords, IDs [1, 

2]. In this regard, iris recognition has been utilized in many 

critical applications, such as access control in restricted 

areas, database access, national ID cards, and financial ser-

vices and is considered one of the most reliable and accu-

rate biometric systems [3, 4]. Several studies have demon-

strated that the iris trait has a number of advantages over 

other biometric traits (e.g., face, fingerprint), which make 

it commonly accepted for application in high reliability and 

accurate biometric systems. Firstly, the iris trait represents 

the annular region of the eye lying between the black pupil 

and the white sclera; this makes it completely protected 

from varied environmental conditions [5]. Secondly, it is 

believed that the iris texture provides a very high degree 

of uniqueness and randomness, so it very unlikely for any 

two iris patterns to be the same, even irises from identical 

twins, or from the right and left eyes of an individual person. 

This complexity in iris patterns is due to the distinctiveness 

and richness of the texture details within the iris region, 

including rings, ridges, crypts, furrows, freckles, zigzag 

patterns [4]. Thirdly, the iris trait provides a high degree 

Abstract Multimodal biometric systems have been widely 

applied in many real-world applications due to its ability to 

deal with a number of significant limitations of unimodal 

biometric systems, including sensitivity to noise, popula-

tion coverage, intra-class variability, non-universality, and 

vulnerability to spoofing. In this paper, an efficient and 

real-time multimodal biometric system is proposed based 

on building deep learning representations for images of 

both the right and left irises of a person, and fusing the 

results obtained using a ranking-level fusion method. The 

trained deep learning system proposed is called IrisCon-

vNet whose architecture is based on a combination of Con-

volutional Neural Network (CNN) and Softmax classifier to 

extract discriminative features from the input image without 

any domain knowledge where the input image represents 

the localized iris region and then classify it into one of N 

classes. In this work, a discriminative CNN training scheme 

based on a combination of back-propagation algorithm and 

mini-batch AdaGrad optimization method is proposed for 

weights updating and learning rate adaptation, respectively. 

In addition, other training strategies (e.g., dropout method, 

data augmentation) are also proposed in order to evaluate 

different CNN architectures. The performance of the pro-

posed system is tested on three public datasets collected 

under different conditions: SDUMLA-HMT, CASIA-Iris-

V3 Interval and IITD iris databases. The results obtained 

from the proposed system outperform other state-of-the-art 

of approaches (e.g., Wavelet transform, Scattering trans-

form, Local Binary Pattern and PCA) by achieving a Rank-1 
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of stability during a person’s lifetime from one year of age 

until death. Finally, it is considered the most secure biom-

etric trait against fraudulent methods and spoofing attacks 

by an imposter where any attempt to change its patterns, 

even with a surgery, is a high risk, unlike the fingerprint 

trait which is relatively easier to tamper with [6]. Despite 

these advantages, implementing an iris recognition system is 

considered a challenging problem due to the iris acquisition 

process possibly acquiring irrelevant parts, such as eyelids, 

eyelashes, pupil, and specular reflections which may greatly 

influence the iris segmentation and recognition outcomes.

Broadly, biometric systems can be divided into two 

main types: unimodal and multimodal biometric systems. 

Unimodal systems are based on using a single source of 

information (e.g., right iris, left iris, or face) to establish the 

person’s identity. Although, these systems have been widely 

employed in government and civilian sensitive applications 

with a high level of security, they often suffer from a num-

ber of critical limitations and problems that can affect their 

reliability and performance. These critical limitations and 

problems include: (1) noise in the sensed trait (2) non-uni-

versality (3) intra-class variations (4) inter-class similarities 

(5) vulnerability to spoof attacks [7, 8]. All these drawbacks 

of unimodal systems can be efficiently addressed by systems 

combining evidence from multiple sources of information 

for identifying a person’s identity, which are then referred to 

as multimodal systems. Quite recently, considerable atten-

tion has been paid to multimodal systems due to their ability 

to achieve better performance compared to unimodal sys-

tems. Multimodal systems can produce sufficient popula-

tion coverage by efficiently addressing problems related to 

the enrollment phase such as non-universality. Furthermore, 

these systems can provide a higher accuracy and a greater 

resistance to unauthorized access by an imposter than uni-

modal systems, due to the difficulty of spoofing or forging 

multiple biometric traits of a legitimate user at the same 

time. More details on addressing the other problems can be 

found in [9]. In general, designing and implementing a mul-

timodal biometric system is a challenging task and a number 

of factors that have a great influence on the overall perfor-

mance need to be addressed, including the cost, resources 

of biometric traits, accuracy, and fusion strategy employed. 

However, the most fundamental issue for the designer of the 

multimodal system is choosing the most powerful biometric 

traits from multiple sources in the system, and finding an 

efficient method of fusing them [10]. In multimodal bio-

metric systems, if the system operates in the identification 

mode, then the output of each classifier can be viewed as 

a list of ranks of the enrolled candidates, which represents 

a set of all possible matches sorted in descending order of 

confidence. In this case, the fusion in the rank level can be 

applied using one of the ranking-level fusion methods to 

consolidate the ranks produced by each individual classifier 

in order to deduce a consensus rank for each person. Then, 

the scores output are sorted in descending order and the 

identity with lowest score is presented as the right person.

In this paper, two discriminative learning techniques are 

proposed based on the combination of a Convolutional Neu-

ral Network (CNN) and the Softmax classifier as a multino-

mial logistic regression classifier. CNNs are efficient and 

powerful Deep Neural Networks (DNNs) which are widely 

applied in image processing and pattern recognition with 

the ability to automatically extract distinctive features from 

input images even without a preprocessing step. Moreo-

ver, CNNs have a number of advantages compared to other 

DNNs, such as fast convergence, simpler architecture, adapt-

ability, and fewer free parameters. In addition, CNNs are 

invariant to image deformations, such as translation, rota-

tion, and scaling [11]. The Softmax classifier is a discrimi-

native classifier widely used for multi-class classification 

purposes. It was chosen for use on top of the CNN because 

it has produced outstanding results compared to other popu-

lar classifiers, such as Support Vector Machines (SVMs)in 

terms of accuracy and speed [12]. In this work, the efficiency 

and learning capability of the proposed techniques are inves-

tigated by employing a training methodology based on the 

back-propagation algorithm with the mini-batch AdaGrad 

optimization method. In addition, other training strategies 

are also used, including dropout and data augmentation 

to prevent the overfitting problem and increase the gener-

alization ability of the neural network [13, 14], as will be 

explained later on. The main contributions of this work can 

be summarized as follows:

1. An efficient and real-time multimodal biometric system 

is proposed based on fusing the results obtained from 

both the right and left iris of the same person using one 

of the ranking-level fusion methods.

2. An efficient deep learning system is proposed called 

IrisConvNet whose architecture is based on a combina-

tion of a CNN and Softmax classifier to extract discrimi-

native features from the iris image without any domain 

knowledge and classify it into one of N classes. To the 

best of our knowledge, this is the first work that investi-

gates the potential use of CNNs for the iris recognition 

system, especially in the identification mode. It is worth 

mentioning that only two papers have been published 

recently [15, 16], that investigate the performance of 

CNNs on the iris image. However, these two works 

have addressed the biometric spoofing detection prob-

lem with no more than three classes available, which 

is considered a simpler problem compared to the iris 

recognition system where N class labels need to be cor-

rectly predicted.

3. A discriminative training scheme equipped with a num-

ber of training strategies is also proposed in order to 
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evaluate different CNN architectures, including the 

number of layers, the number of filters layer, input 

image size. To the best of our knowledge, this is the first 

work that compares the performance of these parameters 

in iris recognition.

