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1. Introduction. This paper is concerned with a Stefan free boundary
problem in which the free boundaries may intersect. Physically it can be thought
of as describing a one-dimensional system consisting of a piece of ice immersed
in water. Depending on the initial conditions, the piece of ice can melt or the
water can freeze at each ice-water interface. In particular the ice can, at some
finite time T', melt away entirely.

Mathematically, the problem is formulated as follows: Given the data ¢, ,
@2 , @3 , by and b, , find six functions s; = s;{{), 7 = 1,2, and u; = u:(z, 1), 7 =
1, 2, 3, 4, such that the 6-tuple (s, , 85, Uy , Uz , Us , Uy) satisfies

%y duy

Klaxz_gr-(), —°°<$<81(t), 0<t=T,
(1.1)
w0 =@@ 20, —o<z=b, &0 =0,
ul(sl(t), t) - 0, 0 _S__ t é T,
2
wle - s <o<a®, 0<i<T,
(1.2) u2(x7 0) = ¢’2(x) =0, b=z =0, by < by, 82(0) = by,
u2(81(t)) t) = u2(s2(t)r t) = Oy 0 é t é T,
2
lclg—;éi—%%ﬁ=0, () <z < o, 0<t=T,
(1.3)

u;.;(x, 0) = QDg(x) g O, b2 ;<-_ x < @,
us(s.(9), ) =0, O0Z¢t=T,
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B2 6, ) + b O

§(D) = — (sl(t) 1), O0<it<T,

1.4)

80 =~k 260, ) + B2 @O, 0, 0<t<T,

and u, is defined and satisfies

S,  dus
K1ax2—"é't—=0, —oo<x<oo’ T<t’
(1.5)
e,y = (1T = <2 20D D)
4 ? -
u2(x1 T)y Sz(T) Sr< o,

only if T is finite, where 7' is such that s,(T) = s(T) and &, (f) < 8,(1),0 =i < T.
Here «, and «, denote the respective diffusivities of the two phases, and &, and
ks denote the respective conductivities of the two phases.

In this paper we prove a theorem on the global existence and uniqueness of
the solution (sy , 85, Uy , Us , Us , us) and show that the free boundaries s; and
s, depend continuously and monotonically on the data ¢, , ¢2 , 03, b, and b, .
The main tool used in our analysis is the maximum principle, both in its strong
form [10] and in the form of the parabolic version of Hopf’s lemma [4]. As in
a previous work of two of the authors [2], the constructive element in our
approach is based on the idea of retarding the argument (¢f. equation (3.12))
in the free boundary conditions in (1.4). We also investigate the behavior of
s:(0) — s:() at t = T and relate the eritical time 7' with the initial energy in
the water-ice-water system.

There is an extensive literature on the one boundary problem. For example,
see[1, 2,3, 5, 6,7, 8, 9]. However, the literature on the multi-boundary problem
seems to be sparse. The only general treatment that we have found is that of
Oleinik [11].

We require the following assumptions (A) on the Stefan data: ¢, , ¢ , and
¢s are continuous except possibly for a finite number of bounded jumps; there
exist positive constants K, , 4, , 7 = 1, 2, such that

(1.6) 0 = o(2) £ Ki(1 — exp (k7 'mlx — by)}), -0 <z = b,
.7 —min K,(1 — exp {—« n:(x — b1)}),
K1 — exp {i5'm(x — b)}) S u(2) £0, bisx=bh,,
(1.8) 0=<¢(@ =Kl —exp {—ii'mlx —b)}), b =z2< o,
and moreover, that
(1.9) ki 'Ky + k'K, < 1.

Note that the 5, , ¢ = 1, 2, which are fixed but of any size, describe the local
Lipschitz behavior of the data ¢; , 7 = 1, 2, 3, at b, and b, .
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It would be desirable to remove the restriction (1.9) which is crucial for our
existence proof. We emphasize, however, that the qualitative features of the
physical problem (cf. sections 5, 6, 7) do not depend upon restriction (1.9).
What is needed is a more sophisticated procedure for the global estimation of
the derivatives §, and $, . Our procedure says, in effect, that §; and $, can be
estimated globally by linear techniques if the initial data is small enough.

