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ABSTRACT To overcome the disadvantage of clinical manual sleep staging, a convenient, economical,
and efficient multi-class automatic sleep staging method is proposed based on long short-term memory
network (LSTM) using single-lead electrocardiogram signals. From electrocardiogram signals, heart rate
variability and respiratory signals were calculated, and, then, totally 25 features were extracted. Four different
classifiers, including the two-class classifier to distinguish between wake and sleep, the three-class classifier
to distinguish wake, non-rapid eye movement sleep, and rapid eye movement, the four-class classifier to
distinguish wake, light sleep, slow wave sleep, and rapid eye movement, and the five-class classifier to
distinguish wake, sleep stage N1, sleep stage N2, sleep stage N3, and rapid eye movement, were constructed
using the LSTM. The single-lead electrocardiogram data from 238 patients with full sleep stages during sleep
were used for the training set and the data from other 60 patients were regarded as a validation set. The rest
of 75 patients have left aside for testing set. The accuracy of two-class, three-class, four-class, and five-class
sleep staging was 89.84%, 84.07%, 77.76%, and 71.16% and the Cohen’s kappa statistic k was 0.52, 0.58,
0.55, and 0.52, respectively, which realized the moderate agreement with clinical analysis. When expanding
the dataset to extra 1068 patients with missing sleep stages, the accuracy has no obvious reduction but the
Cohen’s kappa statistic k dropped to 0.51, 0.52, 0.48, and 0.43, respectively. The proposed method, in this
paper, is promising for low-cost, efficient, and convenient sleep staging in home care monitoring.

INDEX TERMS Electrocardiogram, heart rate variability, long short-term memory, sleep staging.

I. INTRODUCTION

Sleep is one of the most important physiological activities
of human body, and sleep staging is one of the most effi-
cient approaches to evaluate the equality of sleep. Nowadays,
the most authoritative sleep staging standard is set by the
American Academy of Sleep Medicine (AASM). Based on
polysomnography (PSG) and theAASMManual for the Scor-
ing of Sleep and Associated Events Rules, sleep activities can
be divided into five stages: wake (W), stage I (N1), stage II
(N2), stage III (N3), and rapid eye movement (REM) [1].

The associate editor coordinating the review of this manuscript and
approving it for publication was Zehong Cao.

The PSG consists of multi-channel biosignals including
electroencephalogram (EEG), electromyogram (EMG), elec-
trooculogram (EOG), electrocardiogram (ECG) and respi-
ratory signals, and then experienced doctors examine the
PSG signals of every 30-second frame to obtain the clin-
ical classification results [2]. In non-clinical applications,
there are also different standards of sleep staging, such
as 2-class to distinguish W and sleep, and 3-class to dis-
tinguish W, non-rapid eye movement (NREM) and REM,
4-class to distinguish W, light sleep (LS), slow wave sleep
(SWS), and REM [3]. The main purpose of this paper is to
explore a general, convenient, and economical sleep staging
method.
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The sleep staging method based on PSG technology has
obvious disadvantages in practical applications. All the sig-
nals are strictly measured in certain laboratory, which is inac-
cessible for most people. The measurement of multi-channel
physiological signals may cause discomfort to sleep, mak-
ing the measurement results deviate from the real situation.
What’s worse, expensive cost also limits the application of
PSG. Therefore, it is of great significance for exploring an
automatic sleep staging method. At present, the research of
automatic sleep staging method can be divided into three
aspects according to the used physiological signals. Firstly,
the automatic sleep staging methods based on EEG sig-
nals have realized considerable performance since there is a
direct link between EEG and electrophysiological activities
of the brain [4]. The accuracy of 5-class sleep staging using
single-lead EEG for healthy people can exceed 90% [5], [6];
5-class sleep staging based on EEG, EMG, and EOG can
achieve the accuracy of 92% or even higher for healthy
people [7], [8], and 86% accuracy for patients with sleep
disorders [9]. Secondly, the sleep staging methods based
on cardiopulmonary coupling signals that mainly contain
ECG and respiratory signals have attracted more and more
attention. The reported study in 3-class sleep staging for
patients with sleep disorder has achieved a maximum accu-
racy of 71.9% [10]. Thirdly, the sleep staging methods based
on the acceleration signals during sleep is mainly to classify
W and sleep, achieving the highest consistency of 91% with
PSG system [11].
However, there are certain practical problems in the above