4. The performance of the proposed system is tested on 

three public datasets collected under different condi-

tions: SDUMLA-HMT, CASIA-Iris-V3 Interval and 

IITD iris databases. The results obtained have dem-

onstrated that the proposed system outperforms other 

state-of-the-art of approaches, such as Wavelet trans-

form, Scattering transform, Average Local Binary Pat-

tern (ALBP), and PCA.

The remainder of the paper is organized as follows: In 

Sect. 2, we briefly review some related works and the moti-

vations behind the proposed study. Section 3 provides an 

overview of the proposed deep learning approaches. The 

implementation of the proposed iris recognition system 

is presented in Sect. 4. Section 5 shows the experimental 

results of the proposed system. Finally, conclusions and 

directions for future work are reported in the last section.

2  Related works and motivations

In 1993, the first successful and commercially available iris 

recognition system was proposed by Daugman [17]. In this 

system, the inner and outer boundaries of the iris region are 

detected using an integro-differential operator. Afterward 

the iris template is transferred into normalized form using 

Daugman’s rubber sheet method. This is followed by using 

a 2D Gabor filter to extract the iris features and the Ham-

ming distance for decision making. However, as reported in 

[18–20], the key limitation of Daugman’s system is that it 

requires a high-resolution camera to capture the iris image 

and its accuracy significantly decreases under non-ideal 

imaging conditions due to the sensitivity of the iris localiza-

tion stage to noise and different lighting conditions. In addi-

tion to Daugman, many researchers have proposed iris rec-

ognition systems using various methods, among which the 

most notable systems were proposed by Wildes [21], Boles 

and Boashash [22], Lim et al. [23], and Masek [24]. How-

ever, most existing iris recognition systems claim to perform 

well under ideal conditions using developed imagery setup 

to capture high-quality images, but the recognition rate may 

substantially decrease when using non-ideal data. Therefore, 

the iris recognition system is still an open problem and the 

performance of the state-of-the-art methods still has much 

room for improvement.

As is well known, the success of any biometric system 

defined as a classification and recognition system mainly 

depends on the efficiency and robustness of the feature 

extraction and classification stages. In the literature, sev-

eral publications have documented the high accuracy and 

reliability of neural networks, such as the multilayer per-

ceptron (MLP), in many real-world pattern recognition and 

classification applications [25, 26]. Inspired by a num-

ber of characteristics of such systems (e.g., a powerful 

mathematical model, the ability to learn from experience 

and robustness in handling noisy images), neural net-

works are considered as one of the simplest and powerful 

of classifiers [27]. However, traditional neural networks 

have a number of drawbacks and obstacles that need to be 

overcome. Firstly, the input image is required to undergo 

several different image processing stages, such as image 

enhancement, image segmentation, and feature extraction 

to reduce the size of the input data and achieve a satis-

factory performance. Secondly, designing a handcrafted 

feature extractor needs a good domain knowledge and a 

significant amount of time. Thirdly, an MLP has difficulty 

in handling deformations of the input image, such as trans-

lations, scaling, and rotation [28]. Finally, a large number 

of free parameters need to be tuned in order to achieve 

satisfactory results while avoiding the overfitting problem. 

The large number of these free parameters is due to the use 

of full connections between the neurons in a specific layer 

and all activations in the previous layer [29]. To overcome 

these limitations and drawbacks, the use of deep learning 

techniques was proposed. Deep learning can be viewed 

as an advanced subfield of machine learning techniques 

that depend on learning high-level representations and 

abstractions using a structure composed of multiple non-

linear transformations. In deep learning, the hierarchy of 

automatically learning features at multiple levels of repre-

sentations can provide a good understanding of data such 

as image, text, and audio, without depending completely 

on any domain knowledge and handcrafted features [11]. 

In the last decade, deep learning has attracted much atten-

tion from research teams with promising and outstanding 

results in several areas, such as natural language process-

ing (NLP) [30], texture classification [31], object recogni-

tion [14], face recognition [32], speech recognition [33], 

information retrieval [34], traffic sign classification [35].

3  Overview of the proposed approaches

In this section, a brief description of the proposed deep 

learning approach is given, which incorporates two discrimi-

native learning techniques: a CNN and a Softmax classi-

fier. The main aim here is to inspect their internal structures 

and identify their strengths and weaknesses to enable the 

proposal of an iris recognition system that integrates the 

strengths of these two techniques.
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3.1  Convolutional Neural Network

A Convolutional Neural Network (CNN) is a feed-forward 

multilayer neural network, which differs from traditional 

fully connected neural networks by combining a number of 

locally connected layers aimed at automated feature recogni-

tion, followed by a number of fully connected layers aimed 

at classification [36]. The CNN architecture, as illustrated 

in Fig. 1, comprises several distinct layers including sets of 

locally connected convolutional layers (with a specific num-

ber of different learnable kernels in each layer), subsampling 

layers named pooling layers, and one or more fully con-

nected layers. The internal structure of the CNN combines 

three architectural concepts, which make the CNN success-

ful in different fields, such as image processing and pattern 

recognition, speech recognition, and NLP. The first concept 

is applied in both convolutional and pooling layers, in which 

each neuron receives input from a small region of the previ-

ous layer called the local receptive field [27] equal in size to 

a convolution kernel. This local connectivity scheme ensures 

that the trained CNN produces strong responses to capture 

local dependencies and extracts elementary features in the 

input image (e.g., edges, ridges, curves, etc.) which can play 

a significant role in maximizing the inter-class variations and 

minimizing the intra-class variations, and hence increasing 

the Correct Recognition Rate (CRR) of the iris recognition 

system. Secondly, the convolutional layer applies the sharing 

parameters (weights) scheme in order to control the model 

capacity and reduce its complexity. At this point, a form of 

translational invariance is obtained using the same convolu-

tion kernel to detect a specific feature at different locations 

in the iris image [37]. Finally, the nonlinear down sampling 

applied in the pooling layers reduces the spatial size of the 

convolutional layer’s output and reduces the number of the 

free parameters of the model. Together, these characteristics 

make the CNN very robust and efficient at handling image 

deformations and other geometric transformations, such as 

translation, rotation, and scaling [36]. In more detail, these 

layers are: 

• Convolutional layer In this layer, the parameters 

(weights) consist of a set of learnable kernels that are 

randomly generated and learned by the back-propagation 

algorithm. These kernels have a few local connections, 

but connect through the full depth of the previous layer. 

The result of each kernel convolved across the whole 

input image is called the activation (or feature) map, and 

the number of the activation maps is equal to the number 

of applied kernels in that layer. Figure 1 shows a first 

convolution layer consisting of 6 activation maps stacked 

together and produced from 6 kernels independently 

convolved across the whole input image. Hence, each 

activation map is a grid of neurons that share the same 

parameters. The activation map of the convolutional layer 

is defined as:

 

Here, xi(r) and yj(r) are the ith input and the jth output 

activation map, respectively. bj(r) is the bias of the jth out-

put map and * denotes convolution. kij(r) is the convolution 

kernel between the ith input map and the jth output map. 

The ReLU activation function (y = max (0,x)) is used here 

to add non-linearity to the network, as will be explained 

later on.