If we were to consider the Stefan problem analogous to (1.1), --- , (1.5)
for n boundaries, then with assumptions like (1.6), --- , (1.9), it will become
clear to the reader that the method of demonstrating the existence of the solution
of (1.1), ---, (1.5) is applicable to demonstrating the existence of the solution
of the n-boundary Stefan problem. In the opinion of the authors, the assumption
(1.9) is not satisfying enough mathematically to justify the morass of notation
necessary to handle the disappearance of a multitude of phases. Consequently,
we shall consider the two boundary problem (1.1), - -, (1.5) in detail and shall
note from time to time the extensions to the n-boundary case.

By a solution (u; , 4. , us , us) of (1.1), (1.2), (1.3), and (1.5) for given con-
tionuous s, and s; , we mean that

1) d%u./dx° du./dt, i = 1,2, 8, 4, are continuous in their respective domains
of definition.

@) u: ,71=1,2, 3, 4, are continuous and bounded on the closure of their
respective domains of definition except at points of discontinuity of the
data ¢, , ¢, and @3 .

3) ui, 7= 1,2, 3, 4, satisfy respectively, (1.1), (1.2}, (1.3), and (1.5).

It is well known that if s, and s, are Lipschitz continuous, then u; , ¢ = 1, 2, 3, 4,
exist and are unique.

By a solution (s, , Sz, Uy , Uz , Us , ua) Of (1.1),- - -, (1.5), we mean that s,(0) =b, ,
5,(0) = b, , s and s, are continuously differentiable for 0 < ¢ < 7 and con-
tinuous for 0 £ ¢ = T, that u, , 7 = 1, 2, 3, 4, are the respective corresponding
solutions of (1.1), (1.2), (1.3), and (1.5), and that du,/ax(s,(f), t), dus/0x(s,(£), 1),
dus/9x(s: (1), 1), and dus/dx(s.(t), ) exist and satisfy (1.4).

2. Reformulation of the boundary conditions. Let (s1,8:,ui,uz,%s,us) be a
solution of (1.1), --- , (1.5). Since

s1(7)
@.1) f f ( duy 93‘—) dt dr
81(7)—=N1 ar

in the domain {8;(r) — N, < £ £ 8,(n),0< o =75t < T}, and

es () auz 6u2>
@2 f j;.m ( T ar dedr

in the domain {8,(r) £ £ £ (), 0 < ¢ = 7 =t < T}, where N; > 0 and
s3(r) = 27H(s,(7) + 5. (1)), it follows from (1. 4) and integration by parts that
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@3) sl = s(o) — b : %“E 6ulr) = Ny, 2) dr

s1(t)

o [ L@, ar -k [

1(2)—N2

82 (o)

2s ()
- sz;l f } uz(s, t) dg + klkl—l f u;(f, 0') dg

s1(t) s1(0)~N1

sg (o) ¢
+ szz_l f ug(e, G') dé - lel_l f ul(sl('r) - Nl y T) dsl(‘l')

81(0)

+ Foz’ f‘ Us(85(7), 7) dss(7),

where the last two integrals in (2.3) are Riemann-Stieltjes integrals. Likewise,
it follows that

24 @) = 80) — & %‘g (s2(r) + N, 7) dr
. au2 - a2 (2)+Na
0 [ e, D dr e [ e ) de
22 () s2(0) +Ns

kot f

83 (¢)

w0t — ki [ e, o) ot

83 (a)

83 (o) t
— T f wslt, @) dE — Ty f ws(s(r) 4 N, 7) dsa(7)

s (o)