studies. Although the staging methods based on EEG sig-
nals have high accuracy, there are current limitations in the
recording technologies for measuring EEG activity in clinical
and experimental applications [12]. EEG is very susceptible
to various interference, thus the requirements for electrodes
and measurement environment are strict, which usually lead
to relatively high cost [13], [14]. Most of the sleep staging
methods based on acceleration signals can only distinguishW
and sleep, which is unreliable and lack of significance. How-
ever, ECG is one of the large-amplitude physiological signals
which is relatively easy to obtain. Therefore, the sleep staging
methods based on cardiopulmonary coupling is of great prac-
tical significance. At present, the most efficient approaches
on sleep staging method based on cardiopulmonary coupling
mainly focus on heart rate variability (HRV) and respira-
tory rate variability (RRV) which has obvious characteristics
during different sleep states [15], [16]. Yucelbas, S., et al.
compared the results of four different classification methods
to classify 3-class sleep staging for healthy people, achiev-
ing the highest accuracy of 87.11%, but only 78.08% for
patients with obstructive sleep apnea [17]. While another
research using ECG and acceleration signals only achieved
the accuracy of 74.5% [18]. Since the RRV based features
can be extracted from ECG signals [19], the sleep staging
methods involved HRV and RRV features can be simply
implemented by using single-lead ECG signals. In general,
the current research of sleep staging with ECG signals has

two disadvantages. On the one hand, some methods just
obtained good results on healthy subjects but performed poor
on patients, lacking of universality and robustness. On the
other hand, the state-of-art sleep staging accuracy was rel-
atively low, far away from practical application. Thus, it is
very important to further explore sleep staging methods using
ECG signals.

The long short-term memory network (LSTM) has more
advantages than other methods when dealing with pattern
recognition problems for time series [20]. LSTMmodel adds
a forgotten gate based on the traditional Recurrent Neural
network (RNN) [21], making the neural network selectively
forget the previously learned parameters. So LSTM can uti-
lize the temporal correlation of time series and avoid the
problem of long-term dependence [22]. Yulita et al. used Bi-
directional LSTM for sleep staging using EEG, EOG, and
EMG signals, achieving an accuracy of 86% for patients with
sleep disorders [9], [23]. Radha et al. used the LSTMmodel to
study sleep staging for healthy people and also yielded good
results [24]. In this study, a novel method based on LSTM
network was proposed for automatic sleep staging in home
caremonitoring for healthy people. Firstly, the HRV and RRV
signals were extracted from only single-lead ECG signals.
Then LSTM network was used for sleep staging on patients
with mental disorders to respectively achieve 2-class, 3-class,
4-class and 5-class sleep staging task to meet the application
needs on different occasions. The explored method in this
paper has certain universality and can be easily transplanted
to mobile devices to meet the sleep monitoring demands for
more scenes like home care.

II. MATERIALS AND METHODS

A. DATA ACQUISITION

In order to verify the effectiveness of the method proposed in
this paper, the PSG data is collected from the sleep disorders
diagnosis center of Xijing Hospital, Fourth Military Medical
University. The research was approved by the Ethics Com-
mittee of the First Affiliated Hospital of the Fourth Military
Medical University. All the subjects were patients suffering
either depression or schizophrenia without other mental dis-
orders, and they were all given the informed consent before
the experiments. Totally 1514 cases were collected. The sleep
structures of those patients were much different from that of
healthy subjects. The sleep stages of most patients missed
REM or N3. Therefore, only valid cases were chosen for the
research in this paper. The selecting criteria is that the patient
must have complete sleep structures, containing all the five
sleep stages (wake, N1, N2, N3, and REM), with no symp-
toms of sleep apnea. Therefore, 373 patients were chosen in
the end. The demographic data and sleep parameters were
presented in Table 1.

The PSG data were measured by SOLAR3000B neurocen-
tral monitoring analysis system developed by Beijing Solar
Electronic Technologies Company Ltd. The SOLAR3000B
could synchronously record eight-lead EEG, three-lead ECG,
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FIGURE 1. An overall description of the method proposed in this paper. The block diagram contains three parts: clinical analysis (The clinical
technicians watched the signals from PSG to annotate the sleep stages), feature extraction (One single-lead ECG signals was used to
extracted features for sleep staging) and multi-class classification sleep staging (Four different classifiers were constructed and trained
independently to realize multi-class staging.).