• Max-pooling layer Its main function is to reduce the spa-

tial size of the convolutional layers’ output representa-

tions, and it produces a limited form of the translational 

invariance. Once a specific feature has been detected by 

the convolutional layer, only its approximate location 

relative to other features is kept. As shown in Fig. 1, each 

depth slice of the input volume (convolutional layer’s 

output) is divided into non-overlapping regions, and for 

each subregion the maximum value is taken. A com-

monly used form is max-pooling with regions of size 

(1)yj(r) = ���

(

0, bj(r) +
∑

i

kij(r)
∗ xi(r)

)

Fig. 1  An illustration of the CNN architecture, where the gray and green squares refer to the activation maps and the learnable convolution ker-

nels, respectively. The cross-lines between the last two layers refer to the fully connected neurons (color figure online)
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(2 × 2) and a stride of 2. The depth dimension of the 

input volume is kept unchanged. The max-pooling layer 

can be formulated as follows:

 

Here, yi
j,k

 represents a neuron in the ith output activation 

map, which is computed over an (s × s) non-overlapping 

local region in the ith input map xi
j,k

.

• Fully connected layers the output of the last convolu-

tional or max-pooling layer is fed to a one or more fully 

connected layers as in a traditional neural network. In 

those layers, the outputs of all neurons in layer (l − 1) 

are fully connected to every neuron in layer l. The output 

y(l)(j) of neuron j in a fully connected layer l is defined 

as follows:

where N(l−1) is the number of neurons in the previous layer 

(l-1), w(l)(i, j) is the weight for the connection from neuron j 

in layer (l − 1) to neuron j in layer l, and b(l)(j) is the bias of 

neuron j in layer l. As for the other two layers, f (l) represents 

the activation function of layer l.

3.2  Softmax regression classifier

The classifier implemented in the fully connected part of the 

system, shown in Fig. 1, is the Softmax regression classifier, 

which is a generalized form of binary logistic regression 

classifier intended to handle multi-class classification tasks. 

Suppose that there are K classes and n labeled training sam-

ples {(x1, y1),…, (xn, yk)}, where xi ∈ Rm is the ith training 

example and yi ∈ {1…,K} is the class label of xi.

Then, for a given test input xi, the Softmax classifier will 

produce a K-dimensional vector (whose elements sum to 

1), where each element in the output vector refers to the 

estimated probability of each class label conditioned on this 

input feature. The hypothesis h
�

(

x
i

)

 to estimate the probabil-

ity vector of each label, can be defined as follows:

(2)yi
j,k

= ���

0≤m,n<s

(

xi
j.s+m,k.s+n

)

(3)y(l)(j) = f (l)
⎛
⎜⎜⎝

N(l−1)�
i=1

y(l−1)(i).w(l)(i, j) + b(l)(j)(3)

⎞⎟⎟⎠

(4)

h
�

�
xi

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

p
�
yi = 1�xi;�

�
p
�
yi = 2�xi;�

�
.

.

.

p
�
yi = K�xi;�

�

⎤
⎥⎥⎥⎥⎥⎥⎦

=

1

∑K

j=1
e
�

T

j
xi

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

e
�

T

1
xi

e
�

T

2
xi

.

.

.

e
�

T

Kxi

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Here, 
(

�1,�2,… ,�
K

)

 are the parameters to be randomly 

generated and learned by the back-propagation algorithm. 

The cost function used for the Softmax classifier is named 

as cross-entropy loss function and can be defined as follows:

Here, 1{·} is a logical function, that is, when a true statement 

is given, 1{·} = 1, otherwise 1{·} = 0. The second term is 

a weight decay term that tends to reduce the magnitude of 

the weights, and prevents the overfitting problem. Finally, 

the gradient descent method is used to solve the minimum 

of the J(�), as follows:

In Eq. 5, the gradients are computed for a single class j 

and for each iteration the parameters will be updated for any 

given training pair (xi, yi) as follows: ���� = �
��� − �∇

�
J(�),  

where the symbol � refers to the learning rate [38].

4  The proposed system

An overview of the proposed iris recognition system is 

shown in Fig. 2. Firstly, a preprocessing procedure is imple-

mented based on employing an efficient and automatic iris 

localization to carefully detect the iris region from the back-

ground and all extraneous features, such as pupil, sclera, 

eyelids, eyelashes, and specular reflections. In this work, the 

main reason for defining the iris area as the input to CNN 

instead of the whole eye image is to reduce the computa-

tional complexity of the CNN. Another reason is to avoid 

the performance degradation of the matching and feature 

extraction processes resulting from the appearance of eyelids 

and eyelashes. After detection, the iris region is transformed 

into a normalized form with fixed dimensions in order to 

allow direct comparison between two iris images with ini-

tially different sizes.

The normalized iris image is further used to provide 

robust and distinctive iris features by employing the CNN 

as an automatic feature extractor. Then, the matching score 

is obtained using the generated feature vectors from the last 

fully connected layer as the input to the Softmax classi-

fier. Finally, the matching scores of both the right and left 

iris images are fused to establish the identity of the person 

whose iris images are under investigation. During the train-

ing phase, different CNN configurations are trained on the 

training set and tested on the validation set to obtain the 

best one with the smallest error that we call IrisConvNet. 

(5)

J(�) = −
1

m

�

m
�

i=1

K
�

j=1

1
�

yi = j
�

log
eT

jxi

∑K

l=1
eT

lxi

�

+
�

2

K
�

i=1

n
�

j=0

�
2

ij

(6)

∇
�j

J(�) = −
1

m

m∑

i=1

[
xi

(
1
{

yi = j
}
− p

(
yi = j|xi;�

))]
+ ��j
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Its performance on test data is then assessed in the testing 

phase.

4.1  Iris localization

Precise localization of the iris region plays an important role 

in improving the accuracy and reliability of an iris recogni-

tion system, as the performance of the following stages of 

the system directly depends on the quality of the detected 

iris region. The iris localization procedure aims to detect 

the two iris region boundaries: the inner (pupil–iris) bound-

ary and the outer (iris–sclera) boundary. However, the task 

becomes more difficult, when parts of the iris are covered 

by eyelids and eyelashes. In addition, changes in the light-

ing conditions during the acquisition process can affect the 

quality of the extracted iris region and then affect the iris 

localization and the recognition outcome. In this section, 

a brief description of our iris localization procedure [39] is 

given where an efficient and automatic algorithm is proposed 

for detecting the inner and outer iris boundaries. As depicted 

in Fig. 3, firstly, a reflection mask is calculated after the 

detection of all the specular reflection spots in the eye image, 

to aid their removal. Then, these detected spots are painted 

using a pre-defined reflection mask and a roifill MATLAB 

function. Next, the inner and outer boundaries are detected 

by employing an efficient enhancement procedure, which is 

based on the 2D Gaussian filter and histogram equalization 

operations in order to reduce the computational complex-

ity of the Circular Hough Transform (CHT), smooth the 

eye image and to enhance the contrast between the iris and 

sclera region. This is followed by applying a coherent CHT 

to obtain the center coordinates and radius of the pupil and 

iris circles. Finally, the upper and lower eyelids boundaries 

are detected using a fast and accurate eyelid detection algo-

rithm, which employs an anisotropic diffusion filter with 

Radon transform to fit them as straight lines. For further 

details on the iris localization procedure, refer to Reference 

[39].

