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Abstract: Electroencephalography-based motor imagery (EEG-MI) classification is a critical com-
ponent of the brain-computer interface (BCI), which enables people with physical limitations to
communicate with the outside world via assistive technology. Regrettably, EEG decoding is chal-
lenging because of the complexity, dynamic nature, and low signal-to-noise ratio of the EEG signal.
Developing an end-to-end architecture capable of correctly extracting EEG data’s high-level features
remains a difficulty. This study introduces a new model for decoding MI known as a Multi-Branch
EEGNet with squeeze-and-excitation blocks (MBEEGSE). By clearly specifying channel interde-
pendencies, a multi-branch CNN model with attention blocks is employed to adaptively change
channel-wise feature responses. When compared to existing state-of-the-art EEG motor imagery
classification models, the suggested model achieves good accuracy (82.87%) with reduced parameters
in the BCI-IV2a motor imagery dataset and (96.15%) in the high gamma dataset.

Keywords: attention network; brain-computer interfaces; convolutional neural networks; deep
learning; electroencephalography; motor imagery

1. Introduction

A brain-computer interface (BCI) is a computer-based system that collects, examines,
and converts brain signals into instructions that are communicated to an output device
to perform a requested response. Brain impulses can now be used to operate devices,
owing to advancements in this field [1]. Electroencephalography (EEG) is the most utilized
brain signal because it is measured from the scalp (non-invasive), is low cost, and has a
high time resolution [2]. Due to the non-stationary nature of EEG signals, their increased
susceptibility to artifacts, and their frequent exposure to external noise, processing them is a
tough task. Additionally, the subject’s posture and attitude can affect the EEG readings [3].

The electrical activity of the brain recorded from the scalp is the EEG signal, which
is made up of several underlying base frequencies. Specific emotional, cognitive, or
attentional states are indicated by these frequencies. A frequency range of 0–35 Hz was
used in most of the research [4].

This study concentrated on EEG signals derived from motor imagery (MI), the process
of imagining limb movement. When a subject imagines moving the right or left hand,
or both, or the right or left foot, or any of the five fingers, or the tongue, or any other
limb in the human body, MI data are generated. Researchers demonstrated in the early
2000s that the most effective strategy for detecting EEG-based MI was to employ common
spatial patterns (CSP). The purpose of the CSP algorithm is to identify a set of linear
transformations, frequently referred to as spatial filters, that optimize distance over several
classes. The motor imagery of the right hand, left hand, and feet that were recorded during
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an MI-EEG task are classified into these classes. The data representation is constructed
using the relative energy of the filtered channels after the spatial filters have been estimated.
For high accuracy, these multi-dimensional EEG data representation can be simply entered
into a linear classifier, such as a support vector machine (SVM) [5].

MI-designated EEG as a growing area of interest in the field of BCI is associated with
not only enormous potential but also vital applications (e.g., gaming [6], robotics [7,8], and
therapeutic applications [9,10]). There are, however, significant limitations in terms of data
collecting and categorization techniques. The objective of this research is to develop an end-
to-end classification model based on deep learning that is capable of reliably categorizing
MI-EEG-based signals with high kappa values, which is a measure of how much agreement
can be anticipated by chance. Despite deep learning’s growing popularity in a variety
of fields, it has yet to produce satisfying results when used to classify EEG signal-based
motor imagery. The high dimensionality of EEG data (multichannel and sampling rate),
the presence of artifacts (such as motion), noise, and channel correlation make the design
of an optimum EEG classification model using deep learning (DL) difficult.

According to preliminary observations, the main difficulty with EEG MI classification
is that it is a more subject-specific task. This means that each person has unique traits
that aid the system in correctly classifying the MI movement. This issue can be addressed
through the use of multi-scale, multi-branch, or parallel architectures, which increase the
model’s generality. However, this type of model is typically computationally expensive,
requiring a larger number of parameters and a longer training period. As a result, we
present in this paper a DL-based EEG MI classification model that is lightweight and
capable of dealing with subject-specific tasks using fixed hyperparameters, making it more
suitable for use in real-world applications. The following are the primary contributions of
the paper:

• Build an end-to-end multi-branch EEG MI classification model based on DL that can
solve the subject-specific problem.

• Develop a lightweight multi-branch attention model that can accurately classify EEG
MI signals with a small number of parameters.

• Create a robust general model with fixed hyperparameters.
• Using multiple datasets, test the usefulness and robustness of the proposed model

against data fluctuations.