TABLE 1. Demographic data and typical sleep parameters.

one-lead chin EMG, and two-lead EOG from the left and
right eyes. The placement of eight-lead EEG signals were
referenced to the international 10–20 system of electrode
placement [25], including Fp1, Fp2, C3, C4, O1, O2, T3 and
T4. Three-lead ECG included the lead-I (LA-RA), lead-II
(RA-LL) and lead-III (LA-LL). The sampling rate of all
signals was 100Hz [26]. The subjects were asked to sleep
the whole night (approximately from 11. p.m. to 6:30 a.m.)
as usual until they were awoken by the researchers in the
morning. The standard sleep stages were determined by a
sleep scoring technician according to the AASM rules.

B. METHODS

The proposed method used only one-lead ECG for auto-
matic sleep staging. Firstly, HRV signals were calculated
from de-noised ECG signals after pre-processing. Then HRV
and respiratory amplitude variability (RAV) signals were
extracted. Next, features were extracted from time and fre-
quency domain. Finally, the multi-class sleep staging method
was formed. Four different classifiers based on LSTM net-
work were constructed, 2-class sleep staging for distinguish-
ing W and sleep (Classifier_WS); 3-class sleep staging to
distinguish betweenW, NREM and REM (Classifier_WNR);

4-class sleep staging to distinguish W, LS, SWS and REM
(Classifer_WLSR); and 5-class sleep staging to distinguish
between W, N1, N2, N3 and REM (Classifer_WN3R).
An overall description of the method proposed in this paper
is shown in Fig 1.

1) FEATURES EXTRACTION

An overview of feature extraction procedure is illustrated in
Fig.2. Since it has been proved that body position has little
impact on the measurement accuracy of respiratory signal
estimation from ECG [27], any lead of ECG signals from
PSG can be used to calculate HRV and RRV. In this paper,
the lead-II ECG signals were chosen. A third-order bandpass
Butterworth filter was used to filter out the valid components
(0.5∼5Hz) from ECG signals. Then the peak point position
of each R wave was identified using the maximum slope
method [28]. The R-R interval was obtained from the differ-
ence between the adjacent R peak point positions and HRV
signals were calculated from this R-R intervals signals using
cubic spline interpolation. The process is used to convert the
non-equidistantly sampled R-R interval time locations to an
equidistantly sampled HRV signal that has amplitude equal to
the R-R intervals signal at precisely that time location [29].
Finally, the HRV was down-sampled to 10 Hz by using a
polyphase filter. Since the related frequency domain calcu-
lation used in this paper doesn’t require signals with high
frequency, 10 Hz is basically enough.

The original ECG signals contained the valid frequency
components of respiratory information. Therefore, accord-
ing to the theory of frequency modulation, the RAV was
filtered by a third-order Butterworth bandpass filter with
frequency band ranging from 0.15 Hz to 0.5 Hz from the
original ECG signals. The RRV signal was calculated from
the RAV signal with the same method as HRV extraction.
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FIGURE 2. Overview of the feature extraction method proposed in this paper. One single-lead ECG signals were pre-processed by filtering.
Then HRV, RAV and RRV were calculated. Features were extraction based on HRV, RAV and RRV after normalization and segmentation. Then
all the extracted features were processed by normalization.

The time interval between adjacent respiratory peak positions
was detected using the maximum slope, and then RRV was
obtained from the respiratory time interval series with cubic
spline interpolation. Finally, RRV was also down sampled
to 10 Hz.
Before feature extraction, HRV, RAV and RRV were all

normalized into a coordinate scale. The way to normalize
the given signal is to center it at zero mean and scale it
to unit standard deviation. Then HRV, RAV and RRV were
divided into 30-second epochs synchronizing in time with
PSG classification results. To make representative features in
context, the feature extraction procedure is carried out based
on the sliding window technique by 90% overlapping frames
from signal streams. Totally 25 features were computed in
a 5-minute window centered on each 30-second epoch with
2-min extension to the left side and 2.5-minute extension to
the right side. Feature calculation from HRV was the same
with that from RRV. The detailed procedures were described
in Table 2. The feature calculation from RAV was a little
different, which depended on the maximum value and mini-
mum value between the positions of two adjacent respiratory
waves. In Fig 3, partial RAV signals from one subject were
plotted, on which the maximum points of the absolute value
of the slope of the respiratory wave (RPOS ) were marked. The
maximum values between two adjacent RPOS were referred
to as RM (n). The time positions corresponding to the maxi-
mum values were referred to as M (n). The minimum values
between two adjacent RPOS were referred to as RN (n). The
time positions corresponding to the minimum values were
referred to as N (n). Another 9 features were extracted from
RAV signals. The detailed procedures of feature calculation
from RAV signals were described in Table 3

Features were extracted within each epoch and then con-
catenated to form the final features series of each subject.
Because of the differences of physiological signals between
individuals, all the features were normalized to make them
center at zero mean and scale to unit standard deviation.