4.2  Iris normalization

Once, the iris boundaries have been detected, iris normali-

zation is implemented to produce a fixed dimension fea-

ture vector that allows comparison between two different 

iris images. The main advantage of the iris normalization 

process is to remove the dimensional inconsistencies that 

can occur due to stretching of the iris region caused by pupil 

dilation with varying levels of illumination. Other causes 

of dimensional inconsistencies include, changing imaging 

distance, elastic distortion in the iris texture that can affect 

Fig. 2  An overview of the 

proposed multi-biometric iris 

recognition system

Fig. 3  Overall stages of the proposed iris localization procedure
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the iris matching outcome, rotation of the camera or eye 

and so forth. To address all these mentioned issues the iris 

normalization process is applied using Daugman’s rubber 

sheet mapping to transform the iris image from Cartesian 

coordinates to polar coordinates, as shown in Fig. 4. Daug-

man’s mapping takes each point (x, y) within the iris region 

to a pair of normalized non-concentric polar coordinates 

(r, θ) where r is on the interval [0, 1] and θ is the angle on 

the interval [0, 2π]. This mapping of the iris region can be 

defined mathematically as follows:

Here I(x, y) is the intensity value at (x, y) in the iris region 

image. The parameters x
p
, x

l
, y

p
, and yl are the coordinates 

of the pupil and iris boundaries along the � direction.

4.3  Deep learning for iris recognition

Once a normalized iris image is obtained, feature extrac-

tion and classification is performed using a deep learning 

approach that combines a CNN and a Softmax classifier. 

In this work, the structure of the proposed CNN involves a 

combination of convolutional layers and subsampling max-

pooling. The top layers in the proposed CNN are two fully 

connected layers for the classification task. Then, the output 

of the last fully connected layer is fed into the Softmax clas-

sifier, which produces a probability distribution over the N 

class labels. Finally, a cross-entropy loss function, a suitable 

loss function for the classification task, is used to quantify 

the agreement between the predicted class scores and the tar-

get labels and calculate the cost value for different configura-

tions of CNN. In this section, the proposed methodology for 

finding the best CNN configuration to be used for the iris 

recognition task is explained. Based on domain knowledge 

from the literature, there are three main aspects that have a 

great influence on the performance of a CNN, which need 

(7)

I(x (r,�), y (r,�))→ I (r,�)

x (r,�) = (1 − r)xp(�)rxl(�)

y (r,�) = (1 − r)yp(�) ryl(�)

to be investigated. These include: (1) training methodology, 

(2) network configuration or architecture (3) input image 

size. The performance of some carefully proposed training 

strategies, including the dropout method, AdaGrad method, 

and data augmentation, is investigated as part of this work. 

These training strategies have a significant role in prevent-

ing the overfitting problem during the learning process and 

increasing the generalization ability of the neural network. 

These three aspects are described in more detail in the next 

section.

4.3.1  Training methodology

In this work, all of the experiments were carried out, given a 

particular set of sample data, using 60% randomly selected sam-

ples for training and the remaining 40% for testing. The training 

methodology as in [40, 41], starts training a particular CNN 

configuration by dividing the training set into four sets after 

the data augmentation procedure is implemented: three sets are 

used to train the CNN and the last one is used as a validation 

set for testing the generalization ability of the network during 

the learning process and storing the weights configuration that 

performs best on it with minimum validation error, as shown in 

Fig. 5. In this work, the training procedure is performed using 

the back-propagation algorithm with the mini-batch AdaGrad 

optimization method introduced in [42], where each set of the 

three training data is divided into mini-batches and the training 

errors are calculated upon each mini-batch in the Softmax layer 

and get back-propagated to the lower layers.

After each epoch (passing through the entire training 

samples), the validation set is used to measure the accuracy 

of the current configuration by calculating the cost value 

and the Top-1 validation error rate. Then, according to the 

AdaGrad optimization method, the learning rate is scaled 

by a factor equal to the square root of the sum of squares of 

the previous gradients as shown in Eq. 8. An initial learn-

ing rate must be selected; hence, two of the most common 

used learning rate values are analyzed herein, as shown in 

(Sect. 5.2.1). To avoid the overfitting problem, the training 

procedure is stopped as soon as the cost value and the error 

on the validation set start to rise again, which means that 

the network starts to overfit the training set. This process 

is one of the regularization methods called the early stop-

ping procedure. In this work, different numbers of epochs 

are investigated as explained in (Sect. 5.2.1). Finally, after 

the training procedure is finished, the testing set is used to 

measure the efficiency of the final configuration obtained in 

predicting the unseen samples by calculating the identifica-

tion rate at Rank-1 as an optimization objective, which is 

maximized during the learning process. Then, the Cumula-

tive Match Characteristic (CMC) curve is used to visualize 

the performance of the best configuration obtained as the 
Fig. 4  Daugman’s rubber sheet model to transfer the iris region from 

the Cartesian coordinates to the polar coordinates
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iris identification system. The main steps of the proposed 

training methodology are summarized as follows:

1. Split the dataset into three sets: Training, Validation and 

Test set.

2. Select a CNN architecture and a set of training param-

eters.

3. Train the each CNN configuration using the training set.

4. Evaluate each CNN configuration using the validation 

set.

5. Repeat steps 3 through 4 using N epochs.

6. Select the best CNN configuration with minimal error 

on the validation set.

7. Evaluate the best CNN configuration using the test set.

4.3.2  Network architecture

Once the parameters of the training methodology are deter-

mined (e.g., learning rate, number of epochs, etc.), it is used 

to identify the best network architecture. From the literature, 

it appears that choosing the network architecture is still an 

open problem and is application dependent. The main con-

cern in finding the best CNN architecture is the number of 

the layers to employ transforming from the input image to 

a high-level feature representations, along with the number 

of convolution filters in each layer. Therefore, some CNN 

configurations using the proposed training methodology 

are evaluated by varying the number of convolutional and 

pooling layers, and the number of filters in each layer, as 

explained in (Sect. 5.2.2). To reduce the number of configu-

rations to be evaluated, the number of the fully connected 

layers is fixed at two as in [43, 44], and the size of filters for 

both the convolutional and pooling layers is kept as the same 

as in [15] except in the first convolutional layer where it is 

set to (3 × 3) pixels, to avoid a rapid decline in the amount 

of input data.

4.3.3  Input image size

The input image size is one of the hyper-parameters in the 

CNN that has a significant influence in the speed and the 

accuracy of the neural network. In this work, the influence of 

input image size is investigated using the sizes (64 × 64) pix-

els and (128 × 128) pixels (generated from original images 

of larger size as described in the Data Augmentation section 

below), given that for lower values than the former, the iris 

Fig. 5  An overview of the proposed training methodology to find the best CNN architecture. Where CRR refers to the correction recognition 

rate at Rank-1
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patterns become invisible, while for higher values than the 

latter, the larger memory requirements and higher compu-

tational costs are potential problems. In order to control the 

spatial size of the input and output volumes, a zero padding 

(of 1 pixel) is applied only to the input layer.

4.3.4  Training strategies

In this section, a number of carefully designed training tech-

niques and strategies are used to prevent overfitting during 

the learning process and increase the generalization ability 

of the neural network. These techniques are: 

1. Dropout method this is a regularization method recently 

introduced by Srivastava et al. [13] that can be used to 

prevent neural networks from overfitting the training set. 

The dropout technique is implemented in each training 

iteration by completely ignoring individual nodes with 

probability of 0.5, along with their connections. This 

method decreases the complex coadaptations of nodes 

by preventing the interdependencies from emerging 

between them. The nodes which are dropped do not par-

ticipate in both forward and backward passing. There-

fore, as shown in Fig. 6b, only a reduced network is left 

and is trained on the input data in that training itera-

tion. As a result, the process of training a neural net-

work with n nodes will end up with a collection of (2n) 

possible “thinned” neural networks that share weights. 