In Section 2, we provide a summary of related research publications on MI-EEG
classification algorithms. Section 3 presents the proposed model, multi-branch EEGNet
with squeeze-and-excitation block (MBEEGSE), while Sections 4 and 5 contain a discussion
of the experimental data and results, and a conclusion, respectively.

2. Related Works

With just one processing block, deep learning can complete the whole feature extrac-
tion, selection, and classification pipeline. Convolutional neural networks (CNNs) [11–14]
are the most frequently used architecture in MI EEG processing, but other architectures
like recurrent neural networks (RNNs) [12,15], deep belief networks (DBNs) [12], and
stacked autoencoders (SAEs) [13] have been utilized as well. Due to the nonlinear and
non-stationary nature of EEG MI signals, CNN has an advantage over other deep learning
techniques. They possess temporal and spatial features as a result of the time spent visu-
alizing the movement and the simultaneous acquisition of data from several electrodes,
each electrode has different locations that contain the spatial information. For that, CNN
provides several advantages for analyzing MI EEG data, including high accuracy on large
datasets, the ability to exploit the hierarchical nature of particular signals, and the ability to
learn both temporal and spatial information concurrently.

Numerous studies used data preparation procedures before feeding information into
a CNN. ConvNet [16], which uses convolutional layers to extract temporal and spatial
information and was inspired by the filter-bank CSP (FBCSP) [17], was the first interesting
technique that used raw EEG data. Two comparable MI topologies were introduced in [18]:
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the ShallowConvNet, which is a shallow convolutional network with two convolutional
layers and classification layers, and the DeepConvNet, which is a deep design with ad-
ditional aggregating layers. The EEGNet was proposed in [19] as a compact version of
previous approaches. It is based on depth-wise convolution and separable convolution,
which minimizes the network’s parameter count. Following that, similar structures were
proposed, one of which was published by Riyad et al. in [20]. The first half of the model is
identical to EEGNet, with the second half containing an inception block. To improve the
performance of EEGNet, the researchers applied temporal convolutional networks (TCNs)
in [21]. All of these architectures address the shortcomings in EEGNet, such as its shallow
and compact design, which restricts network capacity and, in most situations, leads to
overfitting. Due to a degradation issue, performance remains low even with a deeper
network. As a result, it is recommended to utilize a multibranch model that incorporates
attributes from different branches.

In [22], Amin et al. combined multilayer CNNs with two separate feature fusion
techniques: a multilayer perceptron (MLP) and autoencoders to produce a new approach
to EEG signal classification. The authors examined different levels of CNNs to extract the
most significant features, and then combined them before classification to improve the
accuracy of EEG-based MI. Their models were trained on the high gamma dataset (HGD)
to avoid overfitting. In [23], the same researcher presented an attention-based inception
model that contains two attention blocks. Each attention block comprises three parallel
convolutions with varying filter sizes, followed by an attention vector that fuses all of the
features collected from the convolution process. As demonstrated in [24], a 3D CNN is used
in EEG-based MI because it improves classification in image/video processing applications.
In [24], Zhao et al. proposed a multi 3D CNN for preserving spatial and temporal properties.
They depicted 3D EEG as a sequence of 2D arrays based on the electrode placements, then
extended the array to a 3D array using the temporal information from the EEG.

We noticed that no previous research had been done on raw MI-EEG signals as input
for 2D CNNs with a multi-branch. In [24,25], the authors used a multi-branch architecture
with 3D CNN, with a 3D EEG signal as the input and a 3D filter applied. In comparison
to 3D filters, we believe that utilizing a 2D CNN and applying two 1D filters, one along
time and one along with space, will reduce computational complexity and improve the
model’s ability to deal with subject-specific difficulty. According to researchers in [26],
flattened networks, which use only one-dimensional filters to cover all three dimensions in
3D, perform as well as, or better than, conventional convolutional networks while using far
less processing. The 3D filter is more difficult to implement in real-time applications than
the 1D filter.