2) MULTI-CLASS SLEEP STAGING

Multi-class sleep staging method in this paper was based on
LSTM network. The layers in LSTM network use memory

TABLE 2. Feature calculation from HRV and RRV.

cells that can store long-term information from times series.
The output of one LSTM layer is based on the current
time step input, their last output (long-term recurrence) and
the internal cell state. The cell state is adjusted through
gating mechanisms. Furthermore, one of the great advan-
tages of LSTM is its ability to handle variable length
sequences. In this study, different subjects have different
sleep time which resulted in the obtained variable length
feature sequences. Therefore, LSTM network is the most
appropriate choice. However, the implementation of LSTM
network in Keras framework need to fix the length of input
sequences [30]. In order to overcome the conflicts, the mask-
ing strategy was adopted. The length of all the sequence was
set to 1036 30-second frames (8 hours and 38 minutes) which
is the maximum sleep length of all the subjects. The sequence
less than 1036 was padded with zeros. When constructing
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TABLE 3. Feature calculation from RAV.

classifiers, a masking layer must be added for right next to
the input layer. As a result, the padding values in the sequence
would all be filtered out.
To realize 2-class, 3-class, 4-class or 5-class sleep stag-

ing tasks, four classifiers were designed. They have nearly
the same structures but different outputs. As an example,
the detailed illustration of the network structure of 4-class
classifier is shown in Fig.4. Each classifier contains eight
different layers, which acts different functions.
a) Input layer: input the data of 25 features (xt ).
b)Masking: the input sequence is ‘‘masked’’ with the given

value to locate the time step that needs to be skipped. The
masking value is set to zeros. As a result, the following layer
will skip the time step with the value of zero.
c) Normalization: act as a regularizer, making the mean

value of data in each batch close to zero and its deviation close
to one. Batch normalization will accelerate network training
by reducing internal covariate shift.

FIGURE 3. Partial RAV signals from one subject as an example. The
position of RPOS , M(n) and N(n) were marked on RAV signals. Between
two adjacent RPOS , only one maximum value and one minimum value
were detected.

FIGURE 4. Detailed illustration of classifier structure. Each classifier
contains eight layers. The numbers in brackets means the number of
neurons of current layers.

d)Full connection: consist of 50 parallel perceptions. Since
there is no special treatment for the original features after
normalization, all the parameters are set as default except that
the units are set as 50.

e) LSTM layer: use one layer of LSTM. At each time
step, the memory cell takes in the outputs of full connection
layers and generates 100 new features. Then, those 100 new
features, the output of last time step and the internal state of
current memory cell, are all considered to calculate a result,
which contains temporal information from the past and the
present.

f) Dropout: the dropout layer is used to randomly forget
some previous information, which is an effective strategy to
avoid over-fitting.

g) Full connection: the full connection technique is car-
ried out to map the output of dropout layers to a lower
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dimensional space whose size depends on the classification
of sleep staging tasks. The activation function is softmax. For
example, if a 4-class sleep staging task is realized, the units
are set as four. As a result, full connection layer will generate
four-dimensional outputs representing the class probabilities
at current time step.
h) Output layers: give the final sleep stage of current time

step, which is the class label with the maximum probability.

3) MODEL TRAINING

The classifiers were implemented with Keras framework
based on Tensorflow backend [30] in python environment
with the interpreter of python 3.6. The rate of dropout layer is
set as 0.5. The loss function of all classifiers is cross-entropy.
The optimizer used in the classifier is ‘‘adam’’. The training
epoch is set as 40. Too large batch size will decrease the
number of iterations of one epoch, which may cause under-
fitting. While too small batch size may make the training
process not converge or lead the final convergence accuracy
to fall into the local extrema. There has been researches
suggesting that the best performance has been consistently
obtained for mini-batch sizes between 2 and 32 for most deep
learning problems [31]. Therefore, in this paper, the batch size
is set to 5. Considering that the size of the data set used in this
paper is not large enough, a relatively small batch size will
not cause much calculation burden. Once the classifiers were
trained well, they can be used for testing and predicting.
In this paper. The ratio of testing set is 0.2. Among the rest

data, the ratio of training set to validation set is also 8:2. So the
training set size was 238 subjects. The size of validation set
was 60 subjects, and the size of testing set was 75 subjects. All
the subjects from the validation and testing set were chosen
randomly.