This allows the neural network to avoid overfitting, 

learn more robust features that generalize well to new 

data, and speed up the training process. Furthermore, 

it provides an efficient way of combining many neu-

ral networks with different architectures, which make 

the combination more beneficial. In the testing phase, 

it is not practical to average the predictions from (2n) 

“thinned” neural networks, especially for large value 

of n. However, this can be easily addressed by using a 

single network without dropout and with the outgoing 

weights of each node multiplied by a factor of 0.5 to 

ensure that the output of any hidden node is the same as 

in the training phase. In this work, the dropout method 

is applied only to the two fully connected layers, as they 

include most of the parameters in the proposed CNN 

and are more vulnerable to overfitting. More informa-

tion on the dropout method can be found in [13].

2. AdaGrad algorithm in the iris recognition system, infre-

quent features can significantly contribute to improving 

the accuracy of the system through minimizing intra-class 

variations and inter-class similarities, which is caused 

by several factors, including pupil dilation/constriction, 

eyelid/eyelash occlusion, and specular reflections spots. 

However, in the standard Stochastic Gradient Descent 

(SGD) algorithm for learning rate adaptation, both infre-

quent and frequent features are weighted equally in terms 

of learning rate, which means that the influence of the 

infrequent features is practically discounted. To counter 

this, the AdaGrad algorithm is implemented to increase 

the learning rate for more sparse data, which is translated 

into a larger update for infrequent features, and decreased 

learning rate for less sparse data, which is translated into 

a smaller update for the frequent features. The AdaG-

rad algorithm also has the advantage of being simpler to 

implement than the SGD algorithm [42]. The AdaGrad 

technique has been shown to improve the convergence 

performance stability of neural networks over the SGD in 

many different applications (e.g., NLP, document classi-

fication) in which the infrequent features are more useful 

than the more frequent features. The AdaGrad algorithm 

computes the learning rate η for every parameter 
(

�
i

)

 at 

each time step t based on the previous gradients of the 

same parameter as follows:

Here, gt,i = ∇
�
J
(

�i

)

 is the gradient of the objective function 

at time step t, and Gt,ii =
∑t

r=1
g2

t,i
 is the diagonal matrix 

where each diagonal element (i, i) is the sum of the squares 

of the gradients for the parameter 
(

�
i

)

 at time step t. Finally, 

e is a small constant to avoid division by zero. More details 

on the AdaGrad algorithm can be found in [42].

(8)�
(t+1)

i
= �

(t)

i
−

�
√

Gt,ii + e
. gt,i

Fig. 6  An illustration of applying the dropout method to a standard 

neural network: a A standard neural network with 2 hidden layers 

before applying dropout method. b An example of a reduced neural 

network after applying dropout method. The crossed units and the 

dashed connections have been dropped



792 Pattern Anal Applic (2018) 21:783–802

1 3

3. Data augmentation it is well known that DNNs need 

to be trained on a large number of training samples to 

achieve satisfactory prediction and prevent overfitting 

[45]. Data augmentation is a simple and commonly used 

method to artificially enlarge the dataset by methods 

such as random crops, intensity variations, horizontal 

flipping. In this work, data augmentation is imple-

mented similarly to [14]. Initially, a given rectangular 

image is rescaled so that the longest side is reduced to 

the length of the shortest side instead of cropping out 

a square central patch from the rectangle image as in 

[14], which can lose crucial features from the iris image. 

Then, five image regions are cropped from the rescaled 

image corresponding to the four corners and central 

region. In addition, their horizontally flipped versions 

are also acquired. As a result, ten image patches are gen-

erated from each input image. During prediction time, 

the same ten image patches are extracted from each 

input image, and the mean of the predictions on the ten 

patches is taken at the Softmax layer. In this paper, the 

performance of the CNN is evaluated using two different 

input image sizes so the data augmentation procedure is 

implemented twice, once for each size. Image patches of 

size (64 × 64) pixels are extracted from original input 

images of size (256 × 70) pixels, and image patches of 

size (128 × 128) pixels are extracted from original input 

images of size (256 × 135) pixels.

4. The ReLU activation function is applied on the top of 

the convolutional and fully connected layers in order to 

add non-linearity to the network. As reported by Kriz-

hevsky [14], the ReLU f (x) = ���(0, x) has been found 

to be crucial to learning when using DNNs, especially 

for CNNs, compared to other activation functions, such 

as the sigmoid and tangent. In addition, it results in neu-

ral network training several times faster than with other 

activation functions, without making a significant dif-

ference to generalization accuracy.

5. Weight decay is used in the learning process as an addi-

tional term in calculating the cost function and updating 

the weights. Here, the weight decay parameter is set to 

0.0005 as in [46].

4.4  Ranking-level fusion

In this paper, rank level fusion is employed where each indi-

vidual classifier produces a ranked list of possible matching 

scores for each user. (A higher rank indicates a better match). 

Then these ranks are integrated to create a new ranking list 

that is used to make the final decision on user identity. Sup-

pose, that there are P persons registered in the database and 

the number of employed classifiers is C. Let ri, j is the rank 

assigned to jth person in the database by the ith classifier, 

i = 1,…,C and j = 1,…,P. Then, the consensus ranks R
c
 for 

a particular class are obtained using the following fusion 

methods:

1. Highest rank method is a useful method for fusing the 

ranks only when the number of registered users is large 

compared to the number of classifiers, which is usually 

the scenario in the identification system. The consensus 

rank of a particular class is computed as the lowest rank 

generated by different classifiers (minimum ri, j value) 

as follows:

The main advantage of this method is the ability of 

exploiting the strength of each classifier effectively, where as 

long as there is at least one classifier that assigns a high rank 

ri, j value to the right identity, it is very likely that the right 

identity will receive the highest rank value after the reorder-

ing process. However, the final ranking list may have one or 

more ties that can negatively affect the accuracy of the final 

decision. In this work, the ties are broken by incorporating 

a small factor epsilon (e), as described in [47] as follows:

Here,

Here, the value of e
i
 is ensured to be small by assigning a 

large value to parameter K.

2. Borda count method using this fusion method, the con-

sensus rank of a query identity is computed as the sum 

of ranks assigned by individual classifiers indepen-

dently, as follows:

The main advantage of the Borda count method is that it 

is very simple to implement without the need for any train-

ing phase. However, this method is highly susceptible to the 

impact of weak classifiers, as it supposes that all the ranks 

produced by the individual classifiers are statistically inde-

pendent and their performance is equally well [48].

3. Logistic regression method is a generalized form of the 

Borda count method to solve the problem of the uniform 

performance of the individual classifiers. The consensus 

(9)Rc = ���
1≤i≤C

ri,j

(10)Rc = ���
1≤i≤C

ri,j + ei

(11)ei =

C
∑

i=1

ri,j∕K

(12)Rc =

C
∑

i=1

ri,j
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rank is calculated by sorting the users according to the 

summation of their ranks obtained from individual clas-

sifiers, as follows:

Here, w
i
 is the weight to be assigned to the ith classifier, 

i = 1,…,C, is determined by logistic regression. In this work, 

the w
i
 is assigned to be 0.5 for both the left and right iris 

image. This method is very useful in the presence of dif-

ferent individual classifiers with significant differences in 

their performance. However, a training phase is needed to 

identify the weight for each individual classifier, which can 

be computationally expensive.

5  Experimental results

In this section, a number of extensive experiments to assess 

the effectiveness of the proposed deep learning approach for 

iris recognition on the most challenging iris databases cur-

rently available in the public domain are described. Three 

iris databases, namely, SDUMLA-HMT [49], CASIA-Iris-

V3 Interval [50], and IITD [51] are employed as testing 

benchmarks and for comparing the results obtained with 

current state-of-the-art approaches. In most cases, the iris 

images in these databases were captured under different 

conditions of pupil dilation, eyelids/eyelashes occlusion, 

head-tilt, slight shadow of eyelids, specular reflection, etc. 