A multi-branch model’s fundamental concept is that the raw or prepared input is
routed through multiple subnetworks, each with its own set of characteristics. The authors
of [27] developed a CP-MixedNet architecture that used multiscale EEG features extracted
from a series of convolution layers, each of which captures EEG temporal information at
various scales. In [28] the authors propose a parallel spatial-temporal representation of
raw EEG signals that makes use of the self-attention process to generate separate spatial-
temporal features. To encode spatial correlations between MI EEG channels, they exploited
the spatial self-attention module in particular. Additionally, the temporal self-attention
module transforms global temporal information into sample time step characteristics,
enabling time-domain extraction of high-level temporal aspects in MI EEG data. The
authors of [29] divided the original signal into three band-limited signals by filtering it
across separate band ranges. They varied the size of the temporal convolutional filter in
each band range, resulting in nine parallel branches, three for each filter band. This resulted
in a massive number of parameters totaling over 1215 K for the entire system and 405 K for
a single filter band. As a result of this limitation, the system’s application in a wide variety
of applications is limited. Furthermore, because the filter size did not change, the method
did not account for the impact of shifting neighborhoods in channels.



Diagnostics 2022, 12, 995 4 of 16

The authors proposed a more advanced method in [30]. It is a temporal-spectral-based
squeeze-and-excitation feature fusion network (TS-SEFFNet). In a cascade architecture,
the deep-temporal convolution block (DT-Conv block) is the first section of their model,
which employs convolutions to extract high-dimension temporal representations from raw
EEG data. The multispectral convolution block (MS-Conv block) is then run in parallel
using multilayer wavelet convolutions to capture discriminative spectral information
from matching sub-bands. The final recommended block was the squeeze-and-excitation
feature fusion block (SE-Feature-Fusion block), which was used to fuse deep-temporal and
multispectral data into comprehensive fused feature maps. Interdependencies between
different domain characteristics are introduced, bringing channel-specific feature responses
to the forefront. It is a sizable model with numerous parameters (282 K).

In [31], a hybrid of the multi-scale and an attention mechanism was presented. The
authors built a multi-scale fusion convolutional neural network based on the attention
process (MS-AMF). To maintain as much information flowing as possible, the network
captures spatiotemporal multi-scale characteristics from multi-brain area representation
signals and applies a dense fusion mechanism. The network’s sensitivity was increased by
the attention method they used, which consisted of Squeeze-and-Excitation (SE). However,
before the data are entered into the model, this model includes a part for data preparation.
Jia et al. [32] suggested an end-to-end approach for decoding raw EEG signals that do not
include any pre-processing or filtering or Multibranch Multi-scale Convolutional Neural
Network (MMCNN). It is a huge model with several branches at each scale, which increases
its complexity and results in a high number of parameters. It is composed of five parallel
branches that each contain an EEG Inception block, a residual block, and an SE.

Our suggested model, in contrast to existing multibranch, multiscale, and parallel
networks, takes advantage of the essential element of multibranch with a kernel size
fluctuation to improve classification accuracy while maintaining a low level of complexity
and a limited number of parameters.

3. Materials and Methods
3.1. EEG Data

The three major components of a traditional MI EEG-based classification system
are pre-processing, feature extraction, and classification. A preprocessing procedure is
performed to reduce noise and artifacts from raw EEG data. It is not a requirement,
although it is utilized in many systems. In this study, we do not perform any fundamental
preprocessing on the raw data to make the model more applicable to real-world applications;
rather, we extract the motor imagery time frame from the trail. There is no more bandpass
filtering. On the other hand, feature extraction from EEG data is a critical step before
classification because it identifies the motor movement imagined by the subject.

We want to validate the proposed model using multiple datasets with varied settings.
The BCI Competition IV dataset 2a (BCI-IV2a) and the high Gamma dataset (HGD) were
both used in this experiment. With 22 electrodes and a sampling frequency of 250 Hz, the
BCI IV 2a was recorded from 9 subjects. We retrieved 0.5 s from the start of the pre-cue to
the end of each trial, for a total trial duration of 4.5 s (250 × 4.5 = 1125 samples). There was
no additional prepossessing for each channel. Each trial took the shape of a dimensioned
matrix (22 × 1125). For the HGD dataset, which was recorded from 14 subjects, we
downsampled the data from 500 Hz to 250 Hz. Furthermore, the number of channels was
lowered from 128 to 44 to avoid unnecessary information. We excluded the electrodes not
connected to the motor imagery area. We selected only sensors with ‘C’ (according to the
dataset) in their name as they cover the motor cortex, which is 44 sensors. In addition, each
trial has had a length of 4.5 s, resulting in (4.5 × 250) 1125 samples. The trial matrix had the
following dimensions: (44 × 1125). There were no bandpass filters used, and each channel
was standardized. It can be noted that the number of samples (trials) in the HGD is much
more than in the BCI-IV2a dataset.
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Because we wish to use a raw EEG signal without any preprocessing, we chose the
full band for the dataset in this work. Here, full band means we are using all the frequency
components from both datasets with a 250 Hz sampling frequency.