4) EVALUATION OF SLEEP STAGING AND SLEEP EQUALITY

To evaluate the sleep staging method proposed by this paper,
sleep staging accuracy and Cohen’s kappa statistic [32], [33]
were used. Sleep staging accuracy po is calculated by the
sum of correctly classified samples for each class divided
by the total number of samples. Cohen’s kappa statistic k is
calculated as:

k = (po − pe)/(1 − pe) (1)

where pe = (t1 × p1 + t2 × p2 + . . . + tn × pn) / (N × N ),
and t is the number of true samples of each class, p is the
number of predicted number of each class, n is the number
of total classes, N is the total number of samples. Cohen sug-
gested the kappa statistic k be interpreted as follows: values≤

0 as indicating no agreement between the proposed method
and the standard criteria and 0.01∼ 0.20 as none to slight,
0.21∼ 0.40 as fair, 0.41∼ 0.60 as moderate, 0.61∼ 0.80 as
substantial, and 0.81∼ 1.00 as almost perfect agreement [34].

After the sleep staging was performed, the sleep equality
was evaluated in the end. Therefore, the following averaged
nightly summary sleep measures were also calculated for
each classifier system [35]: total sleep time (TST), sleep

FIGURE 5. The training process of proposed method in this paper. (a) The
change of accuracy with training epochs. (b) The change of loss with the
training epochs.

onset latency to the first epoch of sleep (SOL), latency to
persistent sleep of 10 continuous min (LPS), wakefulness
after sleep onset (WASO), sleep efficiency (SE), the number
of awakenings lasting at least 2 min (NA) and wakefulness
time during sleep (WTDS) between the first and last sleep
epoch since the recordings, time in REM sleep (TREM), time
in light sleep (TLS), time in slow wave sleep (TSWS) and
latency from the onset of the first epoch of sleep to the onset of
the first epoch of REM sleep (REML). Statistical differences
of sleep staging between the PSG and the proposed method
were analyzed with SPSS.

III. RESULT

Taking the training process of 4-class sleep staging in dataset
1 as an example, the change process of accuracy and loss
with training set and validation set were shown in Fig. 5.
When the training epoch was set to 100, the training accuracy
slowly increased with the increase of training epochs. At the
same time the loss of training set slowly decreased. However,
the loss of training set decreased while the loss of validation
set stayed plateau once the epoch exceeded 40. This indi-
cated that the model was fully trained and approached the
tipping point of over-fitting. The same trend was also found
in 2-class, 3-class and 5-class sleep staging. Thus it is suitable
for using 40 epochs to train each sleep staging classifier.

As for the testing set, the confusion matrixes of 2-class,
3-class, 4-class and 5-class sleep staging were shown
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TABLE 4. Confusion matrix of multi-class sleep staging.

in Table 4. The sleep staging accuracy and Cohen’s kappa
statistic k of each classification task were also listed
in Table 2. From the testing results, 2-class sleep staging task
achieved the best result among all sleep staging tasks. The
accuracy is 89.48%, and Cohen’s kappa statistic k is 0.52.
For 3-class sleep staging problem, the accuracy is 84.07%,
Cohen’s kappa statistic k is 0.58, which indicates moderate
agreement with the results of clinical analysis. The reason
why sleep staging of 3-class achieves higher Cohen’s kappa
statistic k than 2-class is that the number of correctly classi-
fied W increased. The classification accuracy and Cohen’s
kappa statistic k of 4-class sleep staging was 77.65% and
0.55, which is able to meet the precision requirements of most
sleep monitoring application. According to Table 4, it is very
difficult to distinguish the sleep stage of N1 correctly, which
is the main reason why the accuracy of 5-class sleep staging
is relatively low. But the Cohen’s kappa statistic k of 5-class
sleep staging is 0.52, which is much higher than most of the
current research.
Because 5-class sleep staging is recommended by the

AASM criteria, this sleep staging problem is very important
in intensive care unit or home care monitoring. Fig.6 showed

TABLE 5. Summary sleep measures of PSG and LSTM network.

the comparison results of predicted sleep stages by the pro-
posed method with clinical analysis of one subject in the test-
ing set. The shaded part marked the wrong classified frames,
which often occurred between N2 and N3. But the accuracy
of this subject is 84.78%, and Cohen’s kappa statistic k is
0.76, which indicates substantial consistency with the clinical
analysis.