The SDUMLA-HMT iris database comprises 1060 images 

taken from 106 subjects with each subject providing 5 left 

and 5 right iris images. In this database, all images were 

captured using an intelligent iris capture device with the dis-

tance from the device to the eye between 6 cm and 32 cm. To 

the best of our knowledge, this is the first work that uses all 

the subjects in this database for the identification task. The 

CASIA-Iris-V3 Interval database comprises 2566 images 

from 249 subjects, which were captured with a self-devel-

oped close-up iris camera. In this database, the number of 

images of each subject differs and 129 subjects have less 

than 14 iris images. These were not used in the experiments. 

(13)Rc =

C
∑

i=1

wi∗ri,j

The IIT Delhi Iris database comprises 1120 iris images cap-

tured from 224 subjects (176 males and 48 females), who 

are students and staff at IIT Delhi, New Delhi, India. For 

each person 5 iris images for each eye were captured using 

three different cameras: JIRIS, JPC1000, and digital CMOS 

cameras. The basic characteristics of these three databases 

are summarized in Table 1.

5.1  Iris localization accuracy

As explained in a previous paper [39], the performance 

of the proposed iris localization model was tested on two 

different databases, and showed encouraging results with 

overall accuracies of 99.07 and 96.99% on the CASIA Ver-

sion 1.0 and the SDUMLA-HMT databases, respectively. 

The same evaluation procedure is applied herein in order 

to evaluate the performance of the iris localization model 

on the CASIA-Iris-V3 and IITD databases. The iris locali-

zation is considered accurate if and only if two conditions 

are fulfilled. Firstly, the inner and outer iris boundaries are 

correctly localized. Secondly, the upper and the lower eye-

lids boundaries are correctly detected. Finally, the accuracy 

rate of the proposed iris localization method is computed 

as follows:

As can be seen from Table 2, results with an overall accu-

racy of 99.82 and 99.87%, obtained with times of 0.65 s and 

0.51 s, were achieved applying the proposed iris localization 

model on the CASIA-Iris-V3 and IITD database, respec-

tively. The proposed model managed to properly detect the 

iris region from 1677 out of 1680 eye images in the CASIA-

Iris-V3 Interval database, while 2237 iris images are prop-

erly detected out of 2240 eye images in the IITD database. 

The incorrect iris localization results have been taken into 

account manually to ensure that all the subjects have the 

same number of images for the subsequent evaluation of the 

overall proposed system.

Also, the performance of the proposed model is compared 

against other existing approaches. The results obtained dem-

onstrate that the proposed system outperforms the indicated 

state-of-the-art of approaches in terms of accuracy in 14 out 

(14)

Accurcy Rate =
Correctly Localized Iris Images

Total Number
× 100

Table 1  The characteristics of 

the adopted iris image databases
Property SDUMLA-HMT CASIA-Iris-V3 IITD

Number of classes 106 120 224

Samples per subject 5 right and 5 left 7 right and 7 left 5 right and 5 left

Number of images 1060 images 1680 images 2240 images

Image size (768 × 576) pixels (320 × 280) pixels (320 × 240) pixels

Image format BMP JPEG BMP



794 Pattern Anal Applic (2018) 21:783–802

1 3

of 14 cases and in terms of running time in 6 out of 9 cases, 

where this information is available.

5.2  Finding the best CNN

In this section, extensive experiments performed to find the 

best CNN model (called IrisConvNet) for the iris recognition 

system, are described. Based on the domain knowledge in 

the literature, sets of training parameters and CNN configu-

rations, as illustrated in Fig. 7, were evaluated to study their 

behavior and to obtain the best CNN. Then, the performance 

of this best system was used later on to make comparisons 

with current state-of-the-art iris recognition systems.

5.2.1  Training parameters evaluation

As mentioned previously, a set of training parameters is 

needed in order to study and analyze their influence on the 

performance of the proposed deep learning approach and to 

design a powerful network architecture. All these experi-

ments were conducted on the three different iris databases, 

and the parameters with the best performance (e.g., low-

est validation error rate and best generalization ability) were 

kept to be used later in finding the best network architecture. 

For an initial network architecture, the Spoofnet architecture 

as described in [15] was used with only a few changes. The 

receptive field in the first convolutional layer was set to be 

(3 × 3) pixels rather than (5 × 5) pixels to avoid a rapid 

decline in the amount of input data, and the output of the 

Softmax layer was set to N units (the number of classes) 

instead of 3 units as in the Spoofnet. Finally, the (64 × 64) 

input image size rather than (128 × 128) was used in these 

experiments with a zero padding of 1 pixel value applied 

only to the input layer. The first evaluation was to analyze 

the influence of the learning rate parameter using the AdaG-

rad optimization method. Based on the proposed training 

methodology, an initial learning rate of  10−3 was employed 

as in [62]. However, we observed that the model takes too 

long to converge because the learning rate was too small and 

it reduced continuously after each epoch according to the 

AdaGrad method. Therefore, for all the remaining experi-

ments, an initial learning rate of  10−2 was used. For the first 

time, the initial number of epochs was set to 100 epochs 

as in [14]. After that, larger numbers of epochs were also 

investigated using the same training methodology, including 

200, 300, 400, 500 and 600 epochs. The CMC curves shown 

Table 2  Comparison of the 

proposed iris localization model 

with previous approaches

Bold values indicate the highest obtained recognition rates

Approach CASIA-Iris-V3 IITD

Accuracy (%) Time (s) Accuracy (%) Time (s)

Jan et al. [52] 99.50 7.75 99.40 8.52

Wang et al. [53] 96.95 165.4 96.07 145.4

Mahmoud and Ali [54] 99.18 – – –

Uhl et al. [55] 74.00 0.21 – –

Ugbaga et al. [56] 98.90 – – –

Umer et al. [57] 95.87 0.89 98.48 0.77

Wild et al. [58] 98.13 – 97.60 –

Aydi et al. [59] 96.51 9.049 – –

Pawar et al. [60] 96.88 – – –

Mehrotra et al. [61] 99.55 0.396 – –

Proposed iris localization 99.82 0.62 99.87 0.51

Fig. 7  An illustration of the IrisConvNet model for iris recognition
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Fig. 8  CMC curves for epoch number parameter evaluation using three different iris databases: a SDUMLA-HMT, b CASIA-Iris-V3, and c 

IITD
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in Fig. 8 are used to visualize the performance of the last 

obtained model on the validation set. It can be seen that as 

long as the number of epochs is increased, the performance 

of the last model gets better. However, when 600 epochs 

were evaluated, it was observed that the obtained model 

started overfitting the training data and poor results were 

Table 3  Rank-1 identification 

rates obtained for different CNN 

architectures using the input 

image size of (64 × 64) pixels. 