3.2. EEGNet Block

These three critical characteristics of the cerebral cortex that can be replicated using
a CNN network are local connectivity, location invariance, and local transition invari-
ance. CNNs, which articulate the convolution process within the context of a neural
network [33,34], address the issue of high-dimensional input, such as EEG signals.

The EEGNet, developed in [19], serves as the building block for our proposed model.
There are three types of convolution operations in the EEGNet block, each with different
convolutional window sizes. The convolutional window, which is a small part of the input
neurons, is connected to each neuron in the EEGNet’s hidden layer. A bias is assigned
to each neuron, and a weight is assigned to each link. The window of the hidden layer
is then scrolled across the entire input sequence, and each neuron learns to investigate
a different part of it. The kernel size determines the size or length of the convolutional
window. Rather than learning new weights and biases for each hidden layer neuron, the
EEGNet now learns a single set of weights and biases for all hidden layer neurons. The
weight-sharing principle is as follows:

aij = f

(
bi +

k

∑
K=1

wiKxj+K−1

)
= f

(
bi + WT

i Xj

)
(1)

where aij is the activation or output of the jth neuron of the ith filter in the hidden layer, f
corresponds to the activation function, bi is the shared overall bias of filter i, K is the kernel
size, Wi = [wi1 wi2 . . . wik] is a vector of the shared weights and Xj = [xj xj+1 . . . xj+k−1] is a
vector of the output of the previse neurons, and T denotes the transpose operation.

The EEGNet block first learns frequency filters via 2D temporal convolution, and then
spatial filters via depth-wise convolution. Before combining and categorizing the feature
maps, separable convolution learns a temporal summary for each. Batch normalization,
pooling layers, and dropout are the remaining layers of EEGNet. Each of these layers
has several tweakable parameters and performs different tasks on the input data. Batch
normalization is a technique for normalizing the layers of a neural network rather than the
raw input. Instead of using the entire dataset to normalize it, mini-batches are used. Batch
normalization helps with training acceleration, and learning facilitation, enables the use of
higher learning rates, and model regularization also helps to prevent overfitting [35]. The
pooling layer, on the other hand, reduces the dimensionality of each map while preserving
important data. Spatial pooling, also known as subsampling or down-sampling, takes a
variety of forms. Max-pooling and average pooling are the two most well-known types.
Additionally, the dropout probability is used to turn off some neurons to reduce the number
of parameters. The composition structure of the EEGNet block is depicted in Figure 1.

3.3. SE Attention Block

One of the most fundamental properties of the human visual system is that it does
not attempt to process an entire scene at once. To better capture visual structure, humans
employ a succession of fragmentary glimpses and selective focus on critical areas of the
image [36]. Deep learning’s attention mechanism is based on this concept. It is a block that
can be used in conjunction with an existing model to improve performance by focusing on
critical elements and suppressing non-critical ones.
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The SE block is one of the attention blocks, as described in [37]. The authors assert
that the convolutional output results in entangled channel dependencies due to the spatial
correlation captured by the filters. This was accomplished by combining three primary
components, as illustrated in Figure 2. It is critical to note that the middle section contains
only the squeeze and excitation steps, whereas the first and last sections contain the trans-
formation and scaling operations, respectively. By calibrating the extracted features, the SE
block can increase the output volume of a transformation operation. It is a computational
unit that begins with a transformation that converts an input X to feature maps U and
then performs average pooling at each channel to construct a squeezed representation of
the volume U in the squeezing step. Before the sigmoid-activated gating network, a new
parameter called the reduction ratio r is used in the excitation stage to introduce a first
fully connected (FC) layer with a ReLU activation. The objective is to create a bottleneck
that enables us to decrease the dimension of the system while simultaneously introducing
new non-linearities. Additionally, we can exert greater control over model complexity and
improve the generalization property of the network. Scaling is the final phase, and it is a
procedure for re-scaling. We will restore the squeezed vector to its original shape while
retaining the information gathered during the excitation step. Scaling mathematically is
accomplished by multiplying each channel on the input volume by the corresponding
channel on the activated 1 × 1 squeezed vector.
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3.4. Proposed Models