In order to evaluate the differences of the PSG and the
proposedmethod in sleep quality assessment. Totally 11 sum-
mary sleep measures of the nightly averaged sleep stage and
sleep/wakefulness measures were calculated for the 75 test
subjects. Table 5 shows the results of the mean value and
standard derivation of each measure. Analyzed by SPSS,
all the summary sleep measures are not normal distributed,
so the statistical differences between the PSG and the pro-
posed method were tested by ANOVA. Individual pairs were
compared by Mann-Whitney U significant difference. In this
paper, the significance level was set at P <0.05. As shown
from Table 5, there were no significant differences between
the PSG and the proposed method for all summary sleep
measures. As the proposed method can almost realize the
same results with PSG for the proposed 11 summary sleep
measures, it is suggested that the proposedmethod is effective
for assessing sleep quality.

IV. DISCUSSION

A. THE EFFECT OF DATASET

In this paper, only subjects with completed sleep structures
were included in the training and testing of the model. How-
ever, for the original dataset obtained in this paper, miss-
ing sleep stages happened to nearly 75% of the subjects.
To investigate amore practical sleep stagingmodel, the whole
dataset were fully used. Except for 73 cases (68 patients had
symptoms of sleep apnea and lead-off problems happened to
another 5 patients), totally 1441 patients (609 males, mean
age 38±16 years) were involved. The rate of training set to
testing set was also 8:2. As a result, the size of training set,
validation set and testing set were 922, 231, 288 respectively.
All the testing and validation set were chosen randomly. The
model construction and training process were the same as the
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FIGURE 6. The comparison of predicted sleep stage by LSTM network with clinical technician of one subject from the test data.
(a) Sleep stages by clinical analysis. (b) Sleep stages by LSTM network. The shaded parts indicate the wrong prediction of the model.

dataset with full sleep stages. The testing results were shown
in Table 6.
Comparing the results in Table 6 with the results in Table 4,

conclusion can be easily made that too much patients with
missing sleep stages reduced the performance of LSTM net-
work. In general, the accuracy of the 2-class, 3-class, 4-class
and 5-class sleep staging has no obvious decrease, but the
Cohen’s kappa statistic k decreased a lot especially for 4-class
and 5-class sleep staging. As for 5-class sleep staging, the
Cohen’s kappa statistic k is reduced by 17% from 0.52 to 0.43.
Therefore, the dataset has relatively obvious effect on the
performance of sleep staging model. Since too much samples
withmissing sleep stages would lead to great imbalance of the
rate of different sleep stages, which may mislead the learn-
ing of LSTM network. Among all the 1441 valid patients,
the sleep stage of N3 just covers around 2.71% of all the sleep
stages. Most of the N3 stages were incorrectly recognized
as N2, which resulted in the reduction of performance for
4-class and 5-class sleep staging. In both dataset, the number
of W stages wrongly predicted as REM was much smaller
than predicted as N2. The number of REM stages wrongly
predicted as N2 was larger than predicted as W. As for the
dataset with full sleep stages, the sensitivity of W and REM
were both above 60%. Therefore, the proposed method had
good capability to distinguish W and REM. Generally speak-
ing, the features of HRV in W and REM stages were quite
similar, which making it difficult to distinguish REM from
W for most traditional methods. But LSTM network had its
own advantages. The probability of transition between two
sleep stages was quite different. For example, the transition
probability from N3 to REM was larger than that from N3 to
W. Such rules could bemore easily learned by LSTMnetwork
rather than most traditional methods.

The aim of the study is for assessing the sleep quality
of healthy people. Although missing sleep stages happens
to healthy subjects in real life, it just happens occasionally.
According to [36], [37] approximately 20% total sleep time
is N3 and 25% is REM in adults and it may change with
age. Instead, as for patients with depression or schizophrenia,
their EEG signals are different from that of healthy people
and most of their sleep time during the night is missing
REM or N3 [38]–[41], which makes tremendous imbalance
to the training data set. Therefore, the proposed method is
recommended to apply to sleep monitoring for people with
complete sleep structure. As for patients with serious sleep
disorder, the proposed method may be incompetent.