Each configuration has either 

3 or 4 layers and indicates the 

number of filters in each layer

Bold values indicate the highest obtained recognition rates

Configuration SDUMLA-HMT CASIA-Iris-V3 IITD

R. Iris L. Iris R. Iris L. Iris R. Iris L. Iris

[6 6  6]C1 46.30 44.71 7.79 0.85 0.44 0.44

[6 6  20]C2 48.77 44.33 0.83 0.84 0.45 0.46

[6 20  6]C3 48.96 40.94 76.60 69.46 0.47 0.44

[6 20  36]C4 46.22 46.41 62.69 60.89 47.76 0.46

[6 20 36  36]C5 86.50 92.73 87.68 96.79 88.04 86.47

[6 20 36  64]C6 93.30 96.22 94.64 97.62 84.46 82.45

[6 20 36  96]C7 97.54 95.94 96.84 98.21 94.82 94.15

[6 20 36  128]C8 95.66 98.68 96.85 98.57 95.54 96.56

[6 20 36  150]C9 98.88 97.64 98.04 98.27 95.94 96.74

[6 20 36  256]C10 98.77 98.08 98.87 99.10 97.00 97.77

[6 32 36  64]C11 94.15 98.67 98.33 97.02 99.10 99.12

[6 32 36  96]C12 99.25 99.43 99.52 97.86 99.02 99.50

[6 32 36  128]C13 99.15 99.71 99.29 99.64 99.33 99.64

[6 32 36  150]C14 98.68 98.08 99.16 99.11 99.28 98.88

[6 32 36  256]C15 99.05 98.96 99.70 99.64 99.46 99.50

[6 32 64  256]C16 99.62 100 99.94 99.88 99.82 99.92

Table 4  Rank-1 identification 

rates obtained for different 

CNN architectures using the 

input image size of (128 × 128) 

pixels. Each configuration has 

either 4 or 5 layers and indicates 

the number of filters in each 

layer

Bold values indicate the highest obtained recognition rates

Configuration SDUMLA-HMT CASIA-Iris-V3 IITD

R. Iris L. Iris R. Iris L.Iris R. Iris L. Iris

[6 6 16  16]C1 0.97 0.94 45.35 11.78 34.50 15.89

[6 16 16  16]C2 56.79 56.45 59.46 66.13 40.80 37.86

[6 16 16  32]C3 57.55 71.51 72.38 72.20 46.38 34.06

[6 16 32  32]C4 78.77 80.28 55.54 57.97 94.41 94.73

[6 16 32  64]C5 85.94 64.76 96.13 94.70 97.67 95.93

[6 16 32  96]C6 92.26 95.18 96.66 97.14 98.48 98.30

[6 16 32  128]C7 93.58 94.52 98.51 98.21 96.07 98.12

[6 16 32  256]C8 95.75 95.66 98.15 98.92 98.48 97.36

[6 32 32  32]C9 32.54 66.13 82.38 94.70 85.17 84.11

[6 32 32  64]C10 92.07 81.41 92.55 92.73 89.19 93.83

[6 32 32  96]C11 93.77 92.16 97.32 98.09 96.25 85.71

[6 32 32  128]C12 94.52 92.35 97.02 98.09 96.25 96.60

[6 32 32  256]C13 93.49 92.92 96.90 96.93 94.91 93.48

[6 32 64  256]C14 94.53 93.02 99.17 97.56 97.37 96.25

[6 16 32 32  64]C15 96.42 80.09 95.23 99.04 98.43 98.17

[6 16 32 32  96]C16 97.45 93.27 99.28 99.34 98.34 98.83

[6 16 32 32  128]C17 98.87 96.98 99.34 99.40 99.73 96.92

[6 16 32 32  256]C18 98.49 97.83 99.22 99.64 97.09 99.28

[6 16 32 64  64]C19 98.49 91.04 92.92 96.90 99.78 99.64

[6 16 32 64  96]C20 98.58 98.39 99.64 99.82 99.11 98.75

[6 16 32 64  128]C21 99.43 99.71 99.16 99.82 99.50 95.76

[6 16 32 64  256]C22 99.43 99.62 99.88 100 99.41 98.75

[6 16 64 64  256]C23 97.07 99.39 99.40 99.64 99.91 99.15
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obtained on the validation set. Therefore, 500 epochs were 

taken as the initial number of epochs in our assessment pro-

cedure for all remaining experiments, since the learning pro-

cess still achieved good generalization without overfitting.

5.2.2  Network architecture and input image size evaluation

The literature on designing powerful CNN architectures 

shows that this is an open problem and usually approached 

using previous knowledge of related applications. Gener-

ally, the CNN architecture is related to the size of the input 

image. A smaller network architecture (a smaller number of 

layers) is required for a small image size to avoid degrading 

the quality of the last generated feature vectors by increasing 

the number of layers, while a deeper network architecture 

can be employed for input images with a larger size along 

with a large number of training samples to increase the gen-

eralization ability of the network by learning more distinc-

tive features from the input samples. In this study, when 

the training parameters have been determined, the network 

Table 5  The average training time of the proposed system

Database (64 × 64) (128 × 128)

SDUMLA-HMT 6 h and 30 min 20 h and 33 min

CASIA-Iris-V3 9 h and 18 min 53 h and 14 min

IITD 17 h and 33 min 60 h and 46 min

Fig. 9  CMC curves for IrisConvNet for iris identification: a SDUMLA-HMT, b CASIA-Iris-V3, and c IITD
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architecture and input image size were evaluated simulta-

neously by performing extensive experiments using differ-

ent network configurations. Based on the proposed training 

methodology, our evaluation strategy starts from a relatively 

small network (three layers), and then the performance of 

the network was observed by adding more layers and filters 

within each layer. In this work, the influence of input image 

size was investigated using image sizes of (64 × 64) pixels 

and (128 × 128) pixels, each with two different network 

configurations. For example, the (64 × 64) size was assessed 

using network topologies with 3 and 4 convolutional lay-

ers, while the (128 × 128) size was assessed using network 

topologies with 4 and 5 convolutional layers.

The results obtained by applying the proposed system 

on the three different iris databases with image sizes of 

(64 × 64) pixels and (128 × 128) pixels are presented in 

Tables 3 and 4, respectively. As can be seen in these tables, 

the number of the filters in each layer is tending to increase 

as one moves from the input layer toward the higher layers, 

as has been done in previous work in the literature, to avoid 

memory issues and control the model capacity. In general, it 

has been observed that the performance of a CNN improves 

as the number of the employed layers is increased along 

with the number of the filters per each layer. For instance, 

in Table 3 the recognition rate dramatically increased for all 

databases by adding a new layer on the top of the network. 

However, adding a new layer on the top of the network and/

or altering the number of the filters within each layer should 

be carefully controlled. For instance, in Table 4, it can be 

seen that adding a new layer led to a decrease in the recogni-

tion rate from 93.02 to 80.09% for the left iris image in the 

SDUMLA-HMT database, and from 99.17 to 95.23% for the 

right iris image in the CASIA-Iris-V3 database. In addition, 

changing the number of filters within each layer has a sig-

nificant influence on the performance of the CNN. Examples 

of this are shown in Table 3 (e.g., configuration number 10 

and 11), and Table 4 (e.g., configuration number 18 and 19) 

where altering the number of filters in some layers has led 

to either an increase or a decrease in the recognition rate.  