+ T f walss(a), 1) dsale),

where N, > 0 and the last two integrals in (2.4) are Riemann-Stieltjes integrals.
Conversely, if (s, , 82, w1 , Us , Us , %) satisfies (1.1), (1.2), (1.3), (1.5), (2.3),
and (2.4) for all o such that 0 < ¢ < T and if du,/0z, du,/0z, and du,/dz exist
and are continuous to the boundaries s; and s, , then it follows from the analysis
of the derivation of (2.3) and (2.4) that (1.4) is satisfied. Apparently, (2.3)
and (2.4) are more general formulations of the boundary conditions in (1.4).
However the appendix of [2] contains a proof of

Lemma 1. Under assumption (A), let (u; , us, Uus) denote the solution of (1.1),
(1.2), and (1.3) and let s, and s, be Lipschite continuous for 0 £ t < T. Then,
Ou,/9z(s.(t), &) and dus/dx(s:(h), t) exist and are continuous for 0 < t £ T, and
duy/0x(s. (1), t) and dus/0x(s:(f), t) exist and are continuous for 0 < ¢ < T.

Thus, within the class of Lipschitz continuous boundaries s, and s, , the two
formulations (1.1), --- , (1.5) and (1.1), (1.2), (1.3), (1.5), (2.3) and (2.4)
for all ¢ such that 0 < ¢ < T are equivalent.
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3. Existence. First, we need

Lemma 2. Under assumptions (A), let (uy , 4. , us) be a solution of (1.1),
(1.2), and (1.3), where s, and s; are C* for 0 < ¢ < T and

3.1) 18] = sup [8:()] < @, d=1,2.
0<t<T
Then,
(3.2) au, (s:(9), t)‘ S Kllsll +ml, 0<isT,
(3.3) 3“* (s:(8), t)’ S Kllll +m), O0<t=T,
and
(34 ‘9“2( D, t)l SGEs]] + ], 0<t<T, =12

Proof. Consider u, . Set § = 2 — &) and U,(§, {) = us (¢ + 8:(2), £). Then
U, U, 194

Lh=nm"e b7y -5 =0 —e<i<0, 0<:i<7T,
(3.5) UE0) =+ b), —o <£<0,
U0, =0, O0<t<T.
Set
39 w, ) = Kl — exp (6] + m)e)).

Now, for — o <£<00<t<T

G0 Lw-—1U) = 652 LA, E

= —«; Ky exp {7 (|[3:]] + ad&} [(3:]] + m)” + (s ]} + n)é]
—k 'Ky exp {&7'({]8:]] + )&} m 8] + 731 < 0.
Also, fort = 0, —» < £ < 0,
(3.8 @i + b)) = Uy, 0) = Ki(1 — exp {1 nié})
< K1 ~ exp {7 ({[&:]] + m)E})
= w(, 0),

and

3.9 w(©0, H = U0, ) = 0.
Hence, it follows from the maximum principle that
(3.10) 0= Uit 8) = wi, 0.
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Hence, from (3.9) and (3.10), it follows that

@.11) ~ﬁ&%ﬂ+ﬂéam®ﬁ

which proves (3.2). The inequalities (3.3) and (3.4) follow from similar applica-
tions of the maximum principle. Q.E.D.

Foreach 6,0 < 6 < (b, — b,)/2, we construct a family (s?, s, uf , ul , uj , ul)
of approximations to the solution of (1.1), - -+, (1.5) by retarding the argument
[

8 = ki G2t = 0,1 — 0) + b G2 G = 0), £~ 0),

3.12)
) = =k 52 9y 2 (st~ 0), 0~ 0)—!—]02 (82(15 9),t— 0)

in the free boundary conditions in (1.4). Let

] {1, —o < = bl-—()
X1 =
O, b1-0<x b],
Jo, bhSz=bh+0
Xg= 1; b1+0§x§bz_0y
10, b — 0=z = b,