The ideal kernel size for motor imagery varies from subject to subject and from time
to time for the same subject, according to the literature [4]. To overcome the subject-specific
difficulty in EEG MI classification, we proposed an EEG MI multi-branch classification
model, with each branch having its own set of parameters. The proposed method attempts
to determine the optimal convolution size, filter count, dropout probability, and attention
parameters for each individual. The technique can be subject-specific while also broadening
the model’s scope through the use of appropriate parameters. The model is built to learn
temporal properties from the first convolutional layer using temporal hierarchies of local
and global modulations, as well as spatial features from the second convolutional layer
using spatially global unmixing filters. The input data are represented as a two-dimensional
array, with the number of electrodes represented by rows and the number of time steps
represented by columns. The MI-EEG signal dataset is represented as follows:

D = {Si, Li}t
i=1 (2)

where Si, Li are the signal and their corresponding class labels, t is the number of trials,
and Li ∈ {1, 2, . . . , n}, where n is the number of classes. S is represented as the input
signal; it is a 2D array, S = [C T] where C refers to the number of EEG channels and T to the
length of EEG signal input. The output of the final layer, which is a softmax layer with a
softmax activation function, is the classification output. This layer produces a vector with
the probability of each possible outcome or class. The sum of the probability in the vector
for all conceivable outcomes or classes is one. The softmax can be defined as follows:

F(v)i =
evi

∑n
j=1 evi

(3)

where v is the input vector to the softmax function F; it contains n elements for n outcomes,
vi is the ith element in the input vector v, and n is the number of classes.

The proposed method, MBEEGSE, is composed of two components: the EEGNet
blocks and the SE Blocks. Both basic blocks have layers similar to those described in [19,37].
The EEGNet block learns frequency filters using a 2D temporal convolution, and then
frequency-specific spatial filters using a depth-wise convolution, while the separable con-
volution learns a temporal summary for each feature map separately before mixing and
classifying the feature maps. The SE is a straightforward gating mechanism in channel-
based interactions. To simplify, when networks use the SE block, they can learn to recognize
the importance of each feature map in a stack of all the feature maps extracted following a
convolution operation and adjust the output to reflect that importance before transferring
the volume to the next layer.

Figure 3 shows the architecture of the MBEEGSE. It is divided into three branches, each
with an EEGNet and SE block as well as a fully connected layer. Concatenating the output
of the three branches results in the addition of another fully connected layer, followed by
a softmax layer for classification. Each branch has a different number of parameters to
collect distinct features from all parts of the signal. Our model was evaluated using two
benchmark datasets for MI EEG classification: the BCI-IV2a and the HGD.
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4. Results and Discussion

The mental and physical states of research subjects can vary substantially in EEG-MI
studies. To accomplish this, we classified the data in this study using the within-subject
technique. To put it another way, the model is trained and tested using data from multiple
sessions recorded for the same person [22]. The proposed model is employed in this study to
apply the within-subject technique to both the BCI-IV2a and the HGD datasets. One session
is utilized for training and the other is used for testing both datasets. Global parameters are
used for all individuals in the proposed model for both datasets, as indicated in Table 1. We
previously examined the optimal hyperparameters for the EEGNet blocks in [38]. During
the training phase, a callback is used to save the best model weights based on the current
best accuracy, and the best-saved model is then loaded during the test phase. With a batch
size of 64 and a learning rate of 0.0009, the model is trained for 1000 epochs. For the cost
function, a cross-entropy error function was constructed and an Adam optimizer was used.
All experiments were done in Google’s Colab environment making use of the Tensorflow
deep learning library and the Keras API.

Table 1. Global hyper-parameters used in proposed model.

Branch Block Activation Function Hyperparameter Value

First branch EEGNet Block ELU
Number of temporal filters 4

Kernel size 16
Dropout rate 0

SE Block ReLU Reduction ratio 4

Second branch EEGNet Block ELU
Number of temporal filters 8

Kernel size 32
Dropout rate 0.1

SE Block ReLU Reduction ratio 4

Third branch EEGNet Block ELU
Number of temporal filters 16

Kernel size 64
Dropout rate 0.2

SE Block ReLU Reduction ratio 2
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4.1. Overall Comparison

Using the aforementioned BCI-IV2a and HGD datasets, the performance of the recom-
mended strategy is compared to that of open-source end-to-end models and alternative
multibranch methods.

1. FBCSP is a handcrafted model for classifying motor imagery EEG data that are often
used as a baseline method [17]. It won several EEG decoding competitions, including
the BCI competition IV in both datasets 2a and 2b. The CSP features are retrieved from
different frequency bands in this model before being classified using the SVM [17].

2. ShallowConvNet is a deep learning network that can categorize MI-EEG with only
two convolution layers and a mean pooling layer [11].