B. THE EFFECT OF LSTM LAYER DEPTH

The method proposed in this paper just used one LSTM layer.
To valid the impact of LSTM layer depth on sleep staging,
the LSTM network was reconstructed using 2∼5 LSTM lay-
ers. The training and testing procedures of the new LSTM
networks are the same as the proposed method. The sleep
staging results from 1 to 5 LSTM layers were shown in Fig.7.
The testing results indicate that the sleep staging accuracy
has no evident improvement as the increase of LSTM layers.
The Cohen’s kappa statistic k seemed to increase a little when
the LSTM layer rose to 3, but there was no more substantial
growth when LSTM layer was larger than 3. But the Cohen’s
kappa statistic k of 2-class sleep staging increased a lot as
LSTM layer increased from 1 to 2, but the growth tendency
seemed to stop for the later layers. Eventually, the Cohen’s
kappa statistic k of 2-class and 3-class sleep staging simply
oscillate around the value of 0.58. In recent study, the effec-
tiveness of the layer depth has been proved in the model
of convolutional neural networks for sleep staging [42], but
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TABLE 6. Confusion matrix of multi-class sleep staging for the patients
with missing sleep stages.

there is no previously report in LSTM networks. Through
gating mechanisms, LSTM network can selectively store
long-term information from time series, which could fully use
the transition probability information between different sleep
stages. Thus LSTM networks can achieve good performance
in sleep staging problems. In fact, the situations in which
performance improves with a second (or third, etc.) hidden
LSTM layer are very few [43]. One hidden LSTM layer is
sufficient for the large majority of sleep staging problems.
However, sleep staging is a complex physiological process,
which has various characteristics in different signals. In this
paper, it has been proved that the depth of LSTM layers
has no evident impacts on the results of sleep staging when
using single-lead ECG signals. If multi-channel physiological
signals were involved, things may be different. The impact of
LSTM layer depth on sleep staging using various physiolog-
ical signals should be further investigated.

C. THE IMPACT OF DROPOUT RATE ON OVER-FITTING

To avoid the problem of over-fitting, the dropout schema
is usually recommended in the classification problem. The
lower dropout rate would cause over-fitting and larger

FIGURE 7. The performance of different LSTM layers (a) The change of
accuracy with the depth of LSTM layers. (b) The change of Cohen’s kappa
statistic k with the depth of LSTM layers.

dropout rate may cause under-fitting. The dropout rate is
usually set as 0.3 or 0.5. However, there is no report about the
specific influence of dropout rate on LSTM network. Hence,
the impact of dropout rate on sleep staging was investigated
while the dropout rate was set from 0 to 0.9 with a step of 0.1.
All the training and testing strategies are the same as those
used by the proposed method. The sleep staging results of
different dropout rates are shown in Fig. 8.

It can be observed from Fig. 8 that the change of Cohen’s
kappa statistic k was more sensitive to the change of dropout
rate than accuracy. When the dropout rate increased from 0 to
0.9, the accuracy of all the four classifiers had little fluctua-
tion. But the Cohen’s kappa statistic k firstly increased and
then significantly decreased once the dropout rate was larger
than 0.7. When the dropout rate was set as 0, the LSTM cells
would remember all the information from the former training
process with no dropout. Too much redundant information
would inevitably cause over-fitting. That’s why the dropout
rate at 0 got bad performance. By an overall view of Fig. 7,
the dropout rates lower than 0.3 or larger than 0.7 would cause
worse sleep staging results, while the dropout rates between
0.3 and 0.7 could seem to obtain good performance. As a
result, the dropout rates between 0.3∼0.7 are suitable for
the sleep staging using single-lead ECG signals based on the
proposed method.
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FIGURE 8. The change of accuracy (a) and Cohen’s kappa statistic k
(b) with different dropout rates.

D. THE VALIDATION OF PROPOSED METHOD

To validate the effectiveness for healthy people of proposed
method, the public dataset Sleep Heart Rate and Stroke Vol-
ume Data Bank (SHRSV) [44] was used as prediction dataset
in this study. The LSTM network was firstly trained by the
dataset used in this study. Then, the sleep stages of 45 healthy
subjects from SHRSV were predicted by the trained LSTM
network. The accuracy and Cohen’s kappa statistic k of
3-class were listed in Table 7.