As indicated in Fig. 7, we prefer the last CNN configura-

tion in Table 3 as the adopted CNN architecture for identi-

fying a person’s identity for several reasons. Firstly, it pro-

vides the highest identification rate at Rank-1 for both the 

left and right iris images for all the employed databases with 

less complexity (fewer parameters). Secondly, although this 

model has given promising results using an input image of 

size (128 × 128) pixels, the input image size might be a 

major constraint in some applications; hence, the smaller 

one is used as the input image size for IrisConvNet. In addi-

tion, the training time required to train such a configuration 

is less than one day, as shown in Table 5. Finally, a larger 

CNN configuration along with a larger image size drives 

significant increases in memory requirements and compu-

tational complexity. The performance of IrisConvNet for 

iris identification for both employed input images sizes, is 

expressed through the CMC curve, as shown in Fig. 9. In 

this work, the running time was measured by implement-

ing the proposed approaches using a laboratory in Brad-

ford University consisting of 25 PCs with the Windows 8.1 

operating system, Intel Xeon E5-1620 CPUs and 16 GB of 

RAM. The system code was written to run in MATLAB 

Table 6  Rank-1 identification 

rate (%) of the proposed system 

on iris databases

Database Right iris Left iris Rank Level Fusion methods

Highest ranking Borda count Logistic 

regres-

sion

SDUMLA-HMT 99.62 100 100 100 100

CASIA-Iris-V3 99.94 99.88 100 100 100

IITD 99.82 99.92 100 100 100

Table 7  Comparison of the proposed system with other existing 

approaches using two different iris databases

Database Approach CRR (%) Time (s)

CASIA-Iris-V3 Ma et al. [63] 99.85 –

Vatsa et al. [64] 97.21 1.82

Kerim and Mohammed [65] 99.40 2

Umer et al. [57] 100 0.98

De Costa and Gonzaga [66] 99.10 –

Ng et al. [67] 98.45 –

Zhang and Guan [68] 99.60 –

Roy et al. [69] 97.21 0.995

Li et al. [70] 99.91 –

Bharath et al. [71] 84.17 0.44

IrisConvNet System 100 0.89

IITD Umer et al. [57] 99.52 1.11

Bharath et al. [71] 95.93 0.10

Nalla and Chalavadi [72] 86.00 –

Elgamal and Al-Biqami [73] 99.5 –

Minaee et al. [74] 99.20 –

Dhage et al. [75] 97.81 93.24

Abhiram et al. [76] 97.12 –

IrisConvNet system 100 0.81
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R2015a and later versions. Table 5 shows the overall average 

of the training time of the proposed system, which mainly 

depends on the input image size, the number of subjects in 

each database, and the CNN architecture.  

5.3  Fusion methods evaluation

Used as an iris identification system, each time a query 

sample is presented, the similarity score is computed by 

comparing it against the templates of N different sub-

jects registered in the database and a vector of N match-

ing scores is produced by the classifier. These matching 

scores are arranged in descending order to form the rank-

ing list of matching identities where a smaller rank num-

ber indicates a better match. Table 6 shows the Rank-1 

identification rate (%) for both left and right iris images 

in the SDUMLA-HMT, CASIA-Iris-V3, and IITD data-

bases, and their fusion rates using the three ranking-level 

fusion methods: highest ranking, Borda count, and logistic 

regression. All three fusion methods produced the same 

level of accuracy, as shown in Table 6. The highest rank-

ing method was adopted for comparing the performance 

of the proposed system with that of other existing sys-

tems, due to its efficiency compared to the Borda count 

method in exploiting the strength of each classifier effec-

tively and breaking the ties between the subjects in the 

final ranking list. In addition, it is simpler than the logistic 

regression method, which needs a training phase to find 

the weight for each individual classifier. The comparison 

of the performance of the proposed system with the other 

existing methods using CASIA-Iris-V3 and ITD database 

is demonstrated in Table 7. The feature extraction and 

classification techniques used in these methods along with 

their evaluation protocols are shown in Table 8. We have 

assumed that these existing methods shown in Table 7 are 

customized for these two iris databases and the best results 

they obtained are quoted herein. As can be seen from 

inspection of Table 7, the proposed deep learning approach 

has overall, outperformed all the state-of-the-art feature 

extraction methods, which include Discrete Wavelet Trans-

form (DWT), Discrete Cosine Transform (DCT), Principal 

Component Analysis (PCA), Average Local Binary Pat-

tern (ALBP), etc. In term of the Rank-1 identification rate, 

the highest results were obtained by the proposed system 

using these two databases. Although Umer et al. [57] also 

achieved a 100% recognition rate for the CASIA-Iris-V3 

database, the proposed system achieved a better running 

time to establish the person’s identity from 120 persons 

from the same database instead of 99 persons as in [57]. In 

addition, they obtained inferior results for the IITD data-

base in terms of both recognition rate and running time.   

6  Conclusions and future works

In this paper, a robust and fast multimodal biometric system 

is proposed to identify the person’s identity by constructing a 

deep learning based system for both the right and left irises 

of the same person. The proposed system starts by apply-

ing an automatic and real-time iris localization model to 

detect the iris region using CCHT, which has significantly 

increased the overall accuracy and reduced the processing 

time of the subsequent stages in the proposed system. In 

addition, reducing the effects of the appearance of the eyelids 

Table 8  Summary of the compared iris recognition approaches and their evaluation protocols

Approach Feature extraction Classification Evaluation protocol

Abhiram et al. [76] Circular sector DCT Euclidean distance 3:2 (training:testing)

Bharath et al. [71] Radon transform + gradient-based isolation Euclidean distance 4:1 (training:testing)

De Costa and Gonzaga [66] Dynamic features Euclidean distance Cross-validation

Dhage et al. [75] DWT + DCT Euclidean distance 9:1 (training:testing)

Elgamal and Al-Biqami [73] DWT + PCA KNN –

Kerim et al. [65] Co-occurrence matrix Euclidean distance –

Li et al. [70] ALBP KNN + SVM 4:1 (training:testing)

Ma et al. [63] Circular symmetric filter Nearest feature line 3:2 (training:testing)

Minaee et al. [74] Scattering transform Minimum distance Cross-validation

Ng et al. [67] Haar wavelet transform Hamming distance –

Nalla and Chalavadi [72] Log-Gabor wavelet Online Dictionary Learning Cross-validation

Roy et al. [69] Multi-perturbation Shapley analysis SVM Cross-validation

Umer et al. [57] TCM with ordered PB SVM + Fusion Leave-one-out

Vatsa et al. [64] Gabor transform and euler numbers Mahalanobis distance Cross-validation

Zhang and Guan [68] Empirical mode decomposition KNN –

IrisConvNet system Convolutional Neural Network Softmax classifier + fusion Cross-validation
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and eyelashes can significantly decrease the iris recognition 

performance. In this work, an efficient deep learning system 

based on a combination of the CNN and Softmax classifier 

is proposed and to extract discriminative features from the 

iris image without any domain knowledge and then classify 

it into one of N classes. After the identification scores and 

rankings are obtained from both the left and right iris images 

for each person a multi-biometric system is established by 

integrating these rankings to make a new ranking list using 

one of the ranking-level fusion techniques to formulate the 

final decision. Then, the performance of the identification 

system is expressed through CMC curve. In this work, we 

proposed a powerful training methodology equipped with 

a number of training strategies in order to control overfit-

ting during the learning process and increase the generali-

zation ability of the neural network. The effectiveness and 

robustness of the proposed approaches have been tested on 

three challenging databases: SDUMLA-HMT, CASIA-Iris-

V3 Interval and IITD iris database. Extensive experiments 

have been conducted on these databases to evaluate different 

numbers of training parameters (e.g., learning rate, number 

of layers, number of filters per each layer) in order to build 

the best CNN as the framework for the proposed iris identi-

fication system. The experimental results demonstrated the 

superiority of the proposed system over recently reported 

iris recognition systems with a Rank-1 identification rate 

of 100% on all the three databases and less than one second 

required to establish the person’s identity. Clearly, further 

research will be required to validate the efficiency of the 

proposed approaches using larger databases with more dif-

ficult and challenging iris images. In addition, exploring the 

potential of using the proposed deep learning approaches 

on the top of pre-precessed iris images using some of well-

known features extraction methods such as LBP and Curve-

let transform. We might be able to guide the proposed deep 

learning approaches to explore more discriminating features 

otherwise not possible using the raw data.
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