3. DeepConvNet is a deeper deep learning model than ShallowConvNet. It consists of
four convolution and max-pooling layer blocks, followed by a softmax layer [11].

4. EEGNet is a deep learning model that uses two-dimensional temporal convolution,
depthwise convolution, and separable convolution to achieve a consistent approach
to various BCI tasks [19].

5. CP-MixedNet is a multi-scale model that extracts EEG features from many convolu-
tion layers, each of which captures EEG temporal information at different scales [27].

6. TS-SEFFNet is a multi-block system that employs attention and fusion techniques.
The spatio-temporal block, the deep-temporal convolution block, the multi-spectral
convolution block, the squeeze-and-excitation feature fusion block, and the classifica-
tion block are all part of a larger model [30].

7. CNN + BiLSTM (fixed) is a hybrid deep learning model which contains an attention-
based inception model and the LSTM model. It was tested and analyzed with fixed
hyperparameter values, which were fixed for all subjects [15].

We also compared our findings to earlier research [38], which included lightweight
multibranch models without attention blocks, Multi-branch EEGNet (MBEEGNet), and
Multi-branch ShallowConvNet (MBShallowConvNet). As seen in Table 2, the attention
block improves accuracy by about 1%. Table 2 summarizes the classification accuracies
achieved from the BCI-IV2a and HGD datasets using the baseline models we mentioned
above. As can be shown, our approaches have the highest average accuracy, kappa, and
F1 score. It can be noted that we compared our result with results achieved by the same
training method (the within-subject).

Table 2. The comparison summary of classification performance in proposed models.

Datasets Methods Accuracy (%) Kappa F1 Score

BCI-IV2a

FBCSP [17] 67.80 NA * 0.675
ShallowConvNet [29] 72.92 0.639 0.728

DeepConvNet [11] 70.10 NA 0.706
EEGNet [20] 72.40 0.630 NA

CP-MixedNet [26] 74.60 NA 0.743
TS-SEFFNet [29] 74.71 0.663 0.757
MBEEGNet [37] 82.01 0.760 0.822

MBShallowCovNet [37] 81.15 0.749 0.814
CNN + BiLSTM (fixed) [15] 75.81 NA NA

Proposed (MBEEGSE) 82.87 0.772 0.829

HGD

FBCSP [17] 90.90 NA 0.914
ShallowConvNet [29] 88.69 0.849 0.887

DeepConvNet [11] 91.40 NA 0.925
EEGNet [37] 93.47 0.921 0.935

CP-MixedNet [26] 93.70 NA 0.937
TS-SEFFNet [29] 93.25 0.910 0.901
MBEEGNet [37] 95.30 0.937 0.954

MBShallowCovNet [37] 95.11 0.935 0.951
CNN + BiLSTM (fixed) [15] 96.00 NA NA

Proposed (MBEEGSE) 96.15 0.949 0.962

* NA means Not Available.

4.2. Results of BCI Competition IV-2a Dataset

All of the proposed models were trained using session “T” from the BCI-IV2a data
set and tested on session “E.” In the experiments, a subject-specific method was used.
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Classification accuracy, Cohen’s score, precision, recall, F1 score, and the number of param-
eters were all employed to compare the proposed model against state-of-the-art MI-EEG
classification models.

Figure 4 illustrates our method’s performance in comparison to the baseline models
in BCI-IV2a. As shown in the figure, the proposed model outperforms other baseline
models in the BCI-IV2a by more than 7% and at least 1% for the same model without
attention blocks.
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One of the study’s primary objectives is to identify the best hyperparameters in each
branch that can improve classification accuracy with the least amount of complication.
As a result, we begin by performing multiple experiments to determine the optimal hy-
perparameters in the EEGNet block [38]. Then, we conduct additional experiments to
determine the optimal reduction ratio for the SE block. Figure 5 compares the accuracy
of different redaction ratios in the SE block on various EEGNet blocks. As illustrated in
Figure 5, EEGNet Block 3 with a different reduction ratio in the SE block outperforms other
blocks by an average accuracy of around 79%. In EEGNet Block 1, the highest accuracy was
obtained with a reduction ratio of 4. Reduction ratio 4 is more accurate in EEGNet Blocks
1 and 2, but ratio 2 is more accurate in EEGNet Block 3. The experiments revealed that
the number of parameters increases with the number and size of filters in EEGNet Block
and with the reduction ratio in SE Block. As a result, we selected a reduction ratio of 2 for
EEGNet Block 3 and a reduction ratio of 4 for EEGNet Block 1 and Block 2. That was the
set of hyperparameters we used in each branch of our proposed model in both datasets for
the SE blocks as we mentioned in Table 1.
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The proposed model was compared to state-of-the-art MI-EEG classification models
using classification accuracy, Cohen’s score, precision, recall, and F1 score. Table 3 summa-
rizes the findings from the BCI-IV2a dataset using MBEEGSE. Additionally, even with this
increase in average accuracy, we were still working with a limited number of parameters.
To gain a better understanding of the proposed method’s computational complexity, we
calculate the number of parameters in our model and compare it to existing multi-branch
techniques. As shown in Table 4, the proposed MBEEGSE has a total of 10,170 parameters
across all branches, which is less than other multi-branch models such as TS-SEFFNet and
CP-MixedNet, which have 282,000 and 836,000 parameters, respectively.