Using single-lead ECG signals has already been proved
valid for sleep staging recently [17]. Many conventional sleep
staging methods based on HRV, including linear discrimi-
nant, random forest (RF), support vector machine (SVM),
naive Bayes (NB), sleep stage transition (SST) model and
time-dependent sleep stage transition (TSST) model, have
been applied before [2], [17], [45], [46]. However, there
were two main disadvantages of those conventional methods.
On the one hand, the low accuracy of thosemodels was unable
to meet the clinical needs. On the other hand, the feature
extraction process of those methods was somehow compli-
cated. In the recent research [2], by using single-lead ECG
signals, the RF method achieved the sleep staging accuracy
of 72.58%. But totally 41 features were extracted when iden-
tifying the classification of W, NREM and REM. The results

TABLE 7. The comparison OF LSTM network with conventional method.

of 3-class sleep staging by RF, NB, SVM, SST and TSSTwith
the same dataset SHRSV were also shown in Table 7.

From Table g, it can be observed that the performance
of proposed method is much higher than the conventional
methods both in accuracy and the Cohen’s kappa statistic k .
The dataset for training LSTM network model were collected
from hospitalized patients who suffered from either depres-
sion or schizophrenia. Although the sleep structures of those
patients were different from healthy subjects, the proposed
method can still achieve high accuracy and Cohen’s kappa
statistic k for healthy subjects. This demonstrated that the
proposed method had wider applicability and broader effec-
tiveness than conventional methods and it can be used for
healthy people. If the training data could contain a certain
number of healthy subjects, the sleep staging results would
be much better.

E. ADVANTAGES AND LIMITATIONS

In this paper, the features extracted from single channel ECG
signals and the LSTM network were proposed for automatic
sleep staging, including 2-class, 3-class, 4-class, and 5-class
sleep staging. Especially for 5-class sleep staging, the sleep
staging accuracy exceeded 70%, and the Cohen’s kappa
statistic k was 0.52. Although there was a little difference
with the gold standard of PSG, these results had achieved
much improvement than those of other methods using single-
lead ECG signals. The advantage of the sleep staging method
explored in this paper is that this approach can be easily
transplanted to portable mobile devices or other monitoring
devices. Because only single-lead of ECG signals was used as
the input of sleep staging, these input signals could be easily
obtained by many medical devices. Once the ECG signals
were used as the input of proposed method, detailed sleep
stages could be obtained conveniently. In family monitor-
ing, the proposed method can greatly improve the fineness
and accuracy of sleep staging compared with the existing
monitoring methods such as wrist sensors. Since many wrist
sensors using actigraph [39] would only distinguish between
sleep and wake, the sleep staging of bracelets is invalid when
classifying SWS and LS. Therefore, the proposed method is
considered as an effective approach of sleep staging in family
health care.

On the other hand, the proposed method in this paper also
has certain limitations. Firstly, the used dataset was collected
from hospitalized patients. They were suffering from mental
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illness like depression or schizophrenia. The sleep structures
of those patients were different from healthy subjects, mainly
in the decrease of N3 and REM sleep, and the increase of
N2 sleep [38], [47]. If dataset from healthy subjects was
added when training the model of LSTM network, the sleep
staging results would be much better. Secondly, although
the dataset of 373 subjects used in this paper was relatively
larger than the previous investigations, it is still too small
for deep learning. A large dataset is expected to achieve
better performance. What’s more, the results of full dataset
containing 1441 patients were not good, which was mainly
caused by the imbalance of the data. So the new model for
patients with incomplete sleep structure should be explored in
the future. In order to better fit the full dataset, a slightly sim-
plified model based on LSTM network should be redesigned.
Last but not least, the subjects involved in this paper might
be receiving medication. Medicine for treating mental ill-
ness usually promotes sleep by stimulating the nerve activ-
ity, which also has certain impact on heart rate. Therefore,
the heart rate features used in this paper may be different
from that of healthy subjects. The method proposed in this
paper may not be fully applicable to healthy subject for sleep
staging. In the future, when the method is applied to healthy
subjects, it needs to be re-evaluated more rigorously. Another
improvement direction is to measure ECG signals from front
head to involve certain information about eye movements.
Thus, the detection of REM may be more precise.

V. CONCLUSION

A multi-class automatic sleep staging method based on
single-lead ECG signals was proposed in this paper. This
method can achieve different staging tasks of 2-class, 3-
class, 4-class and 5-class sleep staging, and has a high con-
sistency with the clinical results of PSG. At the same time,
the proposed method, which was trained by the dataset based
on mental illness patients, can also achieve quite good per-
formance on ECG data of healthy subjects. So the method
proposed in this paper has certain universality and stability,
which can be used for sleep monitoring in care units, family
monitoring, and mobile medical treatment.
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