IIA
A

b: + 0,

r < o,

s {0, b, <z

Xs =
1, b, 4+ 6

and ¢’ = x%., ¢ = 1, 2, 3. In the first interval 0 < ¢ < 0, we set s! = b, and
s) = b, and define (u! , uj , ud) to be the unique solution of (1.1), (1.2), and (1.3)
in which ¢, ,¢ = 1,2,3,s;,j = 1, 2 have been replaced by ¢! ,7 = 1,2, 3,
si,j = 1, 2, respectively. Clearly, du!/dxz(b; , t), dus/dz(b; , 1), Sus/dz(bs , 1),
and dul/dx(b, , t) exist and are continuous for 0 < ¢ < 6. We proceed now by
induction. Assume that (s?, s, u? , ul , uj , u}) has been constructed for 0 <
t < no, that s, ¢ = 1, 2, are continuously differentiable, that du’/dz(s!(f), t),
ul/ax(sit), 1), auz/ax(sg(t), £), and dul/dx(ss(t), £) exist and are continuous
and that

(3.13)
S8 = by + fo {-—lc1 %“‘ r =0, 7=+ kS du 2 (si(r — 0), 7 — o)} dr,

A

s5() = by + f; {—-kl %ﬂ; (s3(r — 0), 7 — 6) + kz dus (82(7' 6), r — 0)} dr.

In the next stepnf < ¢t < (n + 1)6, we define s} , 7 = 1, 2, by (3.13) and solve
(1.1), (1.2), and (1.3) for u! , u5 , and uj fornd < t £ (n + 1)6. By the inductive
hypothesis on du!/dz, duli/dx and duj/dx at the boundaries s! , 7 = 1, 2, it
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follows that s! and si are continuously differentiable. Hence, by Lemma 1,
dul/dx(si(t), 1), dud/dx(si(t), 1), dus/dx(s5(t), 1), and Qui/dx(ss(t), &) exist and
are continuous for nf £ ¢t £ (n - 1)6. We continue in this way for all ¢ or until
we encounter a T, such that s{(T,) = si(T,) and () < s5(1), 0 = ¢t < Ty .
If such a T, arises then we define

(3.14) {Sf(l) =Ty, TiSt< o,
() =T, Tist<w,

and solve (1.5) for u} , where in (1.5) T is replaced by T , us(x, T) is replaced
by u(x, Ts), and us(z, T) is replaced by ui(z, Ts).
‘We summarize the results of the above construction in

Lemma 3. Foreach 9,0 < 8 < (by — b,)/2, there exists a solution (u' , uj , ul)
of (1.1), (1.2), and (1.3) in which ¢; = ¢ ,71 = 1,2,83,and s, = s} ,j =1, 2.
The functions s} , § = 1, 2 are continuously differentiable for 6 £ t < Ty and
Lipschitz continuous for 0 < t < o. Moreover, the functions s, salisfy (3.12) and

(3.15) ) = K,, §=1,2 0=2t<T,,

where
(3-16) K; = [1 - (k1K1—1K1 - ]{72’(;11{2)]—1(751";1[{17]1 + szz_leﬂz)-
Note that the Lipschitz constant for s} , j = 1, 2, is K, which is independent of 6.

Proof. The inequality (3.15) follows from Lemma 2, (3.12), and (1.9). The
remainder has been done above.

Theorem 1. Under the assumption (A), there exists a solution (uy , uy , Us ,
Uy 5 Sy, S2) to the Sitefan problem (1.1), --- , (1.5). The free boundaries s; and s,
are continuously differentiable and satisfy

B S K for 058< T,
where K; s defined by (3.16).