Table 3. Performance Metrics on the BCI-IV 2a dataset using the MBEEGSE.

1 2 3 4 5 6 7 8 9 Avg. Std. Dev.

Accuracy (%) 89.14 69.73 95.27 81.42 80 63.25 94.06 89.57 83.35 82.87 0.108
K value 0.855 0.596 0.937 0.752 0.733 0.510 0.921 0.861 0.778 0.772 0.144
F1 score 0.892 0.696 0.953 0.816 0.800 0.633 0.943 0.896 0.835 0.829 0.108

Precision

LH 0.857 0.602 0.955 0.872 0.760 0.594 0.967 0.968 0.857 0.826 0.145
RH 0.926 0.563 0.932 0.760 0.917 0.660 0.905 0.915 0.769 0.816 0.136
F 0.906 0.850 0.954 0.718 0.739 0.703 0.934 0.857 0.871 0.837 0.094

Tou. 0.876 0.774 0.970 0.907 0.783 0.574 0.956 0.843 0.837 0.836 0.120
Avg. 0.891 0.697 0.953 0.814 0.800 0.633 0.941 0.896 0.834 0.829 0.108

Recall

LH 0.907 0.690 0.958 0.824 0.833 0.626 0.846 0.907 0.833 0.825 0.106
RH 0.910 0.586 0.984 0.750 0.868 0.611 0.965 0.939 0.785 0.822 0.149
F 0.859 0.832 0.917 0.896 0.774 0.636 0.984 0.869 0.797 0.840 0.099

Tou. 0.892 0.675 0.955 0.805 0.728 0.661 0.987 0.868 0.931 0.833 0.122
Avg. 0.892 0.696 0.953 0.819 0.801 0.634 0.945 0.896 0.837 0.830 0.109

Where LH: Left Hand, RH: Right Hand, F: Feet, Tou.: Tongue.

Table 4. Comparison of the number of parameters and mean accuracy using BCI-IV2a dataset.

Methods Mean Accuracy (%) Number of Parameters

FBCSB [38] 73.70 261 × 103

ShallowConvNet [20] 74.31 47.31 × 103

DeepConvNet [29] 71.99 284 × 103

EEGNet [20] 72.40 2.63 × 103

CP-MixedNet [29] 74.60 836 × 103

TS-SEFFNet [29] 74.71 282 × 103

MBEEGNet [37] 82.01 8.908 × 103

MBShallowConvNet [37] 81.15 147.22 × 103

CNN + BiLSTM (fixed) [15] 75.81 55 × 103

Proposed (MBEEGSE) 82.87 10.17 × 103

The time required to predict a motor imagery class from an EEG test sample was
calculated using Python commands. According to the Google Colab environment’s spec-
ifications, our proposed model takes an average of 1.79 milliseconds to predict the class.
Additionally, we calculate the information transfer rate (ITR), which is a critical evaluation
metric when developing an embedded system. It is a widely used technique for assessing
the communication performance of control systems, more specifically BCI [39,40]. The
quantity of data transmitted per unit of time is referred to as the ITR. Typically, the ITR is
expressed in bits/min using the following formula:

ITR = T
(

log2C + A log2 A + (1− A) log2
1− A
C− 1

)
(4)

where T is the number of decisions per minute, C stands for number of classes (in our case,
we have four MI classes), and A for accuracy. As mentioned above, 4.5 s were used from
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each trial, so in a minute 13.33 trials can be processed. The average accuracy of the method
is A = 0.8287 and the ITR achieved for each subject in the BCI-IV2a dataset is presented in
Table 5. From the table, we can see that the average ITR achieved was 14.93 bit/min, which
is a good value in BCI applications [41].

Table 5. ITR values for each subject in the BCI-IV2a dataset.

Subject ITR (Bits/Min)

S1 17.76
S2 8.47
S3 22
S4 13.50
S5 12.81
S6 6.25
S7 21.07
S8 18.02
S9 14.48

Average 14.93

To investigate the discrimination of the features extracted by our MBEEGSE in greater
detail, the t-SNE is used to visualize the learned features. The t-SNE transforms the
extracted EEG features into a two-dimensional embedding dimension, as illustrated in
Figure 6. In comparison to ShallowConvNet [11], DeepConvNet [11], and EEGNet [19], our
MBEEGSE model implements multi-branch feature extraction and captures more MI-EEG
features with fewer parameters. Additionally, the proposed model’s feature visualizations
demonstrated that it was capable of extracting both temporal and spectral features from
EEG signals. Additionally, the proposed MBEEGSE generates more separable features than
the EEGNet, enabling it to distinguish between different types of MI-EEG signals efficiently.
As a result, we can see that our MBEEGSE extracts the most discriminative EEG features,
implying the highest decoding performance.
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4.3. Results of HGD

The accuracy, kappa value, precision, recall, and F1 scores for each subject in the
second dataset (HGD) are summarized in Table 6. Moreover, in the same dataset, the
average classification accuracies of our proposed multibranch model (MBEEGSE) are shown
in Figure 7 in comparison to the single-scale models FBCSP [17], ShallowConvNet [30],
DeepConvNet [11], EEGNet [38], and other multiscale networks CP-MixedNet [27], TS-
SEFFNet [30], and CNN + BiLSTM (fixed) [15]. The findings indicate that our model
effectively addresses the issue of subject and session (time) difference, thereby increasing
the accuracy of MI classification.

Table 6. Performance metrics on the HGD dataset using the MBEEGSE.

Subject/Metric Accuracy (%) K Value Precision Recall F1 Score

S1 97.05 0.961 0.971 0.971 0.971
S2 95.14 0.935 0.952 0.953 0.952
S3 100 1 1 1 1
S4 98.80 0.984 0.988 0.988 0.988
S5 98.15 0.975 0.981 0.982 0.982
S6 99.40 0.992 0.994 0.994 0.994
S7 93.84 0.918 0.938 0.939 0.939
S8 96.75 0.957 0.968 0.971 0.969
S9 98.77 0.984 0.988 0.988 0.988
S10 92.77 0.904 0.928 0.930 0.929
S11 94.70 0.929 0.947 0.948 0.948
S12 97.49 0.967 0.975 0.975 0.975
S13 96.25 0.950 0.963 0.963 0.963
S14 87.02 0.827 0.870 0.874 0.872

Average 96.15 0.949 0.962 0.963 0.962
Std. Dev. 0.034 0.045 0.034 0.033 0.033
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5. Conclusions

We proposed MBEEGSE, which is a lightweight multibranch model with attention
blocks capable of increasing EEG MI classification accuracy while utilizing fewer param-
eters. Two publicly available datasets, BCI-IV 2a and HGD, were used to validate the
performance of the model. The average accuracy and F1 score of the proposed model
were 82.87% and 0.829 using the BCI-IV 2a dataset, and 96.15% and 0.962 using the HGD,
respectively. The proposed model outperformed the base EEGNet model by more than 10%
accuracy, and the multibranch EEGNet without attention blocks by 0.86% accuracy when
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using the within-subject strategy in the BCI-IV 2a dataset. Similarly, the proposed model
performed better than other compared models using the HGD. Two major findings of this
study are as follows:

• The self-attention mechanism increases the accuracy of EEG-MI classification.
• By applying variable optimum reduction ratios of the attention mechanism in different

branches, we can reduce the number of hyperparameters in the multibranch model of
the EEG-MI classification.

Compared to the base EEGNet, the proposed model has 3.9 times more the number of
hyperparameters; however, the accuracy was improved by more than 10%. Though the
number of hyperparameters is larger than that in the EEGNet, we can utilize the parallel
processing of three branches as they are independent of each other in the proposed model.
This will significantly reduce the processing time.

In the future, we intend to investigate various attention strategies to increase the accu-
racy of EEG-MI classification models and develop models that can be used in advanced BCI
systems. Another direction of the future work can be to investigate on which frequencies
the model should give more attention for a better accuracy than the proposed model.
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