Proof. From (3.14) and (3.15), it follows that the functions s(f) form an
equicontinuous family, uniformly bounded on compact subsets. Pick a sequence
of 8’s tending to zero. By Ascoli~Arzela’s theorem there is a subsequence, denote
it by si(t), that converges uniformly to a Lipschitz continuous function s;(f)
on compact subsets of 0 < t < . From the limit functions s (¢) and s,(f),
define 7 as following (1.5). Next, solve (1.1), (1.2), (1.3), and (1.5) for (u, ,
Us , Us , Us) Using the limit functions s; and s, . Using (3.2), (3.3), (3.4), (3.15)
and the maximum principle, it is easy to see that the corresponding subsequences
uwl, uy, ud, and 4 converge subuniformly to u; , u, , us and u, , respectively.

Repeating the derivation of (2.3) for 0 < 6 < (b, — b,)/2, we find that
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auz

—k, ) aul (81(7) 7) dr + ks ) (81(7') 7 dr

M%(ﬂ N“ﬁdw+haa%@w)ﬁw

a

saf(2)

1 81%(2) 0 - 0
—Mm/ ale, ) de — ko [ ulte, )

19(8)~Na 200

s(a)

g1 {o) P
+ Tt f us(E, o) di + ks’ f , us(t, o) dt

19(a) =N, ()

_hﬁfﬁm@—NhﬁM@+@ﬁf@w¢ﬁwm.

L4 [

From (3.12), it follows that
0
sit + 6) — si(o + 6) = —k, é)ul (81(7') Ddr + ks ; i), 7) dr.

Consequently, from the uniform convergence of the subsequences s! , s , the
subuniform convergence of the corresponding subsequences u; , ug , u , and
ul , the relations (3.2), (3.3), (3.4), and (3.15), and the maximum principle,
it follows that the limit tuple (s; , 8z , Uy 5 Us , Us , Us) Satisfies (2.3). In a similar
manner, it also satisfies (2.4). Hence, (s, , 82 , Us , Uz , Us , %) I8 a solution of the
Stefan problem (1.1), (1.2), (1.3), (1.4), and (1.5).

4. Stability and uniqueness. Assume that the data ¢f,e5,0i,bi,bi, ¢ = 1, 2,
satisfy assumptions (A). Let (s}, s§, ul, ui, ui, ui), 2 = 1, 2, denote correspond-
ing solutions of the Stefan problem (1.1), «- -, (1.5). Set

@), ~o <z=0bi,
(4.1 &) = 3d), biZLaz=Z0h:,
oi@), bifz< o, i=1,2

Assume that ®; , 7 = 1, 2, are continuous and possess a continuous derivative
with respect to z for all x except # = b and # = b; and that there exists a
constant K, such that

d®,

4.2) I

=< K,, 1=1,2, z + b .
Suppose that ¢! and ¢f , 7 = 1, 2 are such that

@3) [Q@h<w,i=Lz

and that



STEFAN PROBLEM 29

(4.4) lim 24 = 1im 2 =

L0 ax =+ ax

uniformly for0 < ¢t < T%,¢ =1, 2.

Theorem 2. If|b} — b} < 677(b} — bl), bl — b2 < 67 (bt —bl),and K, < &,
then for 0 = t £ & = min ((b; — b})/12K, , T, , T.) there exists a compulable
positive constant Ky = K;(ty , Ky , Ky, Ky , K, , 1, 12) such that

4.5 () — S| + |s:() — ()]
< K5{|b} — B 4 B — 0] f_w (&) — Bo(a)| dz

+ sup ) lee@) — ¢a(@)]

max(b1?,b12) Srsmin(ba?,ba?

des des
ﬁ@—f@ﬂ
where T, , © = 1, 2, are corresponding T’s as defined following (1.5).

Proof. Considering the relations (2.3) and (2.4) fore = O and Ny = N, = o,
the proof, which we omit, is almost a repetition of the analysis given by two
of the authors in [1] and summarized by two of the authors in [2].

+ sup

max(b1?,b1%) Sz=min(be?,ba?)

Corollary. Under the above assumptions, there can exist at most one solution
(1) 825 Uy 5 Uz y Us , Uy) L0 the Stefan problem (1.1}, --- , (1.5).

Remark. The appearance of the last two terms in (4.5), the hypothesis
of differentiability of ®; , the hypothesis on K, and the conditions on b} , b ,
1 = 1, 2, resulted from the authors’ method of estimating the differences

F dus

0§

t duy

T E@), 1) dr

(3;(7), T) dT -

and

fo CuE(n), 1) dsi(r) — fo WS, 1) d ().

Note that uniqueness for the n-boundary Stefan problem has been demonstrated
in a generalized sense by Oleinik [11].

5. Monotone dependence. Recalling (4.1), assume that &, ¢ = 1,2 satisfy
assumptions (A). Let (si, s&, uf, ul, ul, ud), s = 1, 2, denote the corresponding
solution of the Stefan problem (1.1), --- , (1.5).

Theorem 3. Ifb, S bl,b2 2 b, and ®1(z) £ B(), —» < 2 < , then
(5.1 sit) = si(t) and s = S(8)
forO0 £ ¢ 2 Ty, where T, , i = 1, 2 are the corresponding T’s as defined following
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(1.5). Moreover,
5.2) T. =T, .

Proof. The proof, which is based upon the strong maximum principle and
theorem 2, is analogous to that of theorem 6 [2].

6. The behavior of s,({)—s,(f) at ¢ = T. Lebt (8,8:,%,%p,Us,us) denote a
solution of (1.1), «--, (1.5).

Theorem 4. If du./0x(s:(t), t) and dus/dx(s:(f), 1)} are continuous for 0 <
t < T, then there exist positive constanis &, , g, and Q such that for t, < t £ T,

(6.1) gT — 1) = @) — &) = QT — 1.

Proof. Considering (2.2) with ¢ replaced by ¢, , o replaced by ¢, and s; re-
placed by s. , it follows that

©2) f :“%%(82(7), D) dr — K [

tx

"2 (o), 7 dr

32(tq)

s2(22)
= [ we - [ e ) e

81(82)

By multiplying by ku«;' and adding the appropriate integrals of du,/dx and
Ous/dx, we find that

(6.3) [so(t) — ()] = [so(t) — su(8)] =
s du,

-k j;: %’%& (s2(7), 7 dr + ki ‘/;l 79_‘,‘; (su(7), 7) dr

s2(tg)

8a(t1)
+ Forz! f us(E, ¥o) dE — koo™ [ ug(§, ) d.

81(t3) va1(ts
Consequently, setting {, = 7" and ¢, = ¢ and multiplying (6.3) by —1, it follows
that

T dug

©4)  s() — s) = by [ T8 i), ) dr

ag(¢)

T
— f %%csmr),r) dr + ki f ualt, 1) di.

1(2)

By the strong maximum principle, it follows that dus/8(s:(7), 7) > 0 and
9, /9E(s:(7), 7) < 0,0 < &, £ 7 = T. Hence, there exists a ¢* > 0 such that

(6.5) 8:(8) — s1() = 2k * (T — 1) + Farz "un (8%, [s(t) — si(9)].

Since lim,,, uo(¢*, £) = 0, the left inequality of the result (6.1) is valid. The
right inequality of (6.1) follows immediately from (6.4).

Remark. TUnder the assumptions (A) on the data ¢, , @2 , ©s , by and b, ,
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the hypothesis of Theorem 4 is satisfied by the solution (s; , 85, s , %y , Us , Us)
of the Stefan problem (1.1), --- , (1.5).

7. The relationship between the initial energy and T. Consider a solution
(S1 58, U, Usy Uz, Ug) Of (1.1), --- , (1.5) for ¢, and ¢; which tend to zero
sufficiently fast as £ — — o and z — -+ « such that

by o
@0 [[ewa<o md [ @<

—c0 by
and

U o dug _

(7.2) lim 2, @, ) = lim 22 (z, 1) =0
uniformly for 0 < ¢ < T. Now, let
(7.3) U) = () — su(t)
and

ag(t)

81(¢)
) HO =k [ w@ddi+ ket [ w0 i

s1(2)

+ T’ f " us(g, 1) dt.

By considering the relations like (2.1) with ¢ = 0 and N, = « and relations
(6.2) and (6.3) with ¢, = ¢ and ¢, = 0, it follows that

(7.5) E(t) = E(),
where
(7.6) E@) = H@® — I(D).

Note that (7.5) is simply a statement of the principle of conservation of heat
energy.

Considering now the critical time of phase disappearance T, we prove the
following theorem.

Theorem 5. Suppose that
(7.7) lim H(® = 0.

=00
If E(0) > 0, then T isfinite. If E(0) = 0, then T s plus infinity and lim, .., I(f) = O.
If E(0) < 0, then lim,., I() = —E(0) > 0 and there does not exist a finite T.

Proof. For E(0) > 0, it follows that H() — I(t) = E(0) > 0. Hence (7.7)
implies that I(f) < —3E(0) < 0 for ¢ sufficiently large. Thus, there must exist
aTl < o suchthat [(T) = O0and I(f) > O0for0 <t < T.

For E(0) = 0, it follows from (7.5) and (7.7) that lim,.. I(f) = 0. Note
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that T must be infinite for if it is not, then the strong maximum principle would
imply that 4, = uz = 0 since

©

81(T)
78)  H(T) = kui* f wl, T) di + hu® f

8a

us(¢, T) dé = UT) = 0.
™

For E(0) < 0, it follows that lim,.... I(f) = —E(0) > 0. Note that there can-
not exist a finite 7' such that (1) = 0since it would follow that H(T) = E(0) < 0
with H(T) defined as in (7.8). Q.E.D.

The discussion of theorem 5 is really not complete until the hypothesis

lim H(f) = 0

t-—so
has been related to ¢; , 7 = 1, 2, 3. By integrating the differential equations over
the various regions, it follows from (1.1), -« -, (1.5) and the maximum principle
that s,(¢) and s,(¢) can be bounded in terms of b, — b, and integrals of the data
0: , t = 1, 2, 3. Denote these bounds by o; and o, ; t.e,, for 0 = ¢ £ T,

(7-9) o = Sl(t) < Sz(t) = oy,

Suppose now that T’ = « and that ¢, , ¢, and ¢; are bounded and have compact
support. Then it follows from the maximum principle and an elementary cal-
culation that

(7.10) lim H(#) = 0.

t—rco

For example, in order to show that

©

(7.11) lim u(, ) dé = 0

t—oco sa(t)

it suffices to show that

(7.12) lim w vs(t, 1) dt = 0,
where
Kl%%;—%gf=0, n<r< o, 0<t,
vs(x, 0) = {O’ ns2sbh,
(7.13) es(z), b<z< o,

v5(oy , £) = 0, 0=t

However, (7.12) follows from an elementary estimation of the representation
of v5(x, t). Hence, we have shown

Lemma 4. If T = o, and if ¢; , 1 = 1, 2, 3, are bounded and have compact
support in — o < x < o, then
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lim H(f) = 0.
L0
Remark. By setting the functions ¢, and ¢; equal to zero for sufficiently
large |2|, it follows from theorem 3 that if E(0) = + «, then 7 is finite.

8. The physical significance of (1.9). Assume that in (1.1), ..., (1.5) we
are considering a water-ice-water system for the gram-centimeter-second system
of units. Then, the left hand sides of the equations in (1.4) must be multiplied
by the heat of fusion times the density of water at 0°C. Consequently (1.9)
should be replaced by essentially

(8.1) 01[{1 + 02K2 < ~80,

where ¢, and ¢, are the heat capacities of water and ice, respectively. Hence,
(8.1) allows a temperature spread, K, + K, , of about 80°C. Under normal
pressures, such a temperature spread is certainly ample to cover the range of
validity of the description of the water-ice-water system by (1.1), .-, (1.5